M. Srinivasan, P. Maettig, K. Glitza, B. Sanny, A. Schumacher, M. Duhovic
A numerical investigation was carried out to examine the role of micro-sized diamond powder filler on the on-axis tensile stiffness properties of the standard modulus T300 and the high modulus YS90A woven fabric composite plates by progressive damage modeling. Finite element modeling (FEM) results for the T300 composite with and without diamond powder predicted a specific case of fiber failure in all the plies showing the characteristics of brittle failure. Static tensile tests were carried out on the YS90A composite coupons containing no diamond powder (DP) and filled with 6% and 12% volume fractions of DP. A higher content of diamond powder in the coupons led to agglomeration. This induced stress concentrations and subsequently reduced the mechanical properties. FEM was carried out considering specimens with and without an induced stress concentration geometry in the YS90A coupons filled with DP. The results of the on-axis tensile tests indicated a delamination type of failure in both cases with additional fiber fracture in the Open Hole Tensile (OHT) coupons.
{"title":"Validation of Numerical Modeling for the Prediction of Elastic and Failure Behavior of Diamond Powder Filled Woven Composites","authors":"M. Srinivasan, P. Maettig, K. Glitza, B. Sanny, A. Schumacher, M. Duhovic","doi":"10.4236/OJCM.2017.72004","DOIUrl":"https://doi.org/10.4236/OJCM.2017.72004","url":null,"abstract":"A numerical investigation was carried out to examine the role of micro-sized diamond powder filler on the on-axis tensile stiffness properties of the standard modulus T300 and the high modulus YS90A woven fabric composite plates by progressive damage modeling. Finite element modeling (FEM) results for the T300 composite with and without diamond powder predicted a specific case of fiber failure in all the plies showing the characteristics of brittle failure. Static tensile tests were carried out on the YS90A composite coupons containing no diamond powder (DP) and filled with 6% and 12% volume fractions of DP. A higher content of diamond powder in the coupons led to agglomeration. This induced stress concentrations and subsequently reduced the mechanical properties. FEM was carried out considering specimens with and without an induced stress concentration geometry in the YS90A coupons filled with DP. The results of the on-axis tensile tests indicated a delamination type of failure in both cases with additional fiber fracture in the Open Hole Tensile (OHT) coupons.","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":"07 1","pages":"63-84"},"PeriodicalIF":0.0,"publicationDate":"2017-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70624332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Taguchi, Takanori Suzuki, N. Saito, H. Yokoyama, Masato Tanaka
The novel method for preparing the polymer composite particles has been developed. It was tried to prepare polymer composite particles composed of polystyrene and carbon black with the phase separation method followed by suspension polymerization. In order to prepare the polymer composite particles with the more uniform diameter, the styrene monomer droplets containing carbon black were formed with phase separation emulsification in which ethyl alcohol and water were used as the good solvent and the poor solvent for styrene monomer, respectively. In the experiment, the surfactant species and their concentrations, the pouring velocity of water and the weight ratio of carbon black to styrene monomer were mainly changed. Water was poured at the given pouring velocity into ethyl alcohol in which styrene monomer and an initiator were dissolved and carbon black was dispersed beforehand. The spherical polymer composite particles containing carbon black were prepared with Tween 20 and Tween 80 of nonionic surfactants and the irregular polymer composite particles were prepared with PVA, SDS and Kotamine. The diameters of polymer composite particles increased with the pouring velocity of water and with the weight ratio of carbon black to styrene monomer.
