首页 > 最新文献

JBIC Journal of Biological Inorganic Chemistry最新文献

英文 中文
Design, synthesis, and biological evaluation of novel halogenated chlorido[N,N′-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes as anticancer agents 作为抗癌剂的新型卤代氯化[N,N'-双(水杨醛)-1,2-双(3-甲氧基苯基)乙二胺]铁(III)络合物的设计、合成和生物学评价。
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-12 DOI: 10.1007/s00775-024-02067-9
Astrid Dagmar Bernkop-Schnürch, Klaus Huber, Armida Clauser, Monika Cziferszky, Daniel Leitner, Heribert Talasz, Martin Hermann, Stephan Hohloch, Ronald Gust, Brigitte Kircher

Iron(III) complexes based on N,N´-bis(salicylidene)ethylenediamine (salene) scaffolds have demonstrated promising anticancer features like induction of ferroptosis, an iron dependent cell death. Since poor cellular uptake limits their therapeutical potential, this study aimed to enhance the lipophilic character of chlorido[N,N′-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes by introducing lipophilicity improving ligands such as fluorine (X1), chlorine (X2) and bromine (X3) in 5-position in the salicylidene moieties. After detailed characterization the binding to nucleophiles, logP values and cellular uptake were determined. The complexes were further evaluated regarding their biological activity on MDA-MB 231 mammary carcinoma, the non-tumorous SV-80 fibroblast, HS-5 stroma and MCF-10A mammary gland cell lines. Stability of the complexes in aqueous and biological environments was proven by the lack of interactions with amino acids and glutathione. Cellular uptake was positively correlated with the logP values, indicating that higher lipophilicity enhanced cellular uptake. The complexes induced strong antiproliferative and antimetabolic effects on MDA-MB 231 cells, but were inactive on all non-malignant cells tested. Generation of mitochondrial reactive oxygen species, increase of lipid peroxidation and induction of both ferroptosis and necroptosis were identified as mechanisms of action. In conclusion, halogenation of chlorido[N,N′-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes raises their lipophilic character resulting in improved cellular uptake.

Graphical abstract

基于 N,N´-双(亚水杨醛)乙二胺(亚水杨醛)支架的铁(III)配合物已显示出良好的抗癌特性,如诱导铁变态反应(一种铁依赖性细胞死亡)。由于细胞摄取能力差限制了它们的治疗潜力,本研究旨在通过在亚水杨基的 5 位引入氟(X1)、氯(X2)和溴(X3)等改善亲油性的配体,增强氯[N,N'-双(亚水杨基)-1,2-双(3-甲氧基苯基)乙二胺]铁(III)络合物的亲油性。经过详细表征后,确定了与亲核物的结合力、logP 值和细胞吸收率。还进一步评估了复合物对 MDA-MB 231 乳腺癌、非肿瘤性 SV-80 成纤维细胞、HS-5 基质和 MCF-10A 乳腺细胞系的生物活性。复合物在水环境和生物环境中的稳定性通过与氨基酸和谷胱甘肽缺乏相互作用得到了证明。细胞吸收率与 logP 值呈正相关,表明亲脂性越高,细胞吸收率越高。这些复合物对 MDA-MB 231 细胞有很强的抗增殖和抗代谢作用,但对所有非恶性细胞都没有作用。线粒体活性氧的生成、脂质过氧化的增加以及铁变态和坏死的诱导被确定为作用机制。总之,氯化[N,N'-双(亚水杨醛)-1,2-双(3-甲氧基苯基)乙二胺]铁(III)络合物的卤化提高了它们的亲脂性,从而改善了细胞吸收。
{"title":"Design, synthesis, and biological evaluation of novel halogenated chlorido[N,N′-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes as anticancer agents","authors":"Astrid Dagmar Bernkop-Schnürch,&nbsp;Klaus Huber,&nbsp;Armida Clauser,&nbsp;Monika Cziferszky,&nbsp;Daniel Leitner,&nbsp;Heribert Talasz,&nbsp;Martin Hermann,&nbsp;Stephan Hohloch,&nbsp;Ronald Gust,&nbsp;Brigitte Kircher","doi":"10.1007/s00775-024-02067-9","DOIUrl":"10.1007/s00775-024-02067-9","url":null,"abstract":"<div><p>Iron(III) complexes based on <i>N,N</i>´-bis(salicylidene)ethylenediamine (salene) scaffolds have demonstrated promising anticancer features like induction of ferroptosis, an iron dependent cell death. Since poor cellular uptake limits their therapeutical potential, this study aimed to enhance the lipophilic character of chlorido[<i>N,N</i>′-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes by introducing lipophilicity improving ligands such as fluorine (<b>X1</b>), chlorine (<b>X2</b>) and bromine (<b>X3</b>) in 5-position in the salicylidene moieties. After detailed characterization the binding to nucleophiles, logP values and cellular uptake were determined. The complexes were further evaluated regarding their biological activity on MDA-MB 231 mammary carcinoma, the non-tumorous SV-80 fibroblast, HS-5 stroma and MCF-10A mammary gland cell lines. Stability of the complexes in aqueous and biological environments was proven by the lack of interactions with amino acids and glutathione. Cellular uptake was positively correlated with the logP values, indicating that higher lipophilicity enhanced cellular uptake. The complexes induced strong antiproliferative and antimetabolic effects on MDA-MB 231 cells, but were inactive on all non-malignant cells tested. Generation of mitochondrial reactive oxygen species, increase of lipid peroxidation and induction of both ferroptosis and necroptosis were identified as mechanisms of action. In conclusion, halogenation of chlorido[<i>N,N</i>′-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes raises their lipophilic character resulting in improved cellular uptake.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"29 6","pages":"583 - 599"},"PeriodicalIF":2.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of divalent metal cations on α-lactalbumin fibril formation 二价金属阳离子对α-乳白蛋白纤维形成的影响
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-10 DOI: 10.1007/s00775-024-02071-z
L. R. Bogdanova, A. A. Nikiforova, S. A. Ziganshina, Yu. F. Zuev, I. A. Sedov

