Pub Date : 2021-05-26DOI: 10.4236/ojbiphy.2021.113009
R. Englman
Living matter is characterized by its variegated potential energy landscape possessing a proneness to continually absorb externally supplied energy. This enables it to ascend from its momentary energy minimum state to one of its myriad barriers only to subsequently descend to a new minimum with a potentiality to perform new functions or processes, in the while exuding energy (mainly in the form of heat). As in studies of molecular intersystem crossing, the jumping processes are describable in terms of quantum states. In this work we derive the low energy quantum states for those three templated self-assembling processes, self-replication, metabolism and self-repair that are commonly regarded as distinguishing animate from inanimate substance. The outcome of each process is a new, long-living, stable molecular aggregate characterized by its specific conformation, comprising a host of micro-states associated with sub-conformations and patterned upon the template. The provenance of these newly-formed states is obtained here by a unified formalism for all three processes, based on a Hamiltonian, constructed in an abstract Hilbert-space framework, whose essences are bilinear coupling terms in the Hamiltonian between the template and the bath, as well as between the reactants and the bath. Treating these terms by second order perturbation, one finds in low lying quantum states an alignment between the template and the product, somewhat analogous to the Kramers-Anderson superexchange mechanism, with the bath replacing the bridging anion and by exploitation of the decohering due to the randomness of the bath. The idea underlying this work, recurrent in the biological literature and here expressed in a Physics, Hamiltonian framework, is the correlative unity of the whole biological system comprising multiple organs.
{"title":"Quantum States in Templated Biological Processes","authors":"R. Englman","doi":"10.4236/ojbiphy.2021.113009","DOIUrl":"https://doi.org/10.4236/ojbiphy.2021.113009","url":null,"abstract":"Living matter is characterized by its variegated potential energy landscape possessing a proneness to continually absorb externally supplied energy. This enables it to ascend from its momentary energy minimum state to one of its myriad barriers only to subsequently descend to a new minimum with a potentiality to perform new functions or processes, in the while exuding energy (mainly in the form of heat). As in studies of molecular intersystem crossing, the jumping processes are describable in terms of quantum states. In this work we derive the low energy quantum states for those three templated self-assembling processes, self-replication, metabolism and self-repair that are commonly regarded as distinguishing animate from inanimate substance. The outcome of each process is a new, long-living, stable molecular aggregate characterized by its specific conformation, comprising a host of micro-states associated with sub-conformations and patterned upon the template. The provenance of these newly-formed states is obtained here by a unified formalism for all three processes, based on a Hamiltonian, constructed in an abstract Hilbert-space framework, whose essences are bilinear coupling terms in the Hamiltonian between the template and the bath, as well as between the reactants and the bath. Treating these terms by second order perturbation, one finds in low lying quantum states an alignment between the template and the product, somewhat analogous to the Kramers-Anderson superexchange mechanism, with the bath replacing the bridging anion and by exploitation of the decohering due to the randomness of the bath. The idea underlying this work, recurrent in the biological literature and here expressed in a Physics, Hamiltonian framework, is the correlative unity of the whole biological system comprising multiple organs.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48095277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-25DOI: 10.4236/ojbiphy.2022.122005
M. Júnior, Rafael Timóteo de Sousa Júnior, G. A. Nze, W. Giozza, L. A. R. Júnior
Virtual screening is a computational technique widely used for identifying small molecules which are most likely to bind to a protein target. Here, we performed a molecular docking study to propose potential candidates to prevent the RBD/ACE2 attachment. These candidates are sixteen different flavonoids present in the peppermint leaf. Results showed that Luteolin 7-O-neohesperidoside is the peppermint flavonoid with a higher binding affinity regarding the RBD/ACE2 complex (about -9.18 Kcal/mol). On the other hand, Sakuranetin presented the lowest affinity (about -6.38 Kcal/mol). Binding affinities of the other peppermint flavonoids ranged from -6.44 Kcal/mol up to -9.05 Kcal/mol. The binding site surface analysis showed pocket-like regions on the RBD/ACE2 complex that yield several interactions (mostly hydrogen bonds) between the flavonoid and the amino acid residues of the proteins. This study can open channels for the understanding of the roles of flavonoids against COVID-19 infection.