{"title":"Preparation of Polymer Composite Particles by Phase Separation Followed by Suspension Polymerization","authors":"Y. Taguchi, Takanori Suzuki, N. Saito, H. Yokoyama, Masato Tanaka","doi":"10.4236/OJCM.2017.71001","DOIUrl":"https://doi.org/10.4236/OJCM.2017.71001","url":null,"abstract":"The novel method for preparing the polymer composite particles has been developed. It was tried to prepare polymer composite particles composed of polystyrene and carbon black with the phase separation method followed by suspension polymerization. In order to prepare the polymer composite particles with the more uniform diameter, the styrene monomer droplets containing carbon black were formed with phase separation emulsification in which ethyl alcohol and water were used as the good solvent and the poor solvent for styrene monomer, respectively. In the experiment, the surfactant species and their concentrations, the pouring velocity of water and the weight ratio of carbon black to styrene monomer were mainly changed. Water was poured at the given pouring velocity into ethyl alcohol in which styrene monomer and an initiator were dissolved and carbon black was dispersed beforehand. The spherical polymer composite particles containing carbon black were prepared with Tween 20 and Tween 80 of nonionic surfactants and the irregular polymer composite particles were prepared with PVA, SDS and Kotamine. The diameters of polymer composite particles increased with the pouring velocity of water and with the weight ratio of carbon black to styrene monomer.","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":"07 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2017-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45534510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present paper reviews crushing process of fibre-reinforced polymer (FRPs) composites tubular structures. Working with anisotropic material requires consideration of specific parameter definition in order to tailor a well-engineered composite structure. These parameters include geometry design, strain rate sensitivity, material properties, laminate design, interlaminar fracture toughness and off-axis loading conditions which are reviewed in this paper to create a comprehensive data base for researchers, engineers and scientists in the field. Each of these parameters influences the structural integrity and progressive crushing behaviour. In this extensive review each of these parameters is introduced, explained and evaluated. Construction of a well-engineered composite structure and triggering mechanism to strain rate sensitivity and testing conditions followed by failure mechanisms are extensively reviewed. Furthermore, this paper has mainly focused on experimental analysis that has been carried out on different types of FRP composites in the past two decades.
{"title":"Progressive Crushing of Polymer Matrix Composite Tubular Structures: Review","authors":"A. Rabiee, H. Ghasemnejad","doi":"10.4236/OJCM.2017.71002","DOIUrl":"https://doi.org/10.4236/OJCM.2017.71002","url":null,"abstract":"The present paper reviews crushing process of fibre-reinforced polymer (FRPs) composites tubular structures. Working with anisotropic material requires consideration of specific parameter definition in order to tailor a well-engineered composite structure. These parameters include geometry design, strain rate sensitivity, material properties, laminate design, interlaminar fracture toughness and off-axis loading conditions which are reviewed in this paper to create a comprehensive data base for researchers, engineers and scientists in the field. Each of these parameters influences the structural integrity and progressive crushing behaviour. In this extensive review each of these parameters is introduced, explained and evaluated. Construction of a well-engineered composite structure and triggering mechanism to strain rate sensitivity and testing conditions followed by failure mechanisms are extensively reviewed. Furthermore, this paper has mainly focused on experimental analysis that has been carried out on different types of FRP composites in the past two decades.","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":"07 1","pages":"14-48"},"PeriodicalIF":0.0,"publicationDate":"2017-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44714302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon fiber-reinforced plastic (CFRP) laminates with initially cut fibers (ICFs) have good formability without large degradation of static strength; however, their fatigue behavior has not been investigated thus far. In this paper, we investigated fatigue behavior and damage progress of open-holed CFRP laminates with ICFs having interlayers. Three types of CFRP laminates were employed: a laminate without ICF fabricated using an autoclave (Continuous-A), a laminate with ICF fabricated using an autoclave (ICF-A) and a laminate with ICF fabricated using press molding (ICF-P). First, fatigue test was conducted to obtain S (maximum stress)-N (the number of cycles to failure) curves in order to reveal fatigue strength. The fatigue tests for several specimens were interrupted at three prescribed numbers of cycles to observe damage progress. It is found that the Continuous-A laminate shows little strength degradation in the S-N curve while fatigue strength in both ICF laminates is decreased by approximately 30% at N of 106. In contrast, the damage progress of the ICF-P laminate is the least among the three laminates while the delamination progress at both edges and around the hole in the Continuous-A laminate is the most prominent.
