Melioidosis, a bacterial, infectious disease contracted from contaminated soil or water, is a public health problem identified in tropical regions and endemic several regions of Thailand. Surveillance and prevention are important for determining its distribution patterns and mapping its risk, which have been analysed in the present study. Case reports in Thailand were collected from 1 January 2016 to 31 December 2020. Spatial autocorrelation was analyzed using Moran's I and univariate local Moran's I. Spatial point data of melioidosis incidence were calculated, with riskmapping interpolation performed by Kriging. It was highest in 2016, at 32.37 cases per 100,000 people, and lowest in 2020, at 10.83 cases per 100,000 people. General observations revealed that its incidence decreased slightly from 2016 to 2018 and drastically in 2019 and 2020. The Moran's I values for melioidosis incidence exhibited a random spatial pattern in 2016 and clustered distribution from 2017 to 2020. The risk and variance maps show interval values. These findings may contribute to the monitoring and surveillance of melioidosis outbreaks.
{"title":"Spatiotemporal distribution and geostatistically interpolated mapping of the melioidosis risk in an endemic zone in Thailand.","authors":"Jaruwan Wongbutdee, Jutharat Jittimanee, Wacharapong Saengnill","doi":"10.4081/gh.2023.1189","DOIUrl":"https://doi.org/10.4081/gh.2023.1189","url":null,"abstract":"<p><p>Melioidosis, a bacterial, infectious disease contracted from contaminated soil or water, is a public health problem identified in tropical regions and endemic several regions of Thailand. Surveillance and prevention are important for determining its distribution patterns and mapping its risk, which have been analysed in the present study. Case reports in Thailand were collected from 1 January 2016 to 31 December 2020. Spatial autocorrelation was analyzed using Moran's I and univariate local Moran's I. Spatial point data of melioidosis incidence were calculated, with riskmapping interpolation performed by Kriging. It was highest in 2016, at 32.37 cases per 100,000 people, and lowest in 2020, at 10.83 cases per 100,000 people. General observations revealed that its incidence decreased slightly from 2016 to 2018 and drastically in 2019 and 2020. The Moran's I values for melioidosis incidence exhibited a random spatial pattern in 2016 and clustered distribution from 2017 to 2020. The risk and variance maps show interval values. These findings may contribute to the monitoring and surveillance of melioidosis outbreaks.</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"18 2","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10178155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanhua Liu, Jun Zhang, Michael P Ward, Wei Tu, Lili Yu, Jin Shi, Yi Hu, Fenghua Gao, Zhiguo Cao, Zhijie Zhang
Few studies have considered the impacts of sample size and sample ratio of presence and absence points on the results of random forest (RF) testing. We applied this technique for the prediction of the spatial distribution of snail habitats based on a total of 15,000 sample points (5,000 presence samples and 10,000 control points). RF models were built using seven different sample ratios (1:1, 1:2, 1:3, 1:4, 2:1, 3:1, and 4:1) and the optimal ratio was identified via the Area Under the Curve (AUC) statistic. The impact of sample size was compared by RF models under the optimal ratio and the optimal sample size. When the sample size was small, the sampling ratios of 1:1, 1:2 and 1:3 were significantly better than the sample ratios of 4:1 and 3:1 at all four levels of sample sizes (p<0.01) and there was no significant difference among the ratios of 1:1, 1:2 and 1:3 (p>0.05). The sample ratio of 1:2 appeared to be optimal for a relatively large sample size with the lowest quartile deviation. In addition, increasing the sample size produced a higher AUC and a smaller slope and the most suitable sample size found in this study was 2400 (AUC=0.96). This study provides a feasible idea to select an appropriate sample size and sample ratio for ecological niche modelling (ENM) and also provides a scientific basis for the selection of samples to accurately identify and predict snail habitat distributions.