{"title":"Evaluation of Peppermint Leaf Flavonoids as SARS-CoV-2 Spike Receptor-Binding Domain Attachment Inhibitors to the Human ACE2 Receptor: A Molecular Docking Study","authors":"M. Júnior, Rafael Timóteo de Sousa Júnior, G. A. Nze, W. Giozza, L. A. R. Júnior","doi":"10.4236/ojbiphy.2022.122005","DOIUrl":"https://doi.org/10.4236/ojbiphy.2022.122005","url":null,"abstract":"Virtual screening is a computational technique widely used for identifying small molecules which are most likely to bind to a protein target. Here, we performed a molecular docking study to propose potential candidates to prevent the RBD/ACE2 attachment. These candidates are sixteen different flavonoids present in the peppermint leaf. Results showed that Luteolin 7-O-neohesperidoside is the peppermint flavonoid with a higher binding affinity regarding the RBD/ACE2 complex (about -9.18 Kcal/mol). On the other hand, Sakuranetin presented the lowest affinity (about -6.38 Kcal/mol). Binding affinities of the other peppermint flavonoids ranged from -6.44 Kcal/mol up to -9.05 Kcal/mol. The binding site surface analysis showed pocket-like regions on the RBD/ACE2 complex that yield several interactions (mostly hydrogen bonds) between the flavonoid and the amino acid residues of the proteins. This study can open channels for the understanding of the roles of flavonoids against COVID-19 infection.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48197807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-07DOI: 10.4236/OJBIPHY.2021.112006
L. Gasparyan, F. Gasparyan, V. Simonyan
The results of a comparative literature analysis of internal electrical noises and signal-to-noise ratio for nanoscale BioFET (biological field-effect transistor) and DNA (deoxyribonucleic acid) sensors based on different architectures MIS (metal-insulator-semiconductor), EIS (electrolyte-insulator-semi-conductor) and ISFET (ion-selective field-effect transistor) are presented. Main types, models and mechanisms of internal noises of bio- & chemical field-effect based sensors are analyzed, summarized and presented. For the first time, corresponding detail electrical equivalent circuits were built to calculate the spectral densities of noises generated in the active part of a solid (semiconductor, dielectric) and in an aqueous solution for MIS, EIS and ISFET structures based sensors. Complete expressions are obtained for the rms (root mean square) value of the noise current (or voltage), as well as the noise spectral densities for the architectures under study. The miniaturization of biosensors leads to a decrease in the level of the useful signal-current. For successful operation of the sensor, it is necessary to ensure a high value of the SNR (signal-to-noise ratio). In case of weak useful signals, it is necessary to reduce the level of internal electrical noise. This work is devoted to a detailed study of the types and mechanisms of internal electrical noises in specific biosensor architectures.
{"title":"Internal Electrical Noises of BioFET Sensors Based on Various Architectures","authors":"L. Gasparyan, F. Gasparyan, V. Simonyan","doi":"10.4236/OJBIPHY.2021.112006","DOIUrl":"https://doi.org/10.4236/OJBIPHY.2021.112006","url":null,"abstract":"The results of a comparative literature analysis of internal electrical noises and signal-to-noise ratio for nanoscale BioFET (biological field-effect transistor) and DNA (deoxyribonucleic acid) sensors based on different architectures MIS (metal-insulator-semiconductor), EIS (electrolyte-insulator-semi-conductor) and ISFET (ion-selective field-effect transistor) are presented. Main types, models and mechanisms of internal noises of bio- & chemical field-effect based sensors are analyzed, summarized and presented. For the first time, corresponding detail electrical equivalent circuits were built to calculate the spectral densities of noises generated in the active part of a solid (semiconductor, dielectric) and in an aqueous solution for MIS, EIS and ISFET structures based sensors. Complete expressions are obtained for the rms (root mean square) value of the noise current (or voltage), as well as the noise spectral densities for the architectures under study. The miniaturization of biosensors leads to a decrease in the level of the useful signal-current. For successful operation of the sensor, it is necessary to ensure a high value of the SNR (signal-to-noise ratio). In case of weak useful signals, it is necessary to reduce the level of internal electrical noise. This work is devoted to a detailed study of the types and mechanisms of internal electrical noises in specific biosensor architectures.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"11 1","pages":"177-204"},"PeriodicalIF":0.0,"publicationDate":"2021-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45122890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-07DOI: 10.4236/OJBIPHY.2021.112005
R. Englman
With the prevalent conception of self-replication (SR, a hallmark of living systems) as a non-equilibrium process subject to thermodynamic laws, a complementary approach derives the low energy quantum states arising from a Hamiltonian that appears to be specific for bio-systems by its containing some strongly binding terms. The bindings attract properties of the template (T) and the reactants to form a replicate (R). The criterion for SR that emerges from the theory is that second order (bi-linear) interaction terms between degrees of motion of T-R and the thermal bath dominate negatively over a linear self-energy term, and thereby provide a binding between the attributes of T and R. The formalism (reminiscent of the Kramers-Anderson mechanism for superexchange) is from first principles, but hinges on a drastic simplification by modelling the T, R and bath variables on interacting qubits and by congesting the attraction into a single (control) parameter. The development relies on further simplifying features, such as Random Phase Approximations and an Effective Hamiltonian formalism. The entropic balance to replication is considered and found to reside in the far surroundings.