{"title":"Fatigue Behavior of Open-Holed CFRP Laminates with Initially Cut Fibers","authors":"S. Sudarsono, K. Ogi","doi":"10.4236/OJCM.2017.71003","DOIUrl":"https://doi.org/10.4236/OJCM.2017.71003","url":null,"abstract":"Carbon fiber-reinforced plastic (CFRP) laminates with initially cut fibers (ICFs) have good formability without large degradation of static strength; however, their fatigue behavior has not been investigated thus far. In this paper, we investigated fatigue behavior and damage progress of open-holed CFRP laminates with ICFs having interlayers. Three types of CFRP laminates were employed: a laminate without ICF fabricated using an autoclave (Continuous-A), a laminate with ICF fabricated using an autoclave (ICF-A) and a laminate with ICF fabricated using press molding (ICF-P). First, fatigue test was conducted to obtain S (maximum stress)-N (the number of cycles to failure) curves in order to reveal fatigue strength. The fatigue tests for several specimens were interrupted at three prescribed numbers of cycles to observe damage progress. It is found that the Continuous-A laminate shows little strength degradation in the S-N curve while fatigue strength in both ICF laminates is decreased by approximately 30% at N of 106. In contrast, the damage progress of the ICF-P laminate is the least among the three laminates while the delamination progress at both edges and around the hole in the Continuous-A laminate is the most prominent.","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":"07 1","pages":"49-62"},"PeriodicalIF":0.0,"publicationDate":"2017-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45039776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Ibrahim, Mansur Ahmad, A. Aziz, R. Ramli, M. A. Jamaludin, S. Muhammed, Aisyah Humaira Alias
The aim of the study was to investigate the effect of pre-treatments by using sodium hydroxide (NaOH) and acetic acid on oil palm Empty Fruit Bunch (EFB) fibres for the production of Medium Density Fibreboard (MDF). The EFB fibres were treated with chemicals in the concentration range of 0.2%, 0.4%, 0.6% and 0.8% prior to refining. Single-homogenous layer MDF with 12 mm thickness and density of 720 kg/m3 was produced. Urea-Formaldehyde (UF) was applied at 10% loading (based on dry weight of dry fibres) as a binder. The physical properties (Water Absorption (WA) and Thickness Swelling (TS)) of the produced panels were tested according to European Standard, EN 622-5:2006. The results show that types of chemical used had greater effects than concentration on the dimensional stability of the MDF. EFB fibres treated with acetic acid produced MDF with better dimensional stability compared to the MDF NaOH treated fibres. High concentration of NaOH produced poor dimensional stability in the panels.
{"title":"Dimensional Stability Properties of Medium Density Fibreboard (MDF) from Treated Oil Palm (Elaeis guineensis) Empty Fruit Bunches (EFB) Fibres","authors":"Z. Ibrahim, Mansur Ahmad, A. Aziz, R. Ramli, M. A. Jamaludin, S. Muhammed, Aisyah Humaira Alias","doi":"10.4236/OJCM.2016.64009","DOIUrl":"https://doi.org/10.4236/OJCM.2016.64009","url":null,"abstract":"The aim of the study was to investigate the effect of pre-treatments by using sodium hydroxide (NaOH) and acetic acid on oil palm Empty Fruit Bunch (EFB) fibres for the production of Medium Density Fibreboard (MDF). The EFB fibres were treated with chemicals in the concentration range of 0.2%, 0.4%, 0.6% and 0.8% prior to refining. Single-homogenous layer MDF with 12 mm thickness and density of 720 kg/m3 was produced. Urea-Formaldehyde (UF) was applied at 10% loading (based on dry weight of dry fibres) as a binder. The physical properties (Water Absorption (WA) and Thickness Swelling (TS)) of the produced panels were tested according to European Standard, EN 622-5:2006. The results show that types of chemical used had greater effects than concentration on the dimensional stability of the MDF. EFB fibres treated with acetic acid produced MDF with better dimensional stability compared to the MDF NaOH treated fibres. High concentration of NaOH produced poor dimensional stability in the panels.","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":"6 1","pages":"91-99"},"PeriodicalIF":0.0,"publicationDate":"2016-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70624189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The thermal conductivity of epoxy resin can be increased by a factor of eight to ten by loading with highly conductive particles. However, higher loadings increase the viscosity of the resin and hamper its use for liquid composite molding processes. Thus, the enhancement of the out-of-plane thermal conductivity of carbon composites manufactured by VARTM and accomplished by matrix filling is limited to about 250%. In order to derive higher increases in out-of-plane thermal conductivity, additional measures have to be taken. These consist of introducing thermally conductive fibers in out-of-plane direction of the preform using a 3D-weaving process. Measured out-of-plane thermal conductivities of 3D-woven fabric composites are significantly increased compared to a typical laminated composite. It has been shown that if introducing highly conductive z-fibers, the use of a particle filled resin is not necessary and furthermore should be avoided due to the manufacturing problems mentioned above. An existing analytical model was altered to predict the effective thermal conductivity as a function of the composite material properties such as the thermal conductivities and volume contents of fibers in in-plane and out-of-plane directions, the thermal conductivity of the loaded resin, the grid-density of the out- of-plane fibers, and material properties of the contacting material. The predicted results are compared with measured data of manufactured samples.