The effect of binding of divalent metal cations (Ca2+, Cu2+, Mg2+, Mn2+, Zn2+) on the kinetics of fibril formation of bovine α-lactalbumin at acidic conditions is considered. The kinetic parameters of the process were determined using a thioflavin T fluorescence assay. The DSC thermograms of bovine α-lactalbumin in the presence and absence of cations were recorded. The duration of the lag period correlates with the changes in the thermal stability of the molten globule of the protein in the presence of cations. The final thioflavin T fluorescence intensity after formation of the mature fibrils decreases under the influence of calcium ions which strongly bind to the monomeric protein, and increases in solutions containing copper and especially zinc. These ions seem to accelerate secondary nucleation processes and change the fibril morphology, which was confirmed by atomic force microscopy imaging.

Graphical abstract

研究考虑了二价金属阳离子(Ca2+、Cu2+、Mg2+、Mn2+、Zn2+)的结合对酸性条件下牛α-乳白蛋白纤维形成动力学的影响。使用硫黄素 T 荧光测定法确定了这一过程的动力学参数。记录了存在和不存在阳离子时牛 α-乳白蛋白的 DSC 热图。滞后期的长短与存在阳离子时蛋白质熔融球的热稳定性变化相关。成熟纤维形成后,最终的硫黄素 T 荧光强度在钙离子的影响下会降低,因为钙离子会与单体蛋白质紧密结合,而在含铜(尤其是锌)的溶液中则会升高。这些离子似乎加速了二次成核过程并改变了纤维的形态,原子力显微镜成像证实了这一点。
{"title":"Influence of divalent metal cations on α-lactalbumin fibril formation","authors":"L. R. Bogdanova,&nbsp;A. A. Nikiforova,&nbsp;S. A. Ziganshina,&nbsp;Yu. F. Zuev,&nbsp;I. A. Sedov","doi":"10.1007/s00775-024-02071-z","DOIUrl":"10.1007/s00775-024-02071-z","url":null,"abstract":"<div><p>The effect of binding of divalent metal cations (Ca<sup>2+</sup>, Cu<sup>2+</sup>, Mg<sup>2+</sup>, Mn<sup>2+</sup>, Zn<sup>2+</sup>) on the kinetics of fibril formation of bovine α-lactalbumin at acidic conditions is considered. The kinetic parameters of the process were determined using a thioflavin T fluorescence assay. The DSC thermograms of bovine α-lactalbumin in the presence and absence of cations were recorded. The duration of the lag period correlates with the changes in the thermal stability of the molten globule of the protein in the presence of cations. The final thioflavin T fluorescence intensity after formation of the mature fibrils decreases under the influence of calcium ions which strongly bind to the monomeric protein, and increases in solutions containing copper and especially zinc. These ions seem to accelerate secondary nucleation processes and change the fibril morphology, which was confirmed by atomic force microscopy imaging.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"29 6","pages":"601 - 609"},"PeriodicalIF":2.7,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, characterization, and biological evaluation of novel cobalt(II) complexes with β-diketonates: crystal structure determination, BSA binding properties and molecular docking study 新型β-二酮酸钴(II)配合物的合成、表征和生物学评价:晶体结构测定、BSA 结合特性和分子对接研究。
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-09 DOI: 10.1007/s00775-024-02069-7
Nenad Joksimović, Jelena Petronijević, Dušan Ćoćić, Marija Ristić, Kristina Mihajlović, Nenad Janković, Emilija Milović, Olivera Klisurić, Nevena Petrović, Marijana Kosanić

In order to discover a new antibiotic drug with better or similar activity of the already existing drugs, a series of novel cobalt(II) complexes with β-diketonate as ligands is synthesized and tested on four strains of bacteria and four species of fungi. All compounds showed notable antimicrobial activity against all tested strains. More importantly, some cobalt(II) complexes displayed greater activity than ketoconazole. It is important to notice that on the tested strains Mucor mucedo and Penicillium italicum complex 2B showed five times better activity compared to ketoconazole, while complex 2D had two times better activity on Penicillium italicum strain compared to ketoconazole. Moreover, investigations with bovine serum albumin were performed. Investigations showed that the tested complexes have an appropriate affinity for binding to bovine serum albumin. In addition, the molecular docking study was performed to investigate more specifically the sites and binding mode of the tested cobalt(II) complexes with β-diketonate as ligands to bovine serum albumin, tyrosyl-tRNA synthetase, topoisomerase II DNA gyrase, and cytochrome P450 14 alpha-sterol demethylase. In conclusion, all the results indicated the great prospective of the novel cobalt complexes for some potential clinical applications in the future.