{"title":"Impacts of sample ratio and size on the performance of random forest model to predict the potential distribution of snail habitats.","authors":"Yuanhua Liu, Jun Zhang, Michael P Ward, Wei Tu, Lili Yu, Jin Shi, Yi Hu, Fenghua Gao, Zhiguo Cao, Zhijie Zhang","doi":"10.4081/gh.2023.1151","DOIUrl":"https://doi.org/10.4081/gh.2023.1151","url":null,"abstract":"<p><p>Few studies have considered the impacts of sample size and sample ratio of presence and absence points on the results of random forest (RF) testing. We applied this technique for the prediction of the spatial distribution of snail habitats based on a total of 15,000 sample points (5,000 presence samples and 10,000 control points). RF models were built using seven different sample ratios (1:1, 1:2, 1:3, 1:4, 2:1, 3:1, and 4:1) and the optimal ratio was identified via the Area Under the Curve (AUC) statistic. The impact of sample size was compared by RF models under the optimal ratio and the optimal sample size. When the sample size was small, the sampling ratios of 1:1, 1:2 and 1:3 were significantly better than the sample ratios of 4:1 and 3:1 at all four levels of sample sizes (p<0.01) and there was no significant difference among the ratios of 1:1, 1:2 and 1:3 (p>0.05). The sample ratio of 1:2 appeared to be optimal for a relatively large sample size with the lowest quartile deviation. In addition, increasing the sample size produced a higher AUC and a smaller slope and the most suitable sample size found in this study was 2400 (AUC=0.96). This study provides a feasible idea to select an appropriate sample size and sample ratio for ecological niche modelling (ENM) and also provides a scientific basis for the selection of samples to accurately identify and predict snail habitat distributions.</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"18 2","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9753693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaqi Huang, Yichen Chen, Gu Liu, Wei Tu, Robert Bergquist, Michael P Ward, Jun Zhang, Shuang Xiao, Jie Hong, Zheng Zhao, Xiaopan Li, Zhijie Zhang
Screening programmes are important for early diagnosis and treatment of colorectal cancer (CRC) but they are not equally efficient in all locations. Depending on which hospital people belong to, they often are not willing to follow up even after a positive result, resulting in a lower-than-expected overall detection rate. Improved allocation of health resources would increase the program's efficiency and assist hospital accessibility. A target population exceeding 70,000 people and 18 local hospitals were included in the investigation of an optimization plan based on a locationallocation model. We calculated the hospital service areas and the accessibility for people in communities to CRC-screening hospitals using the Huff Model and the Two-Step Floating Catchment Area (2SFCA) approach. We found that only 28.2% of the residents with initially a positive screening result had chosen followup with colonoscopy and significant geographical differences in spatial accessibility to healthcare services indeed exist. The lowest accessibility was found in the Southeast, including the Zhangjiang, Jichang and Laogang communities with the best accessibility mainly distributed near the city centre of Lujiazui; the latter also had relatively a high level of what is called "ineffective screening" as it represents wasteful resource allocation. It is recommended that Hudong Hospital should be chosen instead of Punan Hospital as the optimization, which can improve the service population of each hospital and the populations served per colonoscope. Based on our results, changes in hospital configuration in colorectal cancer screening programme are needed to achieve adequate population coverage and equitable facility accessibility. Planning of medical services should be based on the spatial distribution trends of the population served.
