Pub Date : 2024-10-16DOI: 10.1126/scirobotics.adm7689
T. Thang Vo-Doan, Victor V. Titov, Michael J. M. Harrap, Stephan Lochner, Andrew D. Straw
Insects have important roles globally in ecology, economy, and health, yet our understanding of their behavior remains limited. Bees, for example, use vision and a tiny brain to find flowers and return home, but understanding how they perform these impressive tasks has been hampered by limitations in recording technology. Here, we present Fast Lock-On (FLO) tracking. This method moves an image sensor to remain focused on a retroreflective marker affixed to an insect. Using paraxial infrared illumination, simple image processing can localize the sensor location of the insect in a few milliseconds. When coupled with a feedback system to steer a high-magnification optical system to remain focused on the insect, a high–spatiotemporal resolution trajectory can be gathered over a large region. As the basis for several robotic systems, we show that FLO is a versatile idea that can be used in combination with other components. We demonstrate that the optical path can be split and used for recording high-speed video. Furthermore, by flying an FLO system on a quadcopter drone, we track a flying honey bee and anticipate tracking insects in the wild over kilometer scales. Such systems have the capability to provide higher-resolution information about insects behaving in natural environments and as such will be helpful in revealing the biomechanical and neuroethological mechanisms used by insects in natural settings.
{"title":"High-resolution outdoor videography of insects using Fast Lock-On tracking","authors":"T. Thang Vo-Doan, Victor V. Titov, Michael J. M. Harrap, Stephan Lochner, Andrew D. Straw","doi":"10.1126/scirobotics.adm7689","DOIUrl":"https://doi.org/10.1126/scirobotics.adm7689","url":null,"abstract":"Insects have important roles globally in ecology, economy, and health, yet our understanding of their behavior remains limited. Bees, for example, use vision and a tiny brain to find flowers and return home, but understanding how they perform these impressive tasks has been hampered by limitations in recording technology. Here, we present Fast Lock-On (FLO) tracking. This method moves an image sensor to remain focused on a retroreflective marker affixed to an insect. Using paraxial infrared illumination, simple image processing can localize the sensor location of the insect in a few milliseconds. When coupled with a feedback system to steer a high-magnification optical system to remain focused on the insect, a high–spatiotemporal resolution trajectory can be gathered over a large region. As the basis for several robotic systems, we show that FLO is a versatile idea that can be used in combination with other components. We demonstrate that the optical path can be split and used for recording high-speed video. Furthermore, by flying an FLO system on a quadcopter drone, we track a flying honey bee and anticipate tracking insects in the wild over kilometer scales. Such systems have the capability to provide higher-resolution information about insects behaving in natural environments and as such will be helpful in revealing the biomechanical and neuroethological mechanisms used by insects in natural settings.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"4 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1126/scirobotics.adr9299
Maheera Bawa, Ritu Raman
Innovations in control mechanisms for muscle-powered robots are advancing the sophistication of biohybrid machines.
肌肉驱动机器人控制机制的创新正在推动生物混合机器的发展。
{"title":"Taking control: Steering the future of biohybrid robots","authors":"Maheera Bawa, Ritu Raman","doi":"10.1126/scirobotics.adr9299","DOIUrl":"10.1126/scirobotics.adr9299","url":null,"abstract":"<div >Innovations in control mechanisms for muscle-powered robots are advancing the sophistication of biohybrid machines.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 94","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1126/scirobotics.ads4127
Nicole W. Xu
A butterfly-like robot swims using an electronic device to stimulate human-derived motor neurons and cardiac muscle cells.