Graphical abstract

为了发现一种与现有药物具有更好或相似活性的新型抗生素药物,我们合成了一系列以 β-二酮酸酯为配体的新型钴(II)配合物,并对四种细菌和四种真菌进行了测试。所有化合物对所有测试菌株都显示出显著的抗菌活性。更重要的是,一些钴(II)配合物显示出比酮康唑更强的活性。值得注意的是,与酮康唑相比,复合物 2B 对测试菌株粘液蘑菇和青霉的活性提高了五倍,而复合物 2D 对青霉菌株的活性则提高了两倍。此外,还对牛血清白蛋白进行了研究。研究表明,测试的复合物与牛血清白蛋白具有适当的亲和力。此外,还进行了分子对接研究,更具体地研究了以 β-二酮酸为配体的测试钴(II)配合物与牛血清白蛋白、酪氨酸-tRNA 合成酶、拓扑异构酶 II DNA 回旋酶和细胞色素 P450 14 α-甾醇脱甲基酶的结合位点和结合模式。总之,所有研究结果都表明,新型钴配合物在未来的一些潜在临床应用中具有广阔的前景。
{"title":"Synthesis, characterization, and biological evaluation of novel cobalt(II) complexes with β-diketonates: crystal structure determination, BSA binding properties and molecular docking study","authors":"Nenad Joksimović,&nbsp;Jelena Petronijević,&nbsp;Dušan Ćoćić,&nbsp;Marija Ristić,&nbsp;Kristina Mihajlović,&nbsp;Nenad Janković,&nbsp;Emilija Milović,&nbsp;Olivera Klisurić,&nbsp;Nevena Petrović,&nbsp;Marijana Kosanić","doi":"10.1007/s00775-024-02069-7","DOIUrl":"10.1007/s00775-024-02069-7","url":null,"abstract":"<div><p>In order to discover a new antibiotic drug with better or similar activity of the already existing drugs, a series of novel cobalt(II) complexes with <i>β</i>-diketonate as ligands is synthesized and tested on four strains of bacteria and four species of fungi. All compounds showed notable antimicrobial activity against all tested strains. More importantly, some cobalt(II) complexes displayed greater activity than ketoconazole. It is important to notice that on the tested strains <i>Mucor mucedo</i> and <i>Penicillium italicum</i> complex <b>2B</b> showed five times better activity compared to ketoconazole, while complex <b>2D</b> had two times better activity on <i>Penicillium italicum</i> strain compared to ketoconazole. Moreover, investigations with bovine serum albumin were performed. Investigations showed that the tested complexes have an appropriate affinity for binding to bovine serum albumin. In addition, the molecular docking study was performed to investigate more specifically the sites and binding mode of the tested cobalt(II) complexes with <i>β</i>-diketonate as ligands to bovine serum albumin, tyrosyl-tRNA synthetase, topoisomerase II DNA gyrase, and cytochrome P450 14 alpha-sterol demethylase. In conclusion, all the results indicated the great prospective of the novel cobalt complexes for some potential clinical applications in the future.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"29 5","pages":"541 - 553"},"PeriodicalIF":2.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organoselenium transition metal complexes as promising candidates in medicine area 有机硒过渡金属复合物是医药领域的前景看好的候选化合物。
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-09 DOI: 10.1007/s00775-024-02072-y
Marina Kostić, Jovana Marjanović, Vera Divac

The medicinal properties of transition metal complexes are greatly influenced by the nature and physico-chemical features of the ligand present in the complex structure. Due to the unique biological properties of the organoselenium compounds reflected in the variety of pharmacological activities (such as antioxidative, antiviral, antimicrobial and anticancer), the last years have brought increased interest for their use as a ligands compounds in the design and syntheses of range of transition metal-based coordination compounds that have been explored as antitumor and antimicrobial agents. Our aim in this review is to provide the overview of an recent development of the transition metal complexes bearing organoselenium ligands in the structure that could be promising choice for the treatment of various diseases, particularly cancer and infective diseases. For this purpose, the complexes of Co, Ni, Cu, Zn, Ru, Pd, Pt, Au and Sn as the most explored examples will be included and discussed.

过渡金属配合物的药用特性在很大程度上受到配合物结构中配体的性质和物理化学特征的影响。由于有机硒化合物的独特生物特性体现在多种药理活性上(如抗氧化、抗病毒、抗菌和抗癌),近年来,人们越来越关注将其作为配体化合物,设计和合成一系列过渡金属基配位化合物,并将其作为抗肿瘤和抗菌剂进行研究。本综述的目的是概述在结构上含有有机硒配体的过渡金属配合物的最新发展情况,这些配合物在治疗各种疾病(尤其是癌症和感染性疾病)方面具有广阔的前景。为此,本综述将以钴、镍、铜、锌、钌、钯、铂、金和锡的配合物为例进行讨论。
{"title":"Organoselenium transition metal complexes as promising candidates in medicine area","authors":"Marina Kostić,&nbsp;Jovana Marjanović,&nbsp;Vera Divac","doi":"10.1007/s00775-024-02072-y","DOIUrl":"10.1007/s00775-024-02072-y","url":null,"abstract":"<div><p>The medicinal properties of transition metal complexes are greatly influenced by the nature and physico-chemical features of the ligand present in the complex structure. Due to the unique biological properties of the organoselenium compounds reflected in the variety of pharmacological activities (such as antioxidative, antiviral, antimicrobial and anticancer), the last years have brought increased interest for their use as a ligands compounds in the design and syntheses of range of transition metal-based coordination compounds that have been explored as antitumor and antimicrobial agents. Our aim in this review is to provide the overview of an recent development of the transition metal complexes bearing organoselenium ligands in the structure that could be promising choice for the treatment of various diseases, particularly cancer and infective diseases. For this purpose, the complexes of Co, Ni, Cu, Zn, Ru, Pd, Pt, Au and Sn as the most explored examples will be included and discussed.</p></div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"29 6","pages":"555 - 571"},"PeriodicalIF":2.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective removal of copper from complex biological media with an agarose-immobilized high-affinity PSP ligand 利用琼脂糖固定化高亲和性 PSP 配体从复杂生物介质中选择性去除铜
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-27 DOI: 10.1007/s00775-024-02065-x
Arielle Nabatilan, M. Thomas Morgan, Sara Netzer, Christoph J. Fahrni

The elucidation of metal-dependent biological processes requires selective reagents for manipulating metal ion levels within biological solutions such as growth media or cell lysates. To this end, we immobilized a phosphine sulfide-stabilized phosphine (PSP) ligand on agarose to create a resin for the selective removal of copper from chemically complex biological media through simple filtration or centrifugation. Comprised of a conformationally preorganized phenylene-bridged backbone, the PSP-ligand binds Cu(I) with a 1:1 stoichiometry and exhibits a pH-independent Cu(I) dissociation constant in the low zeptomolar range. Neither Zn(II), Fe(II), nor Mn(II) interact with the ligand at millimolar concentrations, thus offering a much-improved selectivity towards copper over other commonly employed solid-supported chelators such as Chelex 100. As revealed by X-ray fluorescence elemental analysis, the immobilized chelator effectively removes copper from cell culture growth media and cell lysate isolated from mouse fibroblasts. In addition to preparing copper-depleted media or cell lysates for biological studies, PSP-immobilized ligands might prove equally useful for applications in radiochemistry, materials science, and environmental science.