{"title":"Prediction of the Enhanced Out-of-Plane Thermal Conductivity of Carbon Fiber Composites Produced by VARTM","authors":"J. Schuster, M. Schütz, Johannes Lutz, L. Lempert","doi":"10.4236/OJCM.2016.64010","DOIUrl":"https://doi.org/10.4236/OJCM.2016.64010","url":null,"abstract":"The thermal conductivity of epoxy resin can be increased by a factor of eight to ten by loading with highly conductive particles. However, higher loadings increase the viscosity of the resin and hamper its use for liquid composite molding processes. Thus, the enhancement of the out-of-plane thermal conductivity of carbon composites manufactured by VARTM and accomplished by matrix filling is limited to about 250%. In order to derive higher increases in out-of-plane thermal conductivity, additional measures have to be taken. These consist of introducing thermally conductive fibers in out-of-plane direction of the preform using a 3D-weaving process. Measured out-of-plane thermal conductivities of 3D-woven fabric composites are significantly increased compared to a typical laminated composite. It has been shown that if introducing highly conductive z-fibers, the use of a particle filled resin is not necessary and furthermore should be avoided due to the manufacturing problems mentioned above. An existing analytical model was altered to predict the effective thermal conductivity as a function of the composite material properties such as the thermal conductivities and volume contents of fibers in in-plane and out-of-plane directions, the thermal conductivity of the loaded resin, the grid-density of the out- of-plane fibers, and material properties of the contacting material. The predicted results are compared with measured data of manufactured samples.","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":"06 1","pages":"100-111"},"PeriodicalIF":0.0,"publicationDate":"2016-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70624200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Structural capacitors are composite structures that function as energy storage capacitors. An electric double-layer capacitor with a composite structure using a solid polymer electrolyte matrix with a glass fiber fabric separator has recently been developed. In the present study, new foam core sandwich structure is adopted and the effect of the degree of cure is experimentally investigated. Carbon fiber fabric cloth is used as electrodes, and the polystyrene foam core is used as separator. Material system of Poly Ethylene Glycol DiGlycidyl Ether (PEGDGE) with Lithium bisTriFluoromethane Sulfonyl Imide (LiTFSI) and hardener of TriEthylene TetrAmine (TETA) is adopted as ion-conductive polymer matrix. The effect of the cure degree is experimentally investigated by using 100% cure degree, 70% cure degree and 0% cure degree specimens. As a result, the polystyrene foam-core sandwich system is proved to be effective, but the capacitance is not enough because of the lack of surface area of the carbon fiber electrodes. As the remained TETA impedes the movement of Li+ cation in the solid polymer by means of the segment-motion-assisted diffusion process, the low degree of cure causes small capacitance with this material system.