一个类似蝴蝶的机器人利用电子设备刺激源自人类的运动神经元和心肌细胞游泳。
{"title":"Float like a butterfly, swim like a biohybrid neuromuscular robot","authors":"Nicole W. Xu","doi":"10.1126/scirobotics.ads4127","DOIUrl":"10.1126/scirobotics.ads4127","url":null,"abstract":"<div >A butterfly-like robot swims using an electronic device to stimulate human-derived motor neurons and cardiac muscle cells.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 94","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning, robots, and abuse of power","authors":"Robin R. Murphy","doi":"10.1126/scirobotics.ads6559","DOIUrl":"10.1126/scirobotics.ads6559","url":null,"abstract":"<div >The novel <i>Annie Bot</i> by Sierra Greer is a machine learning take on the domestic noir genre.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 94","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1126/scirobotics.ado0051
Hiroyuki Tetsuka, Samuele Gobbi, Takaaki Hatanaka, Lorenzo Pirrami, Su Ryon Shin
Biological motions of native muscle tissues rely on the nervous system to interface movement with the surrounding environment. The neural innervation of muscles, crucial for regulating movement, is the fundamental infrastructure for swiftly responding to changes in body tissue requirements. This study introduces a bioelectronic neuromuscular robot integrated with the motor nervous system through electrical synapses to evoke cardiac muscle activities and steer robotic motion. Serving as an artificial brain and wirelessly regulating selective neural activation to initiate robot fin motion, a wireless frequency multiplexing bioelectronic device is used to control the robot. Frequency multiplexing bioelectronics enables the control of the robot locomotion speed and direction by modulating the flapping of the robot fins through the wireless motor innervation of cardiac muscles. The robots demonstrated an average locomotion speed of ~0.52 ± 0.22 millimeters per second, fin-flapping frequency up to 2.0 hertz, and turning locomotion path curvature of ~0.11 ± 0.04 radians per millimeter. These systems will contribute to the expansion of biohybrid machines into the brain-to-motor frontier for developing autonomous biohybrid systems capable of advanced adaptive motor control and learning.
{"title":"Wirelessly steerable bioelectronic neuromuscular robots adapting neurocardiac junctions","authors":"Hiroyuki Tetsuka, Samuele Gobbi, Takaaki Hatanaka, Lorenzo Pirrami, Su Ryon Shin","doi":"10.1126/scirobotics.ado0051","DOIUrl":"10.1126/scirobotics.ado0051","url":null,"abstract":"<div >Biological motions of native muscle tissues rely on the nervous system to interface movement with the surrounding environment. The neural innervation of muscles, crucial for regulating movement, is the fundamental infrastructure for swiftly responding to changes in body tissue requirements. This study introduces a bioelectronic neuromuscular robot integrated with the motor nervous system through electrical synapses to evoke cardiac muscle activities and steer robotic motion. Serving as an artificial brain and wirelessly regulating selective neural activation to initiate robot fin motion, a wireless frequency multiplexing bioelectronic device is used to control the robot. Frequency multiplexing bioelectronics enables the control of the robot locomotion speed and direction by modulating the flapping of the robot fins through the wireless motor innervation of cardiac muscles. The robots demonstrated an average locomotion speed of ~0.52 ± 0.22 millimeters per second, fin-flapping frequency up to 2.0 hertz, and turning locomotion path curvature of ~0.11 ± 0.04 radians per millimeter. These systems will contribute to the expansion of biohybrid machines into the brain-to-motor frontier for developing autonomous biohybrid systems capable of advanced adaptive motor control and learning.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 94","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.ado0051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1126/scirobotics.ado4553
James Davies, Mai Thanh Thai, Bibhu Sharma, Trung Thien Hoang, Chi Cong Nguyen, Phuoc Thien Phan, Thao Nhu Anne Marie Vuong, Adrienne Ji, Kefan Zhu, Emanuele Nicotra, Yi-Chin Toh, Michael Stevens, Christopher Hayward, Hoang-Phuong Phan, Nigel Hamilton Lovell, Thanh Nho Do
The heart’s intricate myocardial architecture has been called the Gordian knot of anatomy, an impossible tangle of intricate muscle fibers. This complexity dictates equally complex cardiac motions that are difficult to mimic in physical systems. If these motions could be generated by a robotic system, then cardiac device testing, cardiovascular disease studies, and surgical procedure training could reduce their reliance on animal models, saving time, costs, and lives. This work introduces a bioinspired soft robotic left ventricle simulator capable of reproducing the minutiae of cardiac motion while providing physiological pressures. This device uses thin-filament artificial muscles to mimic the multilayered myocardial architecture. To demonstrate the device’s ability to follow the cardiac motions observed in the literature, we used canine myocardial strain data as input signals that were subsequently applied to each artificial myocardial layer. The device’s ability to reproduce physiological volume and pressure under healthy and heart failure conditions, as well as effective simulation of a cardiac support device, were experimentally demonstrated in a left-sided mock circulation loop. This work also has the potential to deliver faithful simulated cardiac motion for preclinical device and surgical procedure testing, with the potential to simulate patient-specific myocardial architecture and motion.