Graphical abstract

阐明依赖金属的生物过程需要选择性试剂,以控制生物溶液(如生长培养基或细胞裂解液)中的金属离子水平。为此,我们将硫化膦-稳定膦(PSP)配体固定在琼脂糖上,制成了一种树脂,可通过简单过滤或离心从化学性质复杂的生物介质中选择性地去除铜。PSP 配体由构象预组织的苯基桥接骨架组成,能以 1:1 的配比结合铜(I),并在低七摩尔范围内表现出与 pH 值无关的铜(I)解离常数。在毫摩尔浓度下,Zn(II)、Fe(II)和Mn(II)都不会与配体发生作用,因此与其他常用的固体支持螯合剂(如Chelex 100)相比,它对铜的选择性大大提高。X 射线荧光元素分析表明,固定化螯合剂能有效去除细胞培养生长介质和从小鼠成纤维细胞中分离出来的细胞裂解物中的铜。除了制备用于生物研究的贫铜培养基或细胞裂解物外,PSP 固定化配体在放射化学、材料科学和环境科学领域的应用也同样有用。
{"title":"Selective removal of copper from complex biological media with an agarose-immobilized high-affinity PSP ligand","authors":"Arielle Nabatilan,&nbsp;M. Thomas Morgan,&nbsp;Sara Netzer,&nbsp;Christoph J. Fahrni","doi":"10.1007/s00775-024-02065-x","DOIUrl":"10.1007/s00775-024-02065-x","url":null,"abstract":"<div><p>The elucidation of metal-dependent biological processes requires selective reagents for manipulating metal ion levels within biological solutions such as growth media or cell lysates. To this end, we immobilized a phosphine sulfide-stabilized phosphine (PSP) ligand on agarose to create a resin for the selective removal of copper from chemically complex biological media through simple filtration or centrifugation. Comprised of a conformationally preorganized phenylene-bridged backbone, the PSP-ligand binds Cu(I) with a 1:1 stoichiometry and exhibits a pH-independent Cu(I) dissociation constant in the low zeptomolar range. Neither Zn(II), Fe(II), nor Mn(II) interact with the ligand at millimolar concentrations, thus offering a much-improved selectivity towards copper over other commonly employed solid-supported chelators such as Chelex 100. As revealed by X-ray fluorescence elemental analysis, the immobilized chelator effectively removes copper from cell culture growth media and cell lysate isolated from mouse fibroblasts. In addition to preparing copper-depleted media or cell lysates for biological studies, PSP-immobilized ligands might prove equally useful for applications in radiochemistry, materials science, and environmental science.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"29 5","pages":"531 - 540"},"PeriodicalIF":2.7,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indium(III) complexes with lapachol: cytotoxic effects against human breast tumor cells and interactions with DNA 铟(III)与拉帕酚的配合物:对人类乳腺肿瘤细胞的细胞毒性作用以及与 DNA 的相互作用。
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-16 DOI: 10.1007/s00775-024-02062-0
Alexandre B. de Carvalho, Ana M. S. Souza, Larissa Pereira Bento, Mariana de Oliveira Silva, Elaine M. Souza-Fagundes, Renata Diniz, Heloisa Beraldo

Lapachol (2-hydroxy-3-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione) is a 1,4-naphthoquinone-derived natural product that presents numerous bioactivities and was shown to have cytotoxic effects against several human tumor cells. Indium(III) complexes with a variety of ligands also exhibit antineoplastic activity. Indium(III) complexes [In(lap)Cl2].4H2O (1), [In(lap)2Cl(Et3N)] (2), [In(lap)3]·2H2O (3) [In(lap)(bipy)Cl2] bipy = 2,2′-bipyridine (4) and [In(lap)(phen)Cl2] phen = 1,10-phenanthroline (5) were obtained with 2-hydroxy-3-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione (lapachol). Crystal structure determinations for (4) and (5) revealed that the indium(III) center is coordinated to two O atoms from lapachol, two N atoms from 1,10-phenanthroline or 2,2′-bipyridine, and two chloride anions, in a distorted octahedral geometry. Although both complexes (4) and (5) interacted with CT-DNA in vitro by an intercalative mode, only 5 exhibited cytotoxicity against MCF-7 and MDA-MB breast tumor cells. 1,10-phenanthroline and complex (5) presented cytotoxic effects against MCF-7 and MDA-MB cells, with complex (5) being threefold more active than 1,10-phenanthroline on MCF-7 cells. In addition, complex (5) significantly reduced the formation of MDA-MB-231 colonies in a clonogenicity assay. The foregoing results suggest that further studies on the cytotoxic effects and cellular targets of complex (5) are of utmost relevance.