{"title":"Effect of Degree of Cure on Sandwich Structural Capacitor Using Ion-Conductive Polymer with Carbon Fabric Skins","authors":"A. Todoroki","doi":"10.4236/OJCM.2016.64011","DOIUrl":"https://doi.org/10.4236/OJCM.2016.64011","url":null,"abstract":"Structural capacitors are composite structures that function as energy storage capacitors. An electric double-layer capacitor with a composite structure using a solid polymer electrolyte matrix with a glass fiber fabric separator has recently been developed. In the present study, new foam core sandwich structure is adopted and the effect of the degree of cure is experimentally investigated. Carbon fiber fabric cloth is used as electrodes, and the polystyrene foam core is used as separator. Material system of Poly Ethylene Glycol DiGlycidyl Ether (PEGDGE) with Lithium bisTriFluoromethane Sulfonyl Imide (LiTFSI) and hardener of TriEthylene TetrAmine (TETA) is adopted as ion-conductive polymer matrix. The effect of the cure degree is experimentally investigated by using 100% cure degree, 70% cure degree and 0% cure degree specimens. As a result, the polystyrene foam-core sandwich system is proved to be effective, but the capacitance is not enough because of the lack of surface area of the carbon fiber electrodes. As the remained TETA impedes the movement of Li+ cation in the solid polymer by means of the segment-motion-assisted diffusion process, the low degree of cure causes small capacitance with this material system.","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":"06 1","pages":"112-120"},"PeriodicalIF":0.0,"publicationDate":"2016-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70624396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yusuke Yamanaka, A. Todoroki, Masahito Ueda, Y. Hirano, R. Matsuzaki
In conventional manufacturing processes of composites, Carbon Fibre Reinforced Plastic (CFRP) laminates have been made by stacking unidirectional or woven prepreg sheets. Recently, as a manufacturing process of CFRP, 3D printing of CFRP composites has been developed. The 3D printing process of CFRP composites enables us to fabricate CFRP laminates with arbitrary curvilinear fibre plies. This indicates that the optimization of the in-plane curved carbon fibre placement in a planar ply is strongly required to realize superior 3D printed composites. In the present paper, in-plane curved carbon fibre alignment of a ply with an open hole is optimized in terms of maximization of the fracture strength. For the optimization process, a genetic algorithm is adopted. To describe curved carbon fibre alignments in a planar ply, stream lines of perfect flow is employed. By using the stream lines of the perfect flow, number of optimization parameters is significantly reduced. After the optimization, the fracture strength of CFRP laminate is compared with the results of unidirectional CFRP ply. The curved fibre placement in a planar ply shows superior fracture improvement.
{"title":"Fiber Line Optimization in Single Ply for 3D Printed Composites","authors":"Yusuke Yamanaka, A. Todoroki, Masahito Ueda, Y. Hirano, R. Matsuzaki","doi":"10.4236/OJCM.2016.64012","DOIUrl":"https://doi.org/10.4236/OJCM.2016.64012","url":null,"abstract":"In conventional manufacturing processes of composites, Carbon Fibre Reinforced Plastic (CFRP) laminates have been made by stacking unidirectional or woven prepreg sheets. Recently, as a manufacturing process of CFRP, 3D printing of CFRP composites has been developed. The 3D printing process of CFRP composites enables us to fabricate CFRP laminates with arbitrary curvilinear fibre plies. This indicates that the optimization of the in-plane curved carbon fibre placement in a planar ply is strongly required to realize superior 3D printed composites. In the present paper, in-plane curved carbon fibre alignment of a ply with an open hole is optimized in terms of maximization of the fracture strength. For the optimization process, a genetic algorithm is adopted. To describe curved carbon fibre alignments in a planar ply, stream lines of perfect flow is employed. By using the stream lines of the perfect flow, number of optimization parameters is significantly reduced. After the optimization, the fracture strength of CFRP laminate is compared with the results of unidirectional CFRP ply. The curved fibre placement in a planar ply shows superior fracture improvement.","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":"06 1","pages":"121-131"},"PeriodicalIF":0.0,"publicationDate":"2016-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70624255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper reports the development of an Alkali Activated Binder (AAB) with an emphasis on the performance and the durability of the AAB-matrix. For the development of the matrix, the reactive components granulated slag and coal fly ash were used, which were alkali activated with a mixture of sodium hydroxide (2 - 10 mol/l) and aqueous sodium silicate solution (SiO2/Na2O molar ratio: 2.1) at ambient temperature. A sodium hydroxide concentration of 5.5 mol/l revealed the best compromise between setting time and mechanical strengths of the AAB. With this sodium hydroxide concentration, the compressive and the 3-point bending tensile strength of the hardened AAB were 53.4 and 5.5 MPa respectively after 14 days. As a result of the investigation of the acid resistance, the AAB-matrix showed a very high acid resistance in comparison to ordinary Portland cement concrete. In addition, the AAB had a high frost resistance, which had been validated by the capillary suction, internal damage and freeze thaw test with a relative dynamic E-Modulus of 93% and a total amount of scaled material of 30 g/m2 after 28 freeze-thaw cycles (exposure class: XF3).