{"title":"Soft robotic artificial left ventricle simulator capable of reproducing myocardial biomechanics","authors":"James Davies, Mai Thanh Thai, Bibhu Sharma, Trung Thien Hoang, Chi Cong Nguyen, Phuoc Thien Phan, Thao Nhu Anne Marie Vuong, Adrienne Ji, Kefan Zhu, Emanuele Nicotra, Yi-Chin Toh, Michael Stevens, Christopher Hayward, Hoang-Phuong Phan, Nigel Hamilton Lovell, Thanh Nho Do","doi":"10.1126/scirobotics.ado4553","DOIUrl":"10.1126/scirobotics.ado4553","url":null,"abstract":"<div >The heart’s intricate myocardial architecture has been called the Gordian knot of anatomy, an impossible tangle of intricate muscle fibers. This complexity dictates equally complex cardiac motions that are difficult to mimic in physical systems. If these motions could be generated by a robotic system, then cardiac device testing, cardiovascular disease studies, and surgical procedure training could reduce their reliance on animal models, saving time, costs, and lives. This work introduces a bioinspired soft robotic left ventricle simulator capable of reproducing the minutiae of cardiac motion while providing physiological pressures. This device uses thin-filament artificial muscles to mimic the multilayered myocardial architecture. To demonstrate the device’s ability to follow the cardiac motions observed in the literature, we used canine myocardial strain data as input signals that were subsequently applied to each artificial myocardial layer. The device’s ability to reproduce physiological volume and pressure under healthy and heart failure conditions, as well as effective simulation of a cardiac support device, were experimentally demonstrated in a left-sided mock circulation loop. This work also has the potential to deliver faithful simulated cardiac motion for preclinical device and surgical procedure testing, with the potential to simulate patient-specific myocardial architecture and motion.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 94","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1126/scirobotics.adr8282
Nikhil V. Divekar, Gray C. Thomas, Avani R. Yerva, Hannah B. Frame, Robert D. Gregg
The quadriceps are particularly susceptible to fatigue during repetitive lifting, lowering, and carrying (LLC), affecting worker performance, posture, and ultimately lower-back injury risk. Although robotic exoskeletons have been developed and optimized for specific use cases like lifting-lowering, their controllers lack the versatility or customizability to target critical muscles across many fatiguing tasks. Here, we present a task-adaptive knee exoskeleton controller that automatically modulates virtual springs, dampers, and gravity and inertia compensation to assist squatting, level walking, and ramp and stairs ascent/descent. Unlike end-to-end neural networks, the controller is composed of predictable, bounded components with interpretable parameters that are amenable to data-driven optimization for biomimetic assistance and subsequent application-specific tuning, for example, maximizing quadriceps assistance over multiterrain LLC. When deployed on a backdrivable knee exoskeleton, the assistance torques holistically reduced quadriceps effort across multiterrain LLC tasks (significantly except for level walking) in 10 human users without user-specific calibration. The exoskeleton also significantly improved fatigue-induced deficits in time-based performance and posture during repetitive lifting-lowering. Last, the system facilitated seamless task transitions and garnered a high effectiveness rating postfatigue over a multiterrain circuit. These findings indicate that this versatile control framework can target critical muscles across multiple tasks, specifically mitigating quadriceps fatigue and its deleterious effects.
