Pub Date : 2021-01-01DOI: 10.4236/ojbiphy.2021.111001
A. Szász
The COVID-19 pandemic has experienced unprecedented limitations and extraordinary scientific efforts to address this exceptional situation. Despite blanket closures that have resulted in significant financial constraints and losses around the world, research has an “unlimited” budget, with an exceptional concentration of medical and scientific care on a single topic: understanding the mechanisms for overcoming the disease. A large number of clinical trials have been launched with different drugs that have been behind different concepts and solutions. I would like to focus on the complexity aspect of COVID-19. Living systems are organized in a complex way, which implies dynamic stochastic phenomena, and deterministic reductionism can mislead research. When research focuses on individual molecules or pathways as products, it is distracted from the processes in which these products operate, thus neglecting the complex interactions between regulations and feedback controls. Common problems in product-oriented research are articulated as “double-edged swords”, “Janus behavior”, “two-sided action”, with a simple question: “friend or foe?” I focus on the missing complexity. I propose a bioelectromagnetic process that can maintain a complex approach, affecting processes rather than products. This hypothetical proposal is not a comprehensive solution. Complexity itself limits the overall effects of causing “miracles”. Well-designed electromagnetic effects can support current efforts and, in combination with intensively developed pharmaceuticals, bring us closer to a pharmaceutical solution against COVID-19.
{"title":"A Bioelectromagnetic Proposal Approaching the Complex Challenges of COVID-19","authors":"A. Szász","doi":"10.4236/ojbiphy.2021.111001","DOIUrl":"https://doi.org/10.4236/ojbiphy.2021.111001","url":null,"abstract":"The COVID-19 pandemic has experienced unprecedented limitations and extraordinary scientific efforts to address this exceptional situation. Despite blanket closures that have resulted in significant financial constraints and losses around the world, research has an “unlimited” budget, with an exceptional concentration of medical and scientific care on a single topic: understanding the mechanisms for overcoming the disease. A large number of clinical trials have been launched with different drugs that have been behind different concepts and solutions. I would like to focus on the complexity aspect of COVID-19. Living systems are organized in a complex way, which implies dynamic stochastic phenomena, and deterministic reductionism can mislead research. When research focuses on individual molecules or pathways as products, it is distracted from the processes in which these products operate, thus neglecting the complex interactions between regulations and feedback controls. Common problems in product-oriented research are articulated as “double-edged swords”, “Janus behavior”, “two-sided action”, with a simple question: “friend or foe?” I focus on the missing complexity. I propose a bioelectromagnetic process that can maintain a complex approach, affecting processes rather than products. This hypothetical proposal is not a comprehensive solution. Complexity itself limits the overall effects of causing “miracles”. Well-designed electromagnetic effects can support current efforts and, in combination with intensively developed pharmaceuticals, bring us closer to a pharmaceutical solution against COVID-19.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"11 1","pages":"1-67"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70618464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.4236/OJBIPHY.2021.112007
A. Szász
{"title":"Bio-Electromagnetics without Fields: The Effect of the Vector Potential","authors":"A. Szász","doi":"10.4236/OJBIPHY.2021.112007","DOIUrl":"https://doi.org/10.4236/OJBIPHY.2021.112007","url":null,"abstract":"","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"11 1","pages":"205-224"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70618477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.4236/ojbiphy.2021.114015
K. Wong, W. Chow
{"title":"The Mystery on the Physical Conditions for Life","authors":"K. Wong, W. Chow","doi":"10.4236/ojbiphy.2021.114015","DOIUrl":"https://doi.org/10.4236/ojbiphy.2021.114015","url":null,"abstract":"","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70618510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-29DOI: 10.4236/OJBIPHY.2020.104013
A. N. Shoutko
Trophic properties of hematopoietic stem cells can influence the malignant growth alternatively to immune control. The annual growth of the body mass by age in adult populations of welfare countries used as the most common criterion of metabolic and proliferative tissue activity, and these data compared with death’ rate for malignant and somatic diseases in different age-groups of the same countries. The rate of physiologic involution of different cell populations in the lymphoid lineage by age also involved in correlations between the above parameters. A decrease in death rate for cancer and increase it’s for non-malignant diseases found in 60+ populations, which have the lowest physiological temp of renewal of lymphocytes number and mass of the body. The lack of both the thymus gland volume and proliferative activity of naive lymphocytes reduces physiological body mass renewal as well as the cancer death rate but enhances somatic death rate, opposing to anticancer immunity at large. A protumor character of the lymphopoietic system’s relation with malignancy seems more realistic than defending one.