Graphical abstract

拉帕酚(2-羟基-3-(3-甲基丁-2-烯-1-基)萘-1,4-二酮)是一种 1,4-萘醌类天然产物,具有多种生物活性,对多种人类肿瘤细胞具有细胞毒性作用。铟(III)与多种配体的配合物也具有抗肿瘤活性。铟(III)配合物 [In(lap)Cl2].4H2O (1)、[In(lap)2Cl(Et3N)] (2)、[In(lap)3]-2H2O (3) [In(lap)(bipy)Cl2] bipy = 2,2'-bipyridine (4) 和 [In(lap)(phen)Cl2] phen = 1、10-菲罗啉(5)是用 2-羟基-3-(3-甲基丁-2-烯-1-基)萘-1,4-二酮(拉帕酚)得到的。(4)和(5)的晶体结构测定显示,铟(III)中心与拉帕酚的两个 O 原子、1,10-菲罗啉或 2,2'- 联吡啶的两个 N 原子以及两个氯阴离子配位,呈扭曲的八面体几何结构。虽然(4)和(5)复合物在体外都以插层模式与 CT-DNA 相互作用,但只有 5 对 MCF-7 和 MDA-MB 乳腺肿瘤细胞具有细胞毒性。1,10-菲罗啉和复合物(5)对 MCF-7 和 MDA-MB 细胞具有细胞毒性作用,其中复合物(5)对 MCF-7 细胞的活性是 1,10-菲罗啉的三倍。此外,在克隆生成试验中,复合物(5)能明显减少 MDA-MB-231 菌落的形成。上述结果表明,进一步研究复合物(5)的细胞毒性作用和细胞靶标具有极其重要的意义。
{"title":"Indium(III) complexes with lapachol: cytotoxic effects against human breast tumor cells and interactions with DNA","authors":"Alexandre B. de Carvalho,&nbsp;Ana M. S. Souza,&nbsp;Larissa Pereira Bento,&nbsp;Mariana de Oliveira Silva,&nbsp;Elaine M. Souza-Fagundes,&nbsp;Renata Diniz,&nbsp;Heloisa Beraldo","doi":"10.1007/s00775-024-02062-0","DOIUrl":"10.1007/s00775-024-02062-0","url":null,"abstract":"<div><p>Lapachol (2-hydroxy-3-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione) is a 1,4-naphthoquinone-derived natural product that presents numerous bioactivities and was shown to have cytotoxic effects against several human tumor cells. Indium(III) complexes with a variety of ligands also exhibit antineoplastic activity. Indium(III) complexes [In(lap)Cl<sub>2</sub>].4H<sub>2</sub>O (<b>1</b>), [In(lap)<sub>2</sub>Cl(Et<sub>3</sub>N)] (<b>2</b>), [In(lap)<sub>3</sub>]·2H<sub>2</sub>O (<b>3</b>) [In(lap)(bipy)Cl<sub>2</sub>] bipy = 2,2′-bipyridine (<b>4</b>) and [In(lap)(phen)Cl<sub>2</sub>] phen = 1,10-phenanthroline (<b>5</b>) were obtained with 2-hydroxy-3-(3-methylbut-2-en-1-yl)naphthalene-1,4-dione (lapachol). Crystal structure determinations for (<b>4</b>) and (<b>5</b>) revealed that the indium(III) center is coordinated to two O atoms from lapachol, two N atoms from 1,10-phenanthroline or 2,2′-bipyridine, and two chloride anions, in a distorted octahedral geometry. Although both complexes (<b>4</b>) and (<b>5</b>) interacted with CT-DNA in vitro by an intercalative mode, only <b>5</b> exhibited cytotoxicity against MCF-7 and MDA-MB breast tumor cells. 1,10-phenanthroline and complex (<b>5</b>) presented cytotoxic effects against MCF-7 and MDA-MB cells, with complex (<b>5</b>) being threefold more active than 1,10-phenanthroline on MCF-7 cells. In addition, complex (<b>5</b>) significantly reduced the formation of MDA-MB-231 colonies in a clonogenicity assay. The foregoing results suggest that further studies on the cytotoxic effects and cellular targets of complex (<b>5</b>) are of utmost relevance.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"29 5","pages":"519 - 529"},"PeriodicalIF":2.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141618933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoarchitectonics for synergistic activity of multimetallic nanohybrids as a possible approach for antimicrobial resistance (AMR) 多金属纳米混合物的纳米结构协同活性,作为抗菌剂耐药性 (AMR) 的一种可能方法。
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-12 DOI: 10.1007/s00775-024-02066-w
Piumika N. Yapa, Imalka Munaweera, Manjula M. Weerasekera, Laksiri Weerasinghe

The global threat posed by antimicrobial resistance (AMR) to public health is an immensurable problem. The effectiveness of treating infections would be more at risk in the absence of effective antimicrobials. Researchers have shown an amplified interest in alternatives, such as developing advanced metallic nanohybrids as new therapeutic candidates for antibiotics due to their promising effectiveness against resistant microorganisms. In recent decades, the antimicrobial activity of monometallic nanoparticles has received extensive study and solid proof, providing new opportunities for developing multimetallic nanohybrid antimicrobials. Advanced metallic nanohybrids are an emerging remedy for a number of issues that develop in the field of medicine. Advanced metallic nanohybrids have shown a promising ability to combat resistant microorganisms due to their overall synergistic activity. Formulating advanced multimetallic nanohybrids falling under the umbrella of the growing field of nanoarchitectonics, which extends beyond nanotechnology. The underlying theory of nanoarchitectonics involves utilizing nanoscale units that follow the concepts of nanotechnology to architect nanomaterials. This review focuses on a comprehensive description of antimicrobial mechanisms of metallic nanohybrids and their enabling future insights on the research directions of developing the nanoarchitectonics of advanced multimetallic nanohybrids as novel antibiotics through their synergistic activity.