{"title":"Optimizing allocation of colorectal cancer screening hospitals in Shanghai: a geospatial analysis.","authors":"Jiaqi Huang, Yichen Chen, Gu Liu, Wei Tu, Robert Bergquist, Michael P Ward, Jun Zhang, Shuang Xiao, Jie Hong, Zheng Zhao, Xiaopan Li, Zhijie Zhang","doi":"10.4081/gh.2023.1152","DOIUrl":"https://doi.org/10.4081/gh.2023.1152","url":null,"abstract":"<p><p>Screening programmes are important for early diagnosis and treatment of colorectal cancer (CRC) but they are not equally efficient in all locations. Depending on which hospital people belong to, they often are not willing to follow up even after a positive result, resulting in a lower-than-expected overall detection rate. Improved allocation of health resources would increase the program's efficiency and assist hospital accessibility. A target population exceeding 70,000 people and 18 local hospitals were included in the investigation of an optimization plan based on a locationallocation model. We calculated the hospital service areas and the accessibility for people in communities to CRC-screening hospitals using the Huff Model and the Two-Step Floating Catchment Area (2SFCA) approach. We found that only 28.2% of the residents with initially a positive screening result had chosen followup with colonoscopy and significant geographical differences in spatial accessibility to healthcare services indeed exist. The lowest accessibility was found in the Southeast, including the Zhangjiang, Jichang and Laogang communities with the best accessibility mainly distributed near the city centre of Lujiazui; the latter also had relatively a high level of what is called \"ineffective screening\" as it represents wasteful resource allocation. It is recommended that Hudong Hospital should be chosen instead of Punan Hospital as the optimization, which can improve the service population of each hospital and the populations served per colonoscope. Based on our results, changes in hospital configuration in colorectal cancer screening programme are needed to achieve adequate population coverage and equitable facility accessibility. Planning of medical services should be based on the spatial distribution trends of the population served.</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"18 2","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9753695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Adrian Wiranata, Herindita Puspitaningtyas, Susanna Hilda Hutajulu, Jajah Fachiroh, Nungki Anggorowati, Guardian Yoki Sanjaya, Lutfan Lazuardi, Patumrat Sripan
We aimed to explore the district-level temporal dynamics and sub-district level geographical variations of colorectal cancer (CRC) incidence in the Special Region of Yogyakarta Province. We performed a cross-sectional study using data from the Yogyakarta population-based cancer registry (PBCR) comprised of 1,593 CRC cases diagnosed in 2008-2019. The age-standardized rates (ASRs) were determined using 2014 population data. The temporal trend and geographical distribution of cases were analysed using joinpoint regression and Moran's I statistics. During 2008-2019, CRC incidence increased by 13.44% annually. Joinpoints were identified in 2014 and 2017, which were also the periods when annual percentage change (APC) was the highest throughout the observation periods (18.84). Significant APC changes were observed in all districts, with the highest in Kota Yogyakarta (15.57). The ASR of CRC incidence per 100,000 person- years was 7.03 in Sleman, 9.20 in Kota Yogyakarta, and 7.07 in Bantul district. We found a regional variation of CRC ASR with a concentrated pattern of hotspots in the central sub-districts of the catchment areas and a significant positive spatial autocorrelation of CRC incidence rates in the province (I=0.581, p<0.001). The analysis identified four high-high clusters sub-districts in the central catchment areas. This is the first Indonesian study reported from PBCR data, showing an increased annual CRC incidence during an extensive observation period in the Yogyakarta region. A heterogeneous distribution map of CRC incidence is included. These findings may serve as basis for CRC screening implementation and healthcare services improvement.