{"title":"Cancer Uses the Common Morphogenesis Source of the Host","authors":"A. N. Shoutko","doi":"10.4236/OJBIPHY.2020.104013","DOIUrl":"https://doi.org/10.4236/OJBIPHY.2020.104013","url":null,"abstract":"Trophic properties of hematopoietic stem cells can influence the malignant growth alternatively to immune control. The annual growth of the body mass by age in adult populations of welfare countries used as the most common criterion of metabolic and proliferative tissue activity, and these data compared with death’ rate for malignant and somatic diseases in different age-groups of the same countries. The rate of physiologic involution of different cell populations in the lymphoid lineage by age also involved in correlations between the above parameters. A decrease in death rate for cancer and increase it’s for non-malignant diseases found in 60+ populations, which have the lowest physiological temp of renewal of lymphocytes number and mass of the body. The lack of both the thymus gland volume and proliferative activity of naive lymphocytes reduces physiological body mass renewal as well as the cancer death rate but enhances somatic death rate, opposing to anticancer immunity at large. A protumor character of the lymphopoietic system’s relation with malignancy seems more realistic than defending one.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48706172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-09DOI: 10.4236/ojbiphy.2020.103010
G. Szigeti, A. M. Szász, A. Szász
The structure of the tissues is formed in a self-similar manner, forming fractal structures in their transport networks. The structure exhibits allometric forming and so-called scaling behavior. This is a basic growth model fine-tuned by various connections of the cells (junctions and adherent connections), intended to direct material and energy transports between them. This secondary control of cell metabolism decreases primary metabolic transport through the free surfaces of the cells. The cellular network is formed by triggering the endogenous electric fields, which are dominantly governed by cell membrane potential. Proliferation exhibits a different electric pattern due to the low cell-membrane potential and resulting negativity relative to its environment. This potential change characterizes cells in normal proliferation and a cluster of cells (a tumor) in the case of cancerous development. This latter has certain similarities to the leakage transport of liquid in porous media, substituting the pressure with endogenous tumor potential. The average survival of a tumor depends on the kind of available metabolic transport and the fractal dimensions of the newly built angiogenic network.
{"title":"The Growth of Healthy and Cancerous Tissues","authors":"G. Szigeti, A. M. Szász, A. Szász","doi":"10.4236/ojbiphy.2020.103010","DOIUrl":"https://doi.org/10.4236/ojbiphy.2020.103010","url":null,"abstract":"The structure of the tissues is formed in a self-similar manner, forming fractal structures in their transport networks. The structure exhibits allometric forming and so-called scaling behavior. This is a basic growth model fine-tuned by various connections of the cells (junctions and adherent connections), intended to direct material and energy transports between them. This secondary control of cell metabolism decreases primary metabolic transport through the free surfaces of the cells. The cellular network is formed by triggering the endogenous electric fields, which are dominantly governed by cell membrane potential. Proliferation exhibits a different electric pattern due to the low cell-membrane potential and resulting negativity relative to its environment. This potential change characterizes cells in normal proliferation and a cluster of cells (a tumor) in the case of cancerous development. This latter has certain similarities to the leakage transport of liquid in porous media, substituting the pressure with endogenous tumor potential. The average survival of a tumor depends on the kind of available metabolic transport and the fractal dimensions of the newly built angiogenic network.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47403709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-09DOI: 10.4236/ojbiphy.2020.103011
R. E. Kinani, H. Kaidi, Noureddine Barka