Graphical abstract

抗菌药耐药性(AMR)对全球公共卫生构成的威胁是一个无法估量的问题。如果没有有效的抗菌药物,治疗感染的效果将面临更大的风险。研究人员对替代品表现出了更大的兴趣,例如开发先进的金属纳米混合物,作为抗生素的新治疗候选药物,因为它们对抗药性微生物具有良好的疗效。近几十年来,单金属纳米粒子的抗菌活性得到了广泛的研究和确凿的证明,这为开发多金属纳米杂化抗菌剂提供了新的机遇。先进的金属纳米杂化物是解决医学领域一系列问题的新兴疗法。先进的金属纳米杂化物由于其整体协同活性,在抗击耐药性微生物方面表现出良好的能力。先进多金属纳米混合物的配制属于不断发展的纳米建筑学领域的范畴,它超越了纳米技术的范畴。纳米建筑学的基本理论是利用纳米级单元,按照纳米技术的概念来建筑纳米材料。本综述侧重于全面描述金属纳米杂化物的抗菌机理,以及通过其协同活性将先进的多金属纳米杂化物开发为新型抗生素的纳米建筑学研究方向。
{"title":"Nanoarchitectonics for synergistic activity of multimetallic nanohybrids as a possible approach for antimicrobial resistance (AMR)","authors":"Piumika N. Yapa,&nbsp;Imalka Munaweera,&nbsp;Manjula M. Weerasekera,&nbsp;Laksiri Weerasinghe","doi":"10.1007/s00775-024-02066-w","DOIUrl":"10.1007/s00775-024-02066-w","url":null,"abstract":"<div><p>The global threat posed by antimicrobial resistance (AMR) to public health is an immensurable problem. The effectiveness of treating infections would be more at risk in the absence of effective antimicrobials. Researchers have shown an amplified interest in alternatives, such as developing advanced metallic nanohybrids as new therapeutic candidates for antibiotics due to their promising effectiveness against resistant microorganisms. In recent decades, the antimicrobial activity of monometallic nanoparticles has received extensive study and solid proof, providing new opportunities for developing multimetallic nanohybrid antimicrobials. Advanced metallic nanohybrids are an emerging remedy for a number of issues that develop in the field of medicine. Advanced metallic nanohybrids have shown a promising ability to combat resistant microorganisms due to their overall synergistic activity. Formulating advanced multimetallic nanohybrids falling under the umbrella of the growing field of nanoarchitectonics, which extends beyond nanotechnology. The underlying theory of nanoarchitectonics involves utilizing nanoscale units that follow the concepts of nanotechnology to architect nanomaterials. This review focuses on a comprehensive description of antimicrobial mechanisms of metallic nanohybrids and their enabling future insights on the research directions of developing the nanoarchitectonics of advanced multimetallic nanohybrids as novel antibiotics through their synergistic activity.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"29 5","pages":"477 - 498"},"PeriodicalIF":2.7,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An organometallic hybrid antibiotic of metronidazole with a Gold(I) N-Heterocyclic Carbene overcomes metronidazole resistance in Clostridioides difficile 甲硝唑与 N-杂环羰基金(I)的有机金属杂化抗生素克服了艰难梭菌对甲硝唑的抗药性。
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-26 DOI: 10.1007/s00775-024-02064-y
Rolf Büssing, Arne Bublitz, Bianka Karge, Mark Brönstrup, Till Strowig, Ingo Ott

Antimicrobial resistance (AMR) has been emerging as a major global health threat and calls for the development of novel drug candidates. Metal complexes have been demonstrating high efficiency as antibacterial agents that differ substantially from the established types of antibiotics in their chemical structures and their mechanism of action. One strategy to exploit this potential is the design of metal-based hybrid organometallics that consist of an established antibiotic and a metal-based warhead that contributes an additional mechanism of action different from that of the parent antibiotic. In this communication, we describe the organometallic hybrid antibiotic 2c, in which the drug metronidazole is connected to a gold(I) N-heterocyclic carbene warhead that inhibits bacterial thioredoxin reductase (TrxR). Metronidazole can be used for the treatment with the obligatory anaerobic pathogen Clostridioides difficile (C. difficile), however, resistance to the drug hampers its clinical success. The gold organometallic conjugate 2c was an efficient inhibitor of TrxR and it was inactive or showed only minor effects against eucaryotic cells and bacteria grown under aerobic conditions. In contrast, a strong antibacterial effect was observed against both metronidazole-sensitive and -resistant strains of C. difficile. This report presents a proof-of-concept that the design of metal-based hybrid antibiotics can be a viable approach to efficiently tackle AMR.

Graphical abstract

A metronidazole-gold hybrid metalloantibiotic with high efficacy against resistant C. difficile