我们旨在探讨日惹省特区结直肠癌(CRC)发病率的区级时间动态和分区级地理变化。我们使用日惹人口癌症登记处(PBCR)的数据进行了一项横断面研究,其中包括2008-2019年诊断的1593例结直肠癌病例。使用2014年人口数据确定年龄标准化率(ASRs)。采用联合点回归和Moran’s I统计分析病例的时间趋势和地理分布。2008-2019年期间,结直肠癌发病率每年增长13.44%。在2014年和2017年确定了连接点,这也是整个观察期年度百分比变化(APC)最高的时期(18.84)。所有地区的APC都发生了显著变化,其中哥打日惹最高(15.57)。Sleman的CRC发病率ASR为每10万人年7.03人,Kota日惹为9.20人,Bantul为7.07人。我们发现,结直肠癌ASR存在区域差异,集中在集水区的中心街道,全省结直肠癌发病率存在显著的正空间自相关(I=0.581, p . 591)
{"title":"Temporal and spatial analyses of colorectal cancer incidence in Yogyakarta, Indonesia: a cross-sectional study.","authors":"Juan Adrian Wiranata, Herindita Puspitaningtyas, Susanna Hilda Hutajulu, Jajah Fachiroh, Nungki Anggorowati, Guardian Yoki Sanjaya, Lutfan Lazuardi, Patumrat Sripan","doi":"10.4081/gh.2023.1186","DOIUrl":"https://doi.org/10.4081/gh.2023.1186","url":null,"abstract":"<p><p>We aimed to explore the district-level temporal dynamics and sub-district level geographical variations of colorectal cancer (CRC) incidence in the Special Region of Yogyakarta Province. We performed a cross-sectional study using data from the Yogyakarta population-based cancer registry (PBCR) comprised of 1,593 CRC cases diagnosed in 2008-2019. The age-standardized rates (ASRs) were determined using 2014 population data. The temporal trend and geographical distribution of cases were analysed using joinpoint regression and Moran's I statistics. During 2008-2019, CRC incidence increased by 13.44% annually. Joinpoints were identified in 2014 and 2017, which were also the periods when annual percentage change (APC) was the highest throughout the observation periods (18.84). Significant APC changes were observed in all districts, with the highest in Kota Yogyakarta (15.57). The ASR of CRC incidence per 100,000 person- years was 7.03 in Sleman, 9.20 in Kota Yogyakarta, and 7.07 in Bantul district. We found a regional variation of CRC ASR with a concentrated pattern of hotspots in the central sub-districts of the catchment areas and a significant positive spatial autocorrelation of CRC incidence rates in the province (I=0.581, p<0.001). The analysis identified four high-high clusters sub-districts in the central catchment areas. This is the first Indonesian study reported from PBCR data, showing an increased annual CRC incidence during an extensive observation period in the Yogyakarta region. A heterogeneous distribution map of CRC incidence is included. These findings may serve as basis for CRC screening implementation and healthcare services improvement.</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"18 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9932353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gilbert Nduwayezu, Pengxiang Zhao, Clarisse Kagoyire, Lina Eklund, Jean Pierre Bizimana, Petter Pilesjo, Ali Mansourian
As found in the health studies literature, the levels of climate association between epidemiological diseases have been found to vary across regions. Therefore, it seems reasonable to allow for the possibility that relationships might vary spatially within regions. We implemented the geographically weighted random forest (GWRF) machine learning method to analyze ecological disease patterns caused by spatially non-stationary processes using a malaria incidence dataset for Rwanda. We first compared the geographically weighted regression (WGR), the global random forest (GRF), and the geographically weighted random forest (GWRF) to examine the spatial non-stationarity in the non-linear relationships between malaria incidence and their risk factors. We used the Gaussian areal kriging model to disaggregate the malaria incidence at the local administrative cell level to understand the relationships at a fine scale since the model goodness of fit was not satisfactory to explain malaria incidence due to the limited number of sample values. Our results show that in terms of the coefficients of determination and prediction accuracy, the geographical random forest model performs better than the GWR and the global random forest model. The coefficients of determination of the geographically weighted regression (R2), the global RF (R2), and the GWRF (R2) were 4.74, 0.76, and 0.79, respectively. The GWRF algorithm achieves the best result and reveals that risk factors (rainfall, land surface temperature, elevation, and air temperature) have a strong non-linear relationship with the spatial distribution of malaria incidence rates, which could have implications for supporting local initiatives for malaria elimination in Rwanda.