{"title":"A Quantum State Scenario for Biological Self-Replication","authors":"R. Englman","doi":"10.4236/OJBIPHY.2021.112005","DOIUrl":"https://doi.org/10.4236/OJBIPHY.2021.112005","url":null,"abstract":"With the prevalent conception of self-replication (SR, a hallmark of living systems) as a non-equilibrium process subject to thermodynamic laws, a complementary approach derives the low energy quantum states arising from a Hamiltonian that appears to be specific for bio-systems by its containing some strongly binding terms. The bindings attract properties of the template (T) and the reactants to form a replicate (R). The criterion for SR that emerges from the theory is that second order (bi-linear) interaction terms between degrees of motion of T-R and the thermal bath dominate negatively over a linear self-energy term, and thereby provide a binding between the attributes of T and R. The formalism (reminiscent of the Kramers-Anderson mechanism for superexchange) is from first principles, but hinges on a drastic simplification by modelling the T, R and bath variables on interacting qubits and by congesting the attraction into a single (control) parameter. The development relies on further simplifying features, such as Random Phase Approximations and an Effective Hamiltonian formalism. The entropic balance to replication is considered and found to reside in the far surroundings.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"11 1","pages":"159-176"},"PeriodicalIF":0.0,"publicationDate":"2021-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45373222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-07DOI: 10.4236/OJBIPHY.2021.112003
V. M. F. Lima, Alfredo Pereira Junior, Guilherme Lima de Oliveira
At the transition from quiescence to propagating waves recorded in isolated retinas, a circular electric current closes in the extracellular matrix; this circular current creates a magnetic torus flow that, when entering quiescent tissue in front of the wave, recruits elements and when leaving behind, helps to build the absolute refractory state. The waving magnetic torus is the consequence of the vortex effect and explains the energy boost that drives propagation. Methods: We interpret experimental results from intrinsic and extrinsic fluorescence dyes, voltage, calcium and pH sensitive, optical signals from isolated retinas, and time series recordings using ion exchange resins: Ca, K, pH, Na, Cl recorded extracellularly at retinas, cerebellums and cortices coupled to spreading depression waves. Finally, we checked the ECoG activity, also a time series, at the transition from after discharges to spreading depression in rat hippocampus. Results: The integrated assessment of the diversified measurements led to the realization that the magnetic flow at the wavefront is a major contributor to the wave propagation mechanisms. This flow couples mass and charge flows as a swirling torus from excited to quiescent tissue. Conclusions: An alternative model of the brain is possible, apart from the classical HH and molecular biology model. Physical chemistry of charged gels and its flows explains the results. The conceptual framework uses far from equilibrium thermodynamics.