DNA is the carrier of all cellular genetic information and increasingly used in nanotechnology. The study of DNA molecule achieved in vitro while submitting the DNA to all chemicals agent capabilities to destabilize links hydrogen, such as pH, temperature. In fact, the DNA enveloped in the membrane cellular, so it is legitimate to study the influence of membrane undulations. In this work, we try to show that the fluctuations of the membrane can be considerate as a physics agent is also capable to destabilize links hydrogen. In this investigation, we assume that each pair base formed an angle an with the membrane’s surface. We have proposed a theoretical model, and we have established a relationship between the angle formed by the pair base θeq and an angle formed by the membrane and each pair base. We assume that DNA and biomembrane interact via a realistic potential of Morse type. To this end, use is made of a generalized model that extends that introduced by M. Peyrard and A. R. Bishop in the past modified by M. Zoli. This generalized model is based on the resolution of a Schrodinger-like equation. The exact resolution gives the expression of the ground state, and the associated eigenvalue (energy) that equals the free energy, in the thermodynamic limit. First, we compute the denaturation temperature of DNA strands critical temperature. Second, we deduce all critical properties that mainly depend on the parameters of the model, and we quantify the effects of the membrane undulations. These undulations renormalize all physical quantities, such as harmonic stacking, melting temperature, eigenfunctions, eigenvalues and regular part of specific heat.
DNA是所有细胞遗传信息的载体,越来越多地用于纳米技术。DNA分子的研究是在体外完成的,同时将DNA提交给所有化学试剂,如pH值、温度等,以破坏氢链的稳定性。事实上,DNA包裹在细胞膜中,因此研究细胞膜波动的影响是合理的。在这项工作中,我们试图表明膜的波动可以被认为是一种物理剂,也能够破坏氢链的稳定。在这项研究中,我们假设每对碱基与膜表面形成一个角。我们提出了一个理论模型,并建立了由一对碱基θeq形成的角与膜与每一对碱基形成的角之间的关系。我们假设DNA和生物膜通过莫尔斯型的现实电位相互作用。为此,使用了一个广义模型,该模型扩展了过去由M. Peyrard和a . R. Bishop引入的模型,并由M. Zoli修改。这个广义模型是基于类薛定谔方程的解析。精确的分辨率给出了基态的表达式,以及在热力学极限下等于自由能的相关特征值(能量)。首先,我们计算了DNA链的临界变性温度。其次,我们推导了主要依赖于模型参数的所有关键特性,并量化了膜波动的影响。这些波动使所有物理量重新规范化,如谐波叠加、熔化温度、特征函数、特征值和比热的规则部分。
{"title":"Mechanics of Twisted DNA Molecule Adsorbed on a Biological Membrane","authors":"R. E. Kinani, H. Kaidi, Noureddine Barka","doi":"10.4236/ojbiphy.2020.103011","DOIUrl":"https://doi.org/10.4236/ojbiphy.2020.103011","url":null,"abstract":"DNA is the carrier of all cellular genetic information and increasingly used in nanotechnology. The study of DNA molecule achieved in vitro while submitting the DNA to all chemicals agent capabilities to destabilize links hydrogen, such as pH, temperature. In fact, the DNA enveloped in the membrane cellular, so it is legitimate to study the influence of membrane undulations. In this work, we try to show that the fluctuations of the membrane can be considerate as a physics agent is also capable to destabilize links hydrogen. In this investigation, we assume that each pair base formed an angle an with the membrane’s surface. We have proposed a theoretical model, and we have established a relationship between the angle formed by the pair base θeq and an angle formed by the membrane and each pair base. We assume that DNA and biomembrane interact via a realistic potential of Morse type. To this end, use is made of a generalized model that extends that introduced by M. Peyrard and A. R. Bishop in the past modified by M. Zoli. This generalized model is based on the resolution of a Schrodinger-like equation. The exact resolution gives the expression of the ground state, and the associated eigenvalue (energy) that equals the free energy, in the thermodynamic limit. First, we compute the denaturation temperature of DNA strands critical temperature. Second, we deduce all critical properties that mainly depend on the parameters of the model, and we quantify the effects of the membrane undulations. These undulations renormalize all physical quantities, such as harmonic stacking, melting temperature, eigenfunctions, eigenvalues and regular part of specific heat.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"10 1","pages":"129-149"},"PeriodicalIF":0.0,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43811472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-09DOI: 10.4236/ojbiphy.2020.103012
C. Cortez, Dílson Silva