{"title":"Understanding the spatial non-stationarity in the relationships between malaria incidence and environmental risk factors using Geographically Weighted Random Forest: A case study in Rwanda.","authors":"Gilbert Nduwayezu, Pengxiang Zhao, Clarisse Kagoyire, Lina Eklund, Jean Pierre Bizimana, Petter Pilesjo, Ali Mansourian","doi":"10.4081/gh.2023.1184","DOIUrl":"https://doi.org/10.4081/gh.2023.1184","url":null,"abstract":"<p><p>As found in the health studies literature, the levels of climate association between epidemiological diseases have been found to vary across regions. Therefore, it seems reasonable to allow for the possibility that relationships might vary spatially within regions. We implemented the geographically weighted random forest (GWRF) machine learning method to analyze ecological disease patterns caused by spatially non-stationary processes using a malaria incidence dataset for Rwanda. We first compared the geographically weighted regression (WGR), the global random forest (GRF), and the geographically weighted random forest (GWRF) to examine the spatial non-stationarity in the non-linear relationships between malaria incidence and their risk factors. We used the Gaussian areal kriging model to disaggregate the malaria incidence at the local administrative cell level to understand the relationships at a fine scale since the model goodness of fit was not satisfactory to explain malaria incidence due to the limited number of sample values. Our results show that in terms of the coefficients of determination and prediction accuracy, the geographical random forest model performs better than the GWR and the global random forest model. The coefficients of determination of the geographically weighted regression (R2), the global RF (R2), and the GWRF (R2) were 4.74, 0.76, and 0.79, respectively. The GWRF algorithm achieves the best result and reveals that risk factors (rainfall, land surface temperature, elevation, and air temperature) have a strong non-linear relationship with the spatial distribution of malaria incidence rates, which could have implications for supporting local initiatives for malaria elimination in Rwanda.</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"18 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9932352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sharifah Saffinas Syed Soffian, Azmawati Mohammed Nawi, Rozita Hod, Khairul Nizam Abdul Maulud, Ahmad Tarmizi Mohd Azmi, Mohd Hazrin Hasim Hashim, Huan-Keat Chan, Muhammad Radzi Abu Hassan
INTRODUCTION The rise in colorectal cancer (CRC) incidence becomes a global concern. As geographical variations in the CRC incidence suggests the role of area-level determinants, the current study was designed to identify the spatial distribution pattern of CRC at the neighbourhood level in Malaysia. METHOD Newly diagnosed CRC cases between 2010 and 2016 in Malaysia were identified from the National Cancer Registry. Residential addresses were geocoded. Clustering analysis was subsequently performed to examine the spatial dependence between CRC cases. Differences in socio-demographic characteristics of individuals between the clusters were also compared. Identified clusters were categorized into urban and semi-rural areas based on the population background. RESULT Most of the 18 405 individuals included in the study were male (56%), aged between 60 and 69 years (30.3%) and only presented for care at stages 3 or 4 of the disease (71.3%). The states shown to have CRC clusters were Kedah, Penang, Perak, Selangor, Kuala Lumpur, Melaka, Johor, Kelantan, and Sarawak. The spatial autocorrelation detected a significant clustering pattern (Moran's Index 0.244, p< 0.01, Z score >2.58). CRC clusters in Penang, Selangor, Kuala Lumpur, Melaka, Johor, and Sarawak were in urbanized areas, while those in Kedah, Perak and Kelantan were in semi-rural areas. CONCLUSION The presence of several clusters in urbanized and semi-rural areas implied the role of ecological determinants at the neighbourhood level in Malaysia. Such findings could be used to guide the policymakers in resource allocation and cancer control.