{"title":"The Spreading Depression Propagation: How Electrochemical Patterns Distort or Create Perception","authors":"V. M. F. Lima, Alfredo Pereira Junior, Guilherme Lima de Oliveira","doi":"10.4236/OJBIPHY.2021.112003","DOIUrl":"https://doi.org/10.4236/OJBIPHY.2021.112003","url":null,"abstract":"At the transition from quiescence to propagating waves recorded in isolated retinas, a circular electric current closes in the extracellular matrix; this circular current creates a magnetic torus flow that, when entering quiescent tissue in front of the wave, recruits elements and when leaving behind, helps to build the absolute refractory state. The waving magnetic torus is the consequence of the vortex effect and explains the energy boost that drives propagation. Methods: We interpret experimental results from intrinsic and extrinsic fluorescence dyes, voltage, calcium and pH sensitive, optical signals from isolated retinas, and time series recordings using ion exchange resins: Ca, K, pH, Na, Cl recorded extracellularly at retinas, cerebellums and cortices coupled to spreading depression waves. Finally, we checked the ECoG activity, also a time series, at the transition from after discharges to spreading depression in rat hippocampus. Results: The integrated assessment of the diversified measurements led to the realization that the magnetic flow at the wavefront is a major contributor to the wave propagation mechanisms. This flow couples mass and charge flows as a swirling torus from excited to quiescent tissue. Conclusions: An alternative model of the brain is possible, apart from the classical HH and molecular biology model. Physical chemistry of charged gels and its flows explains the results. The conceptual framework uses far from equilibrium thermodynamics.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"11 1","pages":"133-146"},"PeriodicalIF":0.0,"publicationDate":"2021-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48822244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-07DOI: 10.4236/OJBIPHY.2021.112004
I. Trifonova, G. Kurteva, S. Z. Stefanov
Survival at tumor recurrence in soft matter, after chemotherapy, is assessed by RNA folding. It is shown that this recurrence is starting with development of a fluidlike globule; it changes the energy of soft matter; it proceeds as a resonant mixing; and at the end it causes diffusion. This diffusion is interpreted as metastasis in soft matter. A tumor memory is designed for its recurrence oscillations. These oscillations are marked as positive or negative according to their influence on life stabilization or destabilization. It is demonstrated that a tumor memorizes two types of recurrences. The intensity of chemotherapy in soft matter for a tumor with such memory is obtained. Survival at tumor recurrence in soft matter, after chemotherapy, is assigned to one of the five regions of the phase diagram of the “thermalized” tumor by microenvironment. To each of these regions is collated a breast cancer survival class. It is found that the survival at tumor recurrence in soft matter, after chemotherapy, well represents actual survival of 32 patients with breast cancer.
{"title":"Survival at Tumor Recurrence in Soft Matter","authors":"I. Trifonova, G. Kurteva, S. Z. Stefanov","doi":"10.4236/OJBIPHY.2021.112004","DOIUrl":"https://doi.org/10.4236/OJBIPHY.2021.112004","url":null,"abstract":"Survival at tumor recurrence in soft matter, after chemotherapy, is assessed by RNA folding. It is shown that this recurrence is starting with development of a fluidlike globule; it changes the energy of soft matter; it proceeds as a resonant mixing; and at the end it causes diffusion. This diffusion is interpreted as metastasis in soft matter. A tumor memory is designed for its recurrence oscillations. These oscillations are marked as positive or negative according to their influence on life stabilization or destabilization. It is demonstrated that a tumor memorizes two types of recurrences. The intensity of chemotherapy in soft matter for a tumor with such memory is obtained. Survival at tumor recurrence in soft matter, after chemotherapy, is assigned to one of the five regions of the phase diagram of the “thermalized” tumor by microenvironment. To each of these regions is collated a breast cancer survival class. It is found that the survival at tumor recurrence in soft matter, after chemotherapy, well represents actual survival of 32 patients with breast cancer.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49617671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-27DOI: 10.4236/OJBIPHY.2021.111002
O. Szász, A. Szász
A heuristic stochastic solution of the Pennes equation is developed in this paper by applying the self-organizing, self-similar behaviour of living structures. The stochastic solution has a probability distribution that fits well with the dynamic changes in the living objects concerned and eliminates the problem of the deterministic behaviour of the Pennes approach. The solution employs the Weibull two-parametric distribution which offers satisfactory delivery of the rate of temperature change by time. Applying the method to malignant tumours obtains certain benefits, increasing the efficacy of the distortion of the cancerous cells and avoiding doing harm to the healthy cells. Due to the robust heterogeneity of these living systems, we used thermal and bioelectromagnetic effects to distinguish the malignant defects, selecting them from the healthy cells. On a selective basis, we propose an optimal protocol using the provided energy optimally such that molecular changes destroy the malignant cells without a noticeable effect on their healthy counterparts.