抗菌药耐药性(AMR)已成为全球健康的一大威胁,需要开发新型候选药物。金属复合物作为高效抗菌剂,在化学结构和作用机制上与现有的抗生素有很大不同。利用这一潜力的策略之一是设计金属基混合有机金属,它由一种成熟的抗生素和一种金属基弹头组成,后者具有不同于母体抗生素的额外作用机制。在这篇通讯中,我们介绍了有机金属杂化抗生素 2c,其中的药物甲硝唑与抑制细菌硫代还原酶(TrxR)的 N-杂环碳金(I)弹头相连。甲硝唑可用于治疗强制性厌氧病原体艰难梭菌(C. difficile),但该药物的抗药性阻碍了它在临床上取得成功。金有机金属共轭物 2c 是一种高效的 TrxR 抑制剂,但它对有氧条件下生长的真核细胞和细菌无活性或仅有轻微作用。相反,它对甲硝唑敏感和耐药的艰难梭菌菌株都有很强的抗菌作用。本报告提出了一个概念证明,即设计金属基混合抗生素是有效解决 AMR 的可行方法。
{"title":"An organometallic hybrid antibiotic of metronidazole with a Gold(I) N-Heterocyclic Carbene overcomes metronidazole resistance in Clostridioides difficile","authors":"Rolf Büssing,&nbsp;Arne Bublitz,&nbsp;Bianka Karge,&nbsp;Mark Brönstrup,&nbsp;Till Strowig,&nbsp;Ingo Ott","doi":"10.1007/s00775-024-02064-y","DOIUrl":"10.1007/s00775-024-02064-y","url":null,"abstract":"<div><p>Antimicrobial resistance (AMR) has been emerging as a major global health threat and calls for the development of novel drug candidates. Metal complexes have been demonstrating high efficiency as antibacterial agents that differ substantially from the established types of antibiotics in their chemical structures and their mechanism of action. One strategy to exploit this potential is the design of metal-based hybrid organometallics that consist of an established antibiotic and a metal-based warhead that contributes an additional mechanism of action different from that of the parent antibiotic. In this communication, we describe the organometallic hybrid antibiotic <b>2c</b>, in which the drug metronidazole is connected to a gold(I) N-heterocyclic carbene warhead that inhibits bacterial thioredoxin reductase (TrxR). Metronidazole can be used for the treatment with the obligatory anaerobic pathogen <i>Clostridioides difficile</i> (<i>C. difficile</i>), however, resistance to the drug hampers its clinical success. The gold organometallic conjugate <b>2c</b> was an efficient inhibitor of TrxR and it was inactive or showed only minor effects against eucaryotic cells and bacteria grown under aerobic conditions. In contrast, a strong antibacterial effect was observed against both metronidazole-sensitive and -resistant strains of <i>C. difficile</i>. This report presents a proof-of-concept that the design of metal-based hybrid antibiotics can be a viable approach to efficiently tackle AMR.</p><h3>Graphical abstract</h3><p>A metronidazole-gold hybrid metalloantibiotic with high efficacy against resistant C. difficile </p><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"29 5","pages":"511 - 518"},"PeriodicalIF":2.7,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141454502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The first evaluation of the in vitro effects of silver(I)-N-heterocyclic carbene complexes on Encephalitozoon intestinalis and Leishmania major promastigotes 首次评估银(I)-N-杂环碳化物复合物对肠道头螨和大利什曼原虫的体外效应。
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-26 DOI: 10.1007/s00775-024-02063-z
Ahmet Duran Ataş, Zübeyda Akın-Polat, Derya Gül Gülpınar, Neslihan Şahin

Encephalitozoon intestinalis is an opportunistic microsporidian parasite that primarily infects immunocompromised individuals, such as those with HIV/AIDS or undergoing organ transplantation. Leishmaniasis is responsible for parasitic infections, particularly in developing countries. The disease has not been effectively controlled due to the lack of an effective vaccine and affordable treatment options. Current treatment options for E. intestinalis infection and leishmaniasis are limited and often associated with adverse side effects. There is no previous study in the literature on the antimicrosporidial activities of Ag(I)-N-heterocyclic carbene compounds. In this study, the in vitro antimicrosporidial activities of previously synthesized Ag(I)-N-heterocyclic carbene complexes were evaluated using E. intestinalis spores cultured in human renal epithelial cell lines (HEK-293). Inhibition of microsporidian replication was determined by spore counting. In addition, the effects of the compounds on Leishmania major promastigotes were assessed by measuring metabolic activity or cell viability using a tetrazolium reaction. Statistical analysis was performed to determine significant differences between treated and control groups. Our results showed that the growth of E. intestinalis and L. major promastigotes was inhibited by the tested compounds in a concentration-dependent manner. A significant decrease in parasite viability was observed at the highest concentrations. These results suggest that the compounds have potential anti-microsporidial and anti-leishmanial activity. Further research is required to elucidate the underlying mechanisms of action and to evaluate the efficacy of the compounds in animal models or clinical trials.

Graphical abstract

肠脑线虫是一种机会性微孢子虫寄生虫,主要感染免疫力低下的人,如艾滋病毒/艾滋病患者或接受器官移植的人。利什曼病是寄生虫感染的罪魁祸首,尤其是在发展中国家。由于缺乏有效的疫苗和负担得起的治疗方案,该疾病一直未得到有效控制。目前治疗肠道埃希氏菌感染和利什曼病的方法很有限,而且往往伴有不良副作用。以前的文献中没有关于 Ag(I)-N-杂环碳烯化合物抗孢子虫活性的研究。本研究使用在人肾上皮细胞系(HEK-293)中培养的肠孢子虫孢子,对之前合成的 Ag(I)-N-heterocyclic carbene 复合物的体外抗孢子虫活性进行了评估。孢子计数法测定了对微孢子虫复制的抑制作用。此外,还通过使用四氮唑反应测量代谢活性或细胞存活率来评估化合物对利什曼原虫的影响。为确定处理组和对照组之间的显著差异,我们进行了统计分析。结果表明,受试化合物以浓度依赖的方式抑制了肠杆菌和大鼠原虫的生长。在最高浓度下,寄生虫的存活率明显下降。这些结果表明,这些化合物具有潜在的抗小孢子虫和抗利什曼病的活性。要阐明化合物的基本作用机制并评估其在动物模型或临床试验中的疗效,还需要进一步的研究。
{"title":"The first evaluation of the in vitro effects of silver(I)-N-heterocyclic carbene complexes on Encephalitozoon intestinalis and Leishmania major promastigotes","authors":"Ahmet Duran Ataş,&nbsp;Zübeyda Akın-Polat,&nbsp;Derya Gül Gülpınar,&nbsp;Neslihan Şahin","doi":"10.1007/s00775-024-02063-z","DOIUrl":"10.1007/s00775-024-02063-z","url":null,"abstract":"<div><p><i>Encephalitozoon intestinalis</i> is an opportunistic microsporidian parasite that primarily infects immunocompromised individuals, such as those with HIV/AIDS or undergoing organ transplantation. Leishmaniasis is responsible for parasitic infections, particularly in developing countries. The disease has not been effectively controlled due to the lack of an effective vaccine and affordable treatment options. Current treatment options for <i>E. intestinalis</i> infection and leishmaniasis are limited and often associated with adverse side effects. There is no previous study in the literature on the antimicrosporidial activities of Ag(I)-<i>N</i>-heterocyclic carbene compounds. In this study, the in vitro antimicrosporidial activities of previously synthesized Ag(I)-<i>N</i>-heterocyclic carbene complexes were evaluated using <i>E. intestinalis</i> spores cultured in human renal epithelial cell lines (HEK-293). Inhibition of microsporidian replication was determined by spore counting. In addition, the effects of the compounds on <i>Leishmania major</i> promastigotes were assessed by measuring metabolic activity or cell viability using a tetrazolium reaction. Statistical analysis was performed to determine significant differences between treated and control groups. Our results showed that the growth of <i>E. intestinalis</i> and <i>L. major</i> promastigotes was inhibited by the tested compounds in a concentration-dependent manner. A significant decrease in parasite viability was observed at the highest concentrations. These results suggest that the compounds have potential anti-microsporidial and anti-leishmanial activity. Further research is required to elucidate the underlying mechanisms of action and to evaluate the efficacy of the compounds in animal models or clinical trials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"29 5","pages":"499 - 509"},"PeriodicalIF":2.7,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An N-terminal acidic β-sheet domain is responsible for the metal-accumulation properties of amyloid-β protofibrils: a molecular dynamics study 淀粉样蛋白-β原纤维的金属蓄积特性是由N端酸性β片状结构域引起的:一项分子动力学研究。
IF 2.7 3区 化学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-29 DOI: 10.1007/s00775-024-02061-1
Carlos Z. Gómez-Castro, Liliana Quintanar, Alberto Vela