This review paper attempts to approximate the concept of biological stress to the stress concept in Physics using the phenomenological view of physics to discuss the source of generator forces of biological stress state. Based on the literature, parallels are drawn between the two concepts and a discussion on the steady state in open systems and homeostatic state in biological systems is developed. Using the concepts of thermodynamic entropy and informational entropy, and comparing stress in living systems and nonliving, we attempt to build a basis for a view of stress as a principle of nature linked to the adaptability property of matter, opposing entropy. It is known that the increasing number of microstates possible in a complex system increases the entropy. In that way, entropy is related to the amount of additional information needed to specify the exact physical state of a system, given its macroscopic specification. By controlling the metabolic processes (catabolism-anabolism) to decrease the entropy, stress reduces the number of possible states for which the living system could evolve, avoiding the loss of “life information”, preserving its characteristics and preventing its extinction. The loss of function of a species within an ecosystem or of cells within an organ can be showing that the limits of the stress principle were “transgressed”. That is, the intensity and/or duration of stress exceeded the capacity of living organism to process of information extracted from stressor and reprogram its physiological mechanisms, activating its adaptability process, while its internal balance is preserved.
{"title":"Biological Stress as a Principle of Nature: A Review of Literature","authors":"C. Cortez, Dílson Silva","doi":"10.4236/ojbiphy.2020.103012","DOIUrl":"https://doi.org/10.4236/ojbiphy.2020.103012","url":null,"abstract":"This review paper attempts to approximate the concept of biological stress to the stress concept in Physics using the phenomenological view of physics to discuss the source of generator forces of biological stress state. Based on the literature, parallels are drawn between the two concepts and a discussion on the steady state in open systems and homeostatic state in biological systems is developed. Using the concepts of thermodynamic entropy and informational entropy, and comparing stress in living systems and nonliving, we attempt to build a basis for a view of stress as a principle of nature linked to the adaptability property of matter, opposing entropy. It is known that the increasing number of microstates possible in a complex system increases the entropy. In that way, entropy is related to the amount of additional information needed to specify the exact physical state of a system, given its macroscopic specification. By controlling the metabolic processes (catabolism-anabolism) to decrease the entropy, stress reduces the number of possible states for which the living system could evolve, avoiding the loss of “life information”, preserving its characteristics and preventing its extinction. The loss of function of a species within an ecosystem or of cells within an organ can be showing that the limits of the stress principle were “transgressed”. That is, the intensity and/or duration of stress exceeded the capacity of living organism to process of information extracted from stressor and reprogram its physiological mechanisms, activating its adaptability process, while its internal balance is preserved.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44687881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-26DOI: 10.4236/ojbiphy.2020.102009
L. Gasparyan, I. Mazo, F. Gasparyan, V. Simonyan
Solid-state nanopore DNA sequencing modified method is developed. Method is based on the tunnel current investigation through the nanogap made on lateral gold electrodes in the form of nanowires or nanoribbons. The movement of DNA in aqueous solution is regulated by the potential applied to reference electrode. The potential applied to the lateral metal electrodes helps to the creation of the molecular junctions. They consist of the nucleosides passing through the pores. Taking into account that DNA moves under gravity, electrophoretic and drag forces, the analytic expression for the DNA translocation speed is calculated and analyzed. The conditions for decreasing the DNA translocation speed or increasing the nucleosides reading time are received. It is shown that one can control value of the DNA molecules bases reading time and the frequency of the bases passes by the choice of magnitude of the potential applied to reference electrode. Our results, therefore potentially suggest a realistic, inherently design-specific, high-throughput nanopore DNA sequencing device/cell as a de-novo alternative to the existing methods.