{"title":"Approaching Complexity: Hyperthermia Dose and Its Possible Measurement in Oncology","authors":"O. Szász, A. Szász","doi":"10.4236/OJBIPHY.2021.111002","DOIUrl":"https://doi.org/10.4236/OJBIPHY.2021.111002","url":null,"abstract":"A heuristic stochastic solution of the Pennes equation is developed in this paper by applying the self-organizing, self-similar behaviour of living structures. The stochastic solution has a probability distribution that fits well with the dynamic changes in the living objects concerned and eliminates the problem of the deterministic behaviour of the Pennes approach. The solution employs the Weibull two-parametric distribution which offers satisfactory delivery of the rate of temperature change by time. Applying the method to malignant tumours obtains certain benefits, increasing the efficacy of the distortion of the cancerous cells and avoiding doing harm to the healthy cells. Due to the robust heterogeneity of these living systems, we used thermal and bioelectromagnetic effects to distinguish the malignant defects, selecting them from the healthy cells. On a selective basis, we propose an optimal protocol using the provided energy optimally such that molecular changes destroy the malignant cells without a noticeable effect on their healthy counterparts.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"11 1","pages":"68-132"},"PeriodicalIF":0.0,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46525370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.4236/ojbiphy.2021.114017
D. Chuckravanen, Barkin Ilhan, N. Dalkilic
Nowadays, there is a great need to investigate the effects of fatigue on physical as well as mental performance. The issues that are generally associated with extreme fatigue are that one can easily lose one’s focus while performing any particular activity whether it is physical or mental and this decreases one’s motivation to complete the task at hand efficiently and successfully. In the same line of thought, myriads of research studies posited the negative effects of fatigue on mental performance, and most techniques to induce fatigue to require normally long-time and repetitive visual search tasks. In this study, a visual search algorithm task was devised and customized using performance measures such as d’ (d-prime) and Speed Accuracy Trade-Off (SATF) as well as ROC analysis for classifier performance. The visual search algorithm consisted of distractors (L) and a target (T) whereby human participants had to press the appropriate keyboard button as fast as possible if they notice a target or not upon presentation of a visual stimulus. It was administered to human participants under laboratory conditions, and the reaction times, as well as accuracy of the participants, were monitored. It was found that the test image Size35Int255 was the best image to be used in terms of sensitivity and AUC (Area under Curve). Therefore, ongoing researches can use these findings to create their visual stimuli in such a way that the target and distractor images follow the size and intensity characteristics as found in this research.
{"title":"ROC and SAT Analysis of Different Grayscale Test Images (Distractors L and Target T) to Customize a Visual-Search Attention Task","authors":"D. Chuckravanen, Barkin Ilhan, N. Dalkilic","doi":"10.4236/ojbiphy.2021.114017","DOIUrl":"https://doi.org/10.4236/ojbiphy.2021.114017","url":null,"abstract":"Nowadays, there is a great need to investigate the effects of fatigue on physical as well as mental performance. The issues that are generally associated with extreme fatigue are that one can easily lose one’s focus while performing any particular activity whether it is physical or mental and this decreases one’s motivation to complete the task at hand efficiently and successfully. In the same line of thought, myriads of research studies posited the negative effects of fatigue on mental performance, and most techniques to induce fatigue to require normally long-time and repetitive visual search tasks. In this study, a visual search algorithm task was devised and customized using performance measures such as d’ (d-prime) and Speed Accuracy Trade-Off (SATF) as well as ROC analysis for classifier performance. The visual search algorithm consisted of distractors (L) and a target (T) whereby human participants had to press the appropriate keyboard button as fast as possible if they notice a target or not upon presentation of a visual stimulus. It was administered to human participants under laboratory conditions, and the reaction times, as well as accuracy of the participants, were monitored. It was found that the test image Size35Int255 was the best image to be used in terms of sensitivity and AUC (Area under Curve). Therefore, ongoing researches can use these findings to create their visual stimuli in such a way that the target and distractor images follow the size and intensity characteristics as found in this research.","PeriodicalId":59528,"journal":{"name":"生物物理学期刊(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70618256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.4236/ojbiphy.2021.114016
B. Ndong, Sidi Ahmed Dia, M. S. Djigo, H. Fachinan, E. Bathily, O. Diop, K. Ka, G. Akpo, El Hadji Fallou Diouf, L. Diouf, Pape Mady Sy, A. Djiboune, G. Mbaye, Magu Diagne, Omar Ndoye, M. Mbodji