The influence of metal ions on the structure of amyloid-(beta ) (Aβ) protofibril models was studied through molecular dynamics to explore the molecular mechanisms underlying metal-induced Aβ aggregation relevant in Alzheimer’s disease (AD). The models included 36-, 48-, and 188-mers of the Aβ42 sequence and two disease-modifying variants. Primary structural effects were observed at the N-terminal domain, as it became susceptible to the presence of cations. Specially when β-sheets predominate, this motif orients N-terminal acidic residues toward one single face of the β-sheet, resulting in the formation of an acidic region that attracts cations from the media and promotes the folding of the N-terminal region, with implications in amyloid aggregation. The molecular phenotype of the protofibril models based on Aβ variants shows that the AD-causative D7N mutation promotes the formation of N-terminal β-sheets and accumulates more Zn2+, in contrast to the non-amyloidogenic rodent sequence that hinders the β-sheets and is more selective for Na+ over Zn2+ cations. It is proposed that forming an acidic β-sheet domain and accumulating cations is a plausible molecular mechanism connecting the elevated affinity and concentration of metals in Aβ fibrils to their high content of β-sheet structure at the N-terminal sequence.

Graphic abstract

通过分子动力学研究了金属离子对淀粉样蛋白-β(Aβ)原纤维模型结构的影响,以探索与阿尔茨海默病(AD)相关的金属诱导 Aβ 聚集的分子机制。这些模型包括 36、48 和 188-mers 的 Aβ42 序列以及两种可改变疾病的变体。在 N 端结构域观察到了主要的结构影响,因为它变得容易受到阳离子的影响。特别是当β片状结构占主导地位时,该图案会使 N 端酸性残基朝向β片状结构的一个单面,从而形成一个酸性区域,吸引介质中的阳离子并促进 N 端区域的折叠,从而影响淀粉样蛋白的聚集。基于 Aβ 变体的原纤维模型的分子表型显示,导致淀粉样变性的 D7N 突变促进了 N 端 β 片的形成,并积累了更多的 Zn2+,而非淀粉样变性的啮齿动物序列则阻碍了 β 片的形成,并对 Na+ 而非 Zn2+阳离子更具选择性。有人提出,形成酸性β片结构域并积聚阳离子是一种合理的分子机制,它将 Aβ 纤维中金属亲和力和浓度的提高与其 N 端序列的高含量β片结构联系起来。
{"title":"An N-terminal acidic β-sheet domain is responsible for the metal-accumulation properties of amyloid-β protofibrils: a molecular dynamics study","authors":"Carlos Z. Gómez-Castro,&nbsp;Liliana Quintanar,&nbsp;Alberto Vela","doi":"10.1007/s00775-024-02061-1","DOIUrl":"10.1007/s00775-024-02061-1","url":null,"abstract":"<div><p>The influence of metal ions on the structure of amyloid-<span>(beta )</span> (Aβ) protofibril models was studied through molecular dynamics to explore the molecular mechanisms underlying metal-induced Aβ aggregation relevant in Alzheimer’s disease (AD). The models included 36-, 48-, and 188-mers of the Aβ<sub>42</sub> sequence and two disease-modifying variants. Primary structural effects were observed at the N-terminal domain, as it became susceptible to the presence of cations. Specially when β-sheets predominate, this motif orients N-terminal acidic residues toward one single face of the β-sheet, resulting in the formation of an acidic region that attracts cations from the media and promotes the folding of the N-terminal region, with implications in amyloid aggregation. The molecular phenotype of the protofibril models based on Aβ variants shows that the AD-causative D7N mutation promotes the formation of N-terminal β-sheets and accumulates more Zn<sup>2+</sup>, in contrast to the non-amyloidogenic rodent sequence that hinders the β-sheets and is more selective for Na<sup>+</sup> over Zn<sup>2+</sup> cations. It is proposed that forming an acidic β-sheet domain and accumulating cations is a plausible molecular mechanism connecting the elevated affinity and concentration of metals in Aβ fibrils to their high content of β-sheet structure at the N-terminal sequence.</p><h3>Graphic abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":"29 4","pages":"407 - 425"},"PeriodicalIF":2.7,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186886/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
JBIC Journal of Biological Inorganic Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1