导读:结直肠癌(CRC)发病率的上升已成为全球关注的问题。由于CRC发病率的地理差异表明区域层面决定因素的作用,本研究旨在确定马来西亚社区层面CRC的空间分布格局。方法:从马来西亚国家癌症登记处确定2010年至2016年新诊断的结直肠癌病例。居住地址是地理编码的。随后进行聚类分析以检查结直肠癌病例之间的空间依赖性。还比较了集群之间个体的社会人口学特征的差异。根据人口背景将确定的群集分为城市和半农村地区。结果:纳入研究的18405人中,大多数为男性(56%),年龄在60至69岁之间(30.3%),仅在疾病的3期或4期就诊(71.3%)。显示有结直肠癌群集的州是吉打州、槟城、霹雳州、雪兰莪州、吉隆坡、马六甲、柔佛、吉兰丹和沙捞越。空间自相关检测出显著的聚类模式(Moran's Index 0.244, p< 0.01, Z score >2.58)。槟城、雪兰莪、吉隆坡、马六甲、柔佛和沙捞越的CRC集群位于城市化地区,而吉打州、霹雳州和吉兰丹的CRC集群位于半农村地区。结论:马来西亚城市化和半农村地区的几个集群的存在暗示了生态决定因素在邻里层面的作用。这些发现可用于指导政策制定者进行资源配置和癌症控制。
{"title":"Spatial clustering of colorectal cancer in Malaysia.","authors":"Sharifah Saffinas Syed Soffian, Azmawati Mohammed Nawi, Rozita Hod, Khairul Nizam Abdul Maulud, Ahmad Tarmizi Mohd Azmi, Mohd Hazrin Hasim Hashim, Huan-Keat Chan, Muhammad Radzi Abu Hassan","doi":"10.4081/gh.2023.1158","DOIUrl":"https://doi.org/10.4081/gh.2023.1158","url":null,"abstract":"INTRODUCTION\u0000The rise in colorectal cancer (CRC) incidence becomes a global concern. As geographical variations in the CRC incidence suggests the role of area-level determinants, the current study was designed to identify the spatial distribution pattern of CRC at the neighbourhood level in Malaysia.\u0000\u0000\u0000METHOD\u0000Newly diagnosed CRC cases between 2010 and 2016 in Malaysia were identified from the National Cancer Registry. Residential addresses were geocoded. Clustering analysis was subsequently performed to examine the spatial dependence between CRC cases. Differences in socio-demographic characteristics of individuals between the clusters were also compared. Identified clusters were categorized into urban and semi-rural areas based on the population background.\u0000\u0000\u0000RESULT\u0000Most of the 18 405 individuals included in the study were male (56%), aged between 60 and 69 years (30.3%) and only presented for care at stages 3 or 4 of the disease (71.3%). The states shown to have CRC clusters were Kedah, Penang, Perak, Selangor, Kuala Lumpur, Melaka, Johor, Kelantan, and Sarawak. The spatial autocorrelation detected a significant clustering pattern (Moran's Index 0.244, p< 0.01, Z score >2.58). CRC clusters in Penang, Selangor, Kuala Lumpur, Melaka, Johor, and Sarawak were in urbanized areas, while those in Kedah, Perak and Kelantan were in semi-rural areas.\u0000\u0000\u0000CONCLUSION\u0000The presence of several clusters in urbanized and semi-rural areas implied the role of ecological determinants at the neighbourhood level in Malaysia. Such findings could be used to guide the policymakers in resource allocation and cancer control.","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"18 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9559182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Exploratory disease maps are designed to identify risk factors of disease and guide appropriate responses to disease and helpseeking behaviour. However, when produced using aggregatelevel administrative units, as is standard practice, disease maps may mislead users due to the Modifiable Areal Unit Problem (MAUP). Smoothed maps of fine-resolution data mitigate the MAUP but may still obscure spatial patterns and features. To investigate these issues, we mapped rates of Mental Health- Related Emergency Department (MHED) presentations in Perth, Western Australia, in 2018/19 using Australian Bureau of Statistics (ABS) Statistical Areas Level 2 (SA2) boundaries and a recent spatial smoothing technique: the Overlay Aggregation Method (OAM). Then, we investigated local variation in rates within high-rate regions delineated using both approaches. The SA2- and OAM-based maps identified two and five high-rate regions, respectively, with the latter not conforming to SA2 boundaries. Meanwhile, both sets of high-rate regions were found to comprise a select number of localised areas with exceptionally high rates. These results demonstrate how, due to the MAUP, disease maps that are produced using aggregate-level administrative units are unreliable as a basis for delineating geographic regions of interest for targeted interventions. Instead, reliance on such maps to guide responses may compromise the efficient and equitable delivery of healthcare. Detailed investigation of local variation in rates within high-rate regions identified using both administrative units and smoothing is required to improve hypothesis generation and the design of healthcare responses.