{"title":"DNA Sequencing Modified Method through Effective Regulation of Its Translocation Speed in Aqueous Solution","authors":"L. Gasparyan, I. Mazo, F. Gasparyan, V. Simonyan","doi":"10.4236/ojbiphy.2020.102009","DOIUrl":"https://doi.org/10.4236/ojbiphy.2020.102009","url":null,"abstract":"Solid-state nanopore DNA sequencing modified method is developed. Method is based on the tunnel current investigation through the nanogap made on lateral gold electrodes in the form of nanowires or nanoribbons. The movement of DNA in aqueous solution is regulated by the potential applied to reference electrode. The potential applied to the lateral metal electrodes helps to the creation of the molecular junctions. They consist of the nucleosides passing through the pores. Taking into account that DNA moves under gravity, electrophoretic and drag forces, the analytic expression for the DNA translocation speed is calculated and analyzed. The conditions for decreasing the DNA translocation speed or increasing the nucleosides reading time are received. It is shown that one can control value of the DNA molecules bases reading time and the frequency of the bases passes by the choice of magnitude of the potential applied to reference electrode. Our results, therefore potentially suggest a realistic, inherently design-specific, high-throughput nanopore DNA sequencing device/cell as a de-novo alternative to the existing methods.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41951575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-02-21DOI: 10.4236/ojbiphy.2020.102004
Billy C. S. Yearington, Victoria L. Hossack, B. Dotta
Biophoton emission is produced by all living systems; this emission pattern has been shown to be altered by the presence of an electromagnetic field (EMF). Cultures of B16-BL6 cells were exposed to a weak EMF produced by a specially constructed EM generator, called the “Resonator”, for one hour. This EM generator incorporates multiple geometric ratios in its design, including the golden ratio (phi), pi, root 2, root 3, and root 5. It has been used previously to purify water of toxins. There was a significant decrease in mean photon counts from B16-BL6 cells exposed at a distance of 1 m compared to those exposed at 0 m. Alterations in the spectral power density variability were also observed in the 8 - 10 Hz range. The EM generator may have an impact on the viability of the exposed cell cultures, but only at specific distances.
{"title":"Exposure of Weak Time-Invariant Electromagnetic Fields to B16-BL6 Cell Cultures Alter Biophoton Emission Profile as a Function of Distance","authors":"Billy C. S. Yearington, Victoria L. Hossack, B. Dotta","doi":"10.4236/ojbiphy.2020.102004","DOIUrl":"https://doi.org/10.4236/ojbiphy.2020.102004","url":null,"abstract":"Biophoton emission is produced by all living systems; this emission pattern has been shown to be altered by the presence of an electromagnetic field (EMF). Cultures of B16-BL6 cells were exposed to a weak EMF produced by a specially constructed EM generator, called the “Resonator”, for one hour. This EM generator incorporates multiple geometric ratios in its design, including the golden ratio (phi), pi, root 2, root 3, and root 5. It has been used previously to purify water of toxins. There was a significant decrease in mean photon counts from B16-BL6 cells exposed at a distance of 1 m compared to those exposed at 0 m. Alterations in the spectral power density variability were also observed in the 8 - 10 Hz range. The EM generator may have an impact on the viability of the exposed cell cultures, but only at specific distances.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41712374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-02-21DOI: 10.4236/ojbiphy.2020.102005
K. W. Wong, P. Fung, W. Chow
A short note based on the homogeneous 5D space-time topological mappings is extended to cover DNAs of viruses and how the body’s immune system can be enhanced to recognize and remove it.
{"title":"Solar Radiation, Perelman Entropy Mapping, DNA, Viruses etc.","authors":"K. W. Wong, P. Fung, W. Chow","doi":"10.4236/ojbiphy.2020.102005","DOIUrl":"https://doi.org/10.4236/ojbiphy.2020.102005","url":null,"abstract":"A short note based on the homogeneous 5D space-time topological mappings is extended to cover DNAs of viruses and how the body’s immune system can be enhanced to recognize and remove it.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"10 1","pages":"54-58"},"PeriodicalIF":0.0,"publicationDate":"2020-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47608008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}