To effectively predict the deformation behavior of AZ31B magnesium alloy (Mg alloy) in plastic forming assisted by pulse current, the influences of different pulse currents’ frequencies on the flow stress of Mg alloy were studied. The Voce and Hockett-Sherby constitutive models were modified to include the influence of frequencies, and the parameters of the constitutive models were calibrated based on the experimental data. The Cazacu 2004 yield criterion was improved to describe the yield behavior under the action of pulse current, in which the tensile-compressive asymmetry keeps changing with the increase of plastic strain. The three-point bending tests of AZ31B Mg alloy assisted by different frequency pulse currents were carried out. The improved constitutive model and yield criterion were embedded in ABAQUS using user material subroutine VUMAT for the corresponding three-point bending simulation. It is found that the improved constitutive model and yield criterion considering the current frequencies and tensile-compressive asymmetry can obviously improve the simulation accuracy.