{"title":"An Alkali Activated Binder for High Chemical Resistant Self-Leveling Mortar","authors":"H. Funke, S. Gelbrich, L. Kroll","doi":"10.4236/OJCM.2016.64013","DOIUrl":"https://doi.org/10.4236/OJCM.2016.64013","url":null,"abstract":"This paper reports the \u0000development of an Alkali Activated Binder (AAB) with an emphasis on the \u0000performance and the durability of the AAB-matrix. For the development of the \u0000matrix, the reactive components granulated slag and coal fly ash were used, \u0000which were alkali activated with a mixture of sodium hydroxide (2 - 10 mol/l) \u0000and aqueous sodium silicate solution (SiO2/Na2O molar \u0000ratio: 2.1) at ambient temperature. A sodium hydroxide concentration of 5.5 \u0000mol/l revealed the best compromise between setting time and mechanical \u0000strengths of the AAB. With this sodium hydroxide concentration, the compressive \u0000and the 3-point bending tensile strength of the hardened AAB were 53.4 and 5.5 MPa \u0000respectively after 14 days. As a result of the investigation of the acid resistance, \u0000the AAB-matrix showed a very high acid resistance in comparison to ordinary \u0000Portland cement concrete. In addition, the AAB had a high frost resistance, \u0000which had been \u0000validated by the capillary suction, internal damage and freeze thaw test with a \u0000relative dynamic E-Modulus of 93% and a total amount of scaled material of 30 \u0000g/m2 after 28 freeze-thaw cycles (exposure class: XF3).","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":"06 1","pages":"132-142"},"PeriodicalIF":0.0,"publicationDate":"2016-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70624318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Near the metal-insulator transition, the Hall coefficient R of metal-insulator composites (M-I composite) can be up to 104 times larger than that in the pure metal called Giant Hall effect. Applying the physical model for alloys with phase separation developed in [1] [2], we conclude that the Giant Hall effect is caused by an electron transfer away from the metallic phase to the insulating phase occupying surface states. These surface states are the reason for the granular structure typical for M-I composites. This electron transfer can be described by [1] [2], provided that long-range diffusion does not happen during film production (n is the electron density in the phase A. uA and uB are the volume fractions of the phase A (metallic phase) and phase B (insulator phase). β is a measure for the average potential difference between the phases A and B). A formula for calculation of R of composites is derived and applied to experimental data of granular Cu1-y(SiO2)y and Ni1-y(SiO2)y films.
{"title":"The Origin of the Giant Hall Effect in Metal-Insulator Composites","authors":"J. Sonntag","doi":"10.4236/OJCM.2016.63008","DOIUrl":"https://doi.org/10.4236/OJCM.2016.63008","url":null,"abstract":"Near the metal-insulator transition, the Hall coefficient R of metal-insulator composites (M-I composite) can be up to 104 times larger than that in the pure metal called Giant Hall effect. Applying the physical model for alloys with phase separation developed in [1] [2], we conclude that the Giant Hall effect is caused by an electron transfer away from the metallic phase to the insulating phase occupying surface states. These surface states are the reason for the granular \u0000structure typical for M-I composites. This electron transfer can be described by [1] [2], provided that long-range diffusion does not happen during film production (n is the electron density in the phase A. uA and uB are the volume fractions of the phase A (metallic phase) and phase B (insulator phase). β is a measure for the average potential difference between the phases A and B). A formula for calculation of R of composites is derived and applied to experimental data of granular Cu1-y(SiO2)y and Ni1-y(SiO2)y films.","PeriodicalId":57868,"journal":{"name":"复合材料期刊(英文)","volume":"06 1","pages":"78-90"},"PeriodicalIF":0.0,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70624155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}