{"title":"Investigating local variation in disease rates within high-rate regions identified using smoothing.","authors":"Matthew Tuson, Matthew Yap, David Whyatt","doi":"10.4081/gh.2023.1144","DOIUrl":"https://doi.org/10.4081/gh.2023.1144","url":null,"abstract":"<p><p>Exploratory disease maps are designed to identify risk factors of disease and guide appropriate responses to disease and helpseeking behaviour. However, when produced using aggregatelevel administrative units, as is standard practice, disease maps may mislead users due to the Modifiable Areal Unit Problem (MAUP). Smoothed maps of fine-resolution data mitigate the MAUP but may still obscure spatial patterns and features. To investigate these issues, we mapped rates of Mental Health- Related Emergency Department (MHED) presentations in Perth, Western Australia, in 2018/19 using Australian Bureau of Statistics (ABS) Statistical Areas Level 2 (SA2) boundaries and a recent spatial smoothing technique: the Overlay Aggregation Method (OAM). Then, we investigated local variation in rates within high-rate regions delineated using both approaches. The SA2- and OAM-based maps identified two and five high-rate regions, respectively, with the latter not conforming to SA2 boundaries. Meanwhile, both sets of high-rate regions were found to comprise a select number of localised areas with exceptionally high rates. These results demonstrate how, due to the MAUP, disease maps that are produced using aggregate-level administrative units are unreliable as a basis for delineating geographic regions of interest for targeted interventions. Instead, reliance on such maps to guide responses may compromise the efficient and equitable delivery of healthcare. Detailed investigation of local variation in rates within high-rate regions identified using both administrative units and smoothing is required to improve hypothesis generation and the design of healthcare responses.</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"18 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9552806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Falling has become the first and second cause of death due to injury among urban and rural residents in China. This mortality is considerably higher in the southern part of the country than in the North. We collected the rate of mortality due to falling for 2013 and 2017 by province, age structure and population density, taking topography, precipitation and temperature into account. 2013 was used as the first year of the study since this year marks the expansion of the mortality surveillance system from 161 counties to 605 counties making available data more representative. A geographically weighted regression was used to evaluate the relationship between mortality and the geographic risk factors. High levels of precipitation, steep topography and uneven land surfaces as well as a higher quantile of the population aged above 80 years in southern China are believed to have led to the significantly higher number of falling compared with that in the North. Indeed, when evaluated by geographically weighted regression, the factors mentioned found a difference between the South and the North with regard to falling of 81% and 76% for the years 2013 and 2017, respectively. Interaction effects were observed between geographic risk factors and falling that, apart from the age factor, could be explained by topographic and climatic differences. The roads in the South are more difficult to negotiate on foot, particularly when it rains, which increases the probability of falling. In summary, the higher mortality due to falling in southern China emphasizes the need to apply more adaptive and effective measures in rainy and mountainous region to reduce this kind of risk.
{"title":"The geographic environment and the frequency of falling: a study of mortality outcomes in elderly people in China.","authors":"Yi Huang, Chen Li, Xianjing Lu, Yue Wang","doi":"10.4081/gh.2023.1180","DOIUrl":"https://doi.org/10.4081/gh.2023.1180","url":null,"abstract":"<p><p>Falling has become the first and second cause of death due to injury among urban and rural residents in China. This mortality is considerably higher in the southern part of the country than in the North. We collected the rate of mortality due to falling for 2013 and 2017 by province, age structure and population density, taking topography, precipitation and temperature into account. 2013 was used as the first year of the study since this year marks the expansion of the mortality surveillance system from 161 counties to 605 counties making available data more representative. A geographically weighted regression was used to evaluate the relationship between mortality and the geographic risk factors. High levels of precipitation, steep topography and uneven land surfaces as well as a higher quantile of the population aged above 80 years in southern China are believed to have led to the significantly higher number of falling compared with that in the North. Indeed, when evaluated by geographically weighted regression, the factors mentioned found a difference between the South and the North with regard to falling of 81% and 76% for the years 2013 and 2017, respectively. Interaction effects were observed between geographic risk factors and falling that, apart from the age factor, could be explained by topographic and climatic differences. The roads in the South are more difficult to negotiate on foot, particularly when it rains, which increases the probability of falling. In summary, the higher mortality due to falling in southern China emphasizes the need to apply more adaptive and effective measures in rainy and mountainous region to reduce this kind of risk.</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"18 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9559179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zar Chi Htwe, Wongsa Laohasiriwong, Kittipong Sornlorm, Roshan Mahato
Chronic respiratory diseases (CRDs) constitute 4% of the global disease burden and cause 4 million deaths annually. This cross-sectional study used QGIS and GeoDa to explore the spatial pattern and heterogeneity of CRDs morbidity and spatial autocorrelation between socio-demographic factors and CRDs in Thailand from 2016 to 2019. We found an annual, positive, spatial autocorrelation (Moran's I >0.66, p<0.001) showing a strong clustered distribution. The local indicators of spatial association (LISA) identified hotspots mostly in the northern region, while coldspots were mostly seen in the central and north-eastern regions throughout the study period. Of the socio-demographic factors, the density of population, households, vehicles, factories and agricultural areas, correlated with the CRD morbidity rate, with statistically significant negative spatial autocorrelations and coldspots in the north-eastern and central areas (except for agricultural land) and two hotspots between farm household density and CRD in the southern region in 2019. This study identified vulnerable provinces with high risk of CRDs and can guide prioritization of resource allocation and provide target interventions for policy makers.