{"title":"A versatile knee exoskeleton mitigates quadriceps fatigue in lifting, lowering, and carrying tasks","authors":"Nikhil V. Divekar, Gray C. Thomas, Avani R. Yerva, Hannah B. Frame, Robert D. Gregg","doi":"10.1126/scirobotics.adr8282","DOIUrl":"10.1126/scirobotics.adr8282","url":null,"abstract":"<div >The quadriceps are particularly susceptible to fatigue during repetitive lifting, lowering, and carrying (LLC), affecting worker performance, posture, and ultimately lower-back injury risk. Although robotic exoskeletons have been developed and optimized for specific use cases like lifting-lowering, their controllers lack the versatility or customizability to target critical muscles across many fatiguing tasks. Here, we present a task-adaptive knee exoskeleton controller that automatically modulates virtual springs, dampers, and gravity and inertia compensation to assist squatting, level walking, and ramp and stairs ascent/descent. Unlike end-to-end neural networks, the controller is composed of predictable, bounded components with interpretable parameters that are amenable to data-driven optimization for biomimetic assistance and subsequent application-specific tuning, for example, maximizing quadriceps assistance over multiterrain LLC. When deployed on a backdrivable knee exoskeleton, the assistance torques holistically reduced quadriceps effort across multiterrain LLC tasks (significantly except for level walking) in 10 human users without user-specific calibration. The exoskeleton also significantly improved fatigue-induced deficits in time-based performance and posture during repetitive lifting-lowering. Last, the system facilitated seamless task transitions and garnered a high effectiveness rating postfatigue over a multiterrain circuit. These findings indicate that this versatile control framework can target critical muscles across multiple tasks, specifically mitigating quadriceps fatigue and its deleterious effects.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 94","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1126/scirobotics.adl3546
Zachary Yoder, Ellen H. Rumley, Ingemar Schmidt, Philipp Rothemund, Christoph Keplinger
Robots made from reconfigurable modular units feature versatility, cost efficiency, and improved sustainability compared with fixed designs. Reconfigurable modules driven by soft actuators provide adaptable actuation, safe interaction, and wide design freedom, but existing soft modules would benefit from high-speed and high-strain actuation, as well as driving methods well-suited to untethered operation. Here, we introduce a class of electrically actuated robotic modules that provide high-speed (a peak contractile strain rate of 4618% per second, 15.8-hertz bandwidth, and a peak specific power of 122 watts per kilogram), high-strain (49% contraction) actuation and that use magnets for reversible mechanical and electrical connections between neighboring modules, thereby serving as building blocks for rapidly reconfigurable and highly agile robotic systems. The actuation performance of each hexagonal electrohydraulic (HEXEL) module is enabled by a synergistic combination of soft and rigid components; a hexagonal exoskeleton of rigid plates amplifies the motion produced by soft electrohydraulic actuators and provides a mechanical structure and connection platform for reconfigurable robots composed of many modules. We characterize the actuation performance of individual HEXEL modules, present a model that captures their quasi-static force-stroke behavior, and demonstrate both a high-jumping and a fast pipe-crawling robot. Using embedded magnetic connections, we arranged multiple modules into reconfigurable robots with diverse functionality, including a high-stroke muscle, a multimodal active array, a table-top active platform, and a fast-rolling robot. We further leveraged the magnetic connections for hosting untethered, snap-on driving electronics, together highlighting the promise of HEXEL modules for creating rapidly reconfigurable high-speed robots.
{"title":"Hexagonal electrohydraulic modules for rapidly reconfigurable high-speed robots","authors":"Zachary Yoder, Ellen H. Rumley, Ingemar Schmidt, Philipp Rothemund, Christoph Keplinger","doi":"10.1126/scirobotics.adl3546","DOIUrl":"10.1126/scirobotics.adl3546","url":null,"abstract":"<div >Robots made from reconfigurable modular units feature versatility, cost efficiency, and improved sustainability compared with fixed designs. Reconfigurable modules driven by soft actuators provide adaptable actuation, safe interaction, and wide design freedom, but existing soft modules would benefit from high-speed and high-strain actuation, as well as driving methods well-suited to untethered operation. Here, we introduce a class of electrically actuated robotic modules that provide high-speed (a peak contractile strain rate of 4618% per second, 15.8-hertz bandwidth, and a peak specific power of 122 watts per kilogram), high-strain (49% contraction) actuation and that use magnets for reversible mechanical and electrical connections between neighboring modules, thereby serving as building blocks for rapidly reconfigurable and highly agile robotic systems. The actuation performance of each hexagonal electrohydraulic (HEXEL) module is enabled by a synergistic combination of soft and rigid components; a hexagonal exoskeleton of rigid plates amplifies the motion produced by soft electrohydraulic actuators and provides a mechanical structure and connection platform for reconfigurable robots composed of many modules. We characterize the actuation performance of individual HEXEL modules, present a model that captures their quasi-static force-stroke behavior, and demonstrate both a high-jumping and a fast pipe-crawling robot. Using embedded magnetic connections, we arranged multiple modules into reconfigurable robots with diverse functionality, including a high-stroke muscle, a multimodal active array, a table-top active platform, and a fast-rolling robot. We further leveraged the magnetic connections for hosting untethered, snap-on driving electronics, together highlighting the promise of HEXEL modules for creating rapidly reconfigurable high-speed robots.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 94","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1126/scirobotics.adt0930
Melisa Yashinski
A socially assistive robot can administer in-home neuropsychological tests for cognitive monitoring of older adults.