慢性呼吸道疾病(CRDs)占全球疾病负担的4%,每年造成400万人死亡。本横断面研究利用QGIS和GeoDa分析了2016 - 2019年泰国CRDs发病率的空间格局和异质性,以及社会人口因素与CRDs的空间自相关性。我们发现了年度的、正的、空间的自相关(Moran’s I >0.66, p
{"title":"Spatial pattern and heterogeneity of chronic respiratory diseases and relationship to socio-demographic factors in Thailand in the period 2016 to 2019.","authors":"Zar Chi Htwe, Wongsa Laohasiriwong, Kittipong Sornlorm, Roshan Mahato","doi":"10.4081/gh.2023.1203","DOIUrl":"https://doi.org/10.4081/gh.2023.1203","url":null,"abstract":"<p><p>Chronic respiratory diseases (CRDs) constitute 4% of the global disease burden and cause 4 million deaths annually. This cross-sectional study used QGIS and GeoDa to explore the spatial pattern and heterogeneity of CRDs morbidity and spatial autocorrelation between socio-demographic factors and CRDs in Thailand from 2016 to 2019. We found an annual, positive, spatial autocorrelation (Moran's I >0.66, p<0.001) showing a strong clustered distribution. The local indicators of spatial association (LISA) identified hotspots mostly in the northern region, while coldspots were mostly seen in the central and north-eastern regions throughout the study period. Of the socio-demographic factors, the density of population, households, vehicles, factories and agricultural areas, correlated with the CRD morbidity rate, with statistically significant negative spatial autocorrelations and coldspots in the north-eastern and central areas (except for agricultural land) and two hotspots between farm household density and CRD in the southern region in 2019. This study identified vulnerable provinces with high risk of CRDs and can guide prioritization of resource allocation and provide target interventions for policy makers.</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"18 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9932350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Researchers in many fields have discovered the advantage of using geographical information systems (GIS), spatial statistics and computer modelling, but these techniques are only sparingly applied in archaeological research. Writing 30 years ago, Castleford (1992) noted the considerable potential of GIS, but he also felt that its then atemporal structure was a serious flaw. It is clear that the study of dynamic processes suffers if past events cannot be linked to each other, or to the present, but today's powerful tools have overcome this drawback. Importantly, with location and time as key indices, hypotheses about early human population dynamics can be tested and visualized in ways that can potentially reveal hidden relationships and patterns. [...].
{"title":"Prehistoric human migrations: a prospective subject for modelling using geographical information systems.","authors":"Robert Bergquist","doi":"10.4081/gh.2023.1210","DOIUrl":"https://doi.org/10.4081/gh.2023.1210","url":null,"abstract":"<p><p>Researchers in many fields have discovered the advantage of using geographical information systems (GIS), spatial statistics and computer modelling, but these techniques are only sparingly applied in archaeological research. Writing 30 years ago, Castleford (1992) noted the considerable potential of GIS, but he also felt that its then atemporal structure was a serious flaw. It is clear that the study of dynamic processes suffers if past events cannot be linked to each other, or to the present, but today's powerful tools have overcome this drawback. Importantly, with location and time as key indices, hypotheses about early human population dynamics can be tested and visualized in ways that can potentially reveal hidden relationships and patterns. [...].</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"18 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9932349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}