社交辅助机器人可在家中进行神经心理学测试,以监测老年人的认知能力。
{"title":"Social robot for at-home cognitive monitoring","authors":"Melisa Yashinski","doi":"10.1126/scirobotics.adt0930","DOIUrl":"10.1126/scirobotics.adt0930","url":null,"abstract":"<div >A socially assistive robot can administer in-home neuropsychological tests for cognitive monitoring of older adults.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 94","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1126/scirobotics.adn6844
Stephanie J. Woodman, Dylan S. Shah, Melanie Landesberg, Anjali Agrawala, Rebecca Kramer-Bottiglio
To achieve real-world functionality, robots must have the ability to carry out decision-making computations. However, soft robots stretch and therefore need a solution other than rigid computers. Examples of embedding computing capacity into soft robots currently include appending rigid printed circuit boards to the robot, integrating soft logic gates, and exploiting material responses for material-embedded computation. Although promising, these approaches introduce limitations such as rigidity, tethers, or low logic gate density. The field of stretchable electronics has sought to solve these challenges, but a complete pipeline for direct integration of single-board computers, microcontrollers, and other complex circuitry into soft robots has remained elusive. We present a generalized method to translate any complex two-layer circuit into a soft, stretchable form. This enabled the creation of stretchable single-board microcontrollers (including Arduinos) and other commercial circuits (including SparkFun circuits), without design simplifications. As demonstrations of the method’s utility, we embedded highly stretchable (>300% strain) Arduino Pro Minis into the bodies of multiple soft robots. This makes use of otherwise inert structural material, fulfilling the promise of the stretchable electronic field to integrate state-of-the-art computational power into robust, stretchable systems during active use.
为了实现真实世界的功能,机器人必须具备进行决策计算的能力。然而,软体机器人具有伸缩性,因此需要刚性计算机以外的解决方案。目前,将计算能力嵌入软体机器人的例子包括在机器人上附加刚性印刷电路板、集成软逻辑门,以及利用材料反应进行材料嵌入式计算。这些方法虽然前景广阔,但也存在一些限制,如刚性、系绳或逻辑门密度低。可拉伸电子学领域一直在努力解决这些难题,但将单板计算机、微控制器和其他复杂电路直接集成到软体机器人中的完整流水线却一直未能实现。我们提出了一种通用方法,可将任何复杂的双层电路转化为柔软、可拉伸的形式。这样就能在不简化设计的情况下,制作出可拉伸的单板微控制器(包括 Arduinos)和其他商用电路(包括 SparkFun 电路)。为了证明这种方法的实用性,我们将高度可拉伸(300% 应变)的 Arduino Pro Minis 嵌入到多个软体机器人的身体中。这就利用了原本惰性的结构材料,实现了可拉伸电子领域的承诺,即在主动使用过程中将最先进的计算能力集成到坚固耐用的可拉伸系统中。
{"title":"Stretchable Arduinos embedded in soft robots","authors":"Stephanie J. Woodman, Dylan S. Shah, Melanie Landesberg, Anjali Agrawala, Rebecca Kramer-Bottiglio","doi":"10.1126/scirobotics.adn6844","DOIUrl":"10.1126/scirobotics.adn6844","url":null,"abstract":"<div >To achieve real-world functionality, robots must have the ability to carry out decision-making computations. However, soft robots stretch and therefore need a solution other than rigid computers. Examples of embedding computing capacity into soft robots currently include appending rigid printed circuit boards to the robot, integrating soft logic gates, and exploiting material responses for material-embedded computation. Although promising, these approaches introduce limitations such as rigidity, tethers, or low logic gate density. The field of stretchable electronics has sought to solve these challenges, but a complete pipeline for direct integration of single-board computers, microcontrollers, and other complex circuitry into soft robots has remained elusive. We present a generalized method to translate any complex two-layer circuit into a soft, stretchable form. This enabled the creation of stretchable single-board microcontrollers (including Arduinos) and other commercial circuits (including SparkFun circuits), without design simplifications. As demonstrations of the method’s utility, we embedded highly stretchable (>300% strain) Arduino Pro Minis into the bodies of multiple soft robots. This makes use of otherwise inert structural material, fulfilling the promise of the stretchable electronic field to integrate state-of-the-art computational power into robust, stretchable systems during active use.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 94","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}