Pub Date : 2024-12-12DOI: 10.1007/s00775-024-02086-6
Yilin Hu, Markus W Ribbe
The Mo-nitrogenase catalyzes the reduction of N2 to NH3 at the cofactor of its catalytic NifDK component. NifEN shares considerable homology with NifDK in primary sequence, tertiary structure and associated metallocenters. Better known for its biosynthetic function to convert an all-iron precursor (L-cluster; [Fe8S9C]) to a mature cofactor (M-cluster; [(R-homocitrate) MoFe7S9C]), NifEN also mimics NifDK in catalyzing substrate reduction at ambient conditions. The recently discovered ability of NifEN to reduce N2 to NH3 is particularly interesting, as it points to NifEN as a plausible, prototype ancient nitrogenase during evolution. Moreover, the dual function of NifEN in assembly and catalysis makes it a great template to reconstruct the functional variants or equivalents of NifDK, which could facilitate the mechanistic investigation and heterologous synthesis of nitrogenase. This perspective provides an overview of our recent studies of NifEN, with a focus on the implications of its functional versatility for nitrogenase assembly, catalysis and evolution.
mo -氮酶在其催化组分NifDK的辅因子处催化N2还原为NH3。NifEN与NifDK在一级序列、三级结构和伴生金属中心上具有相当大的同源性。以其转化全铁前体(l簇)的生物合成功能而闻名;[Fe8S9C])为成熟辅因子(m -簇);[(r -均柠檬酸盐)MoFe7S9C]), NifEN也模仿NifDK在环境条件下催化底物还原。最近发现的NifEN将N2还原为NH3的能力特别有趣,因为它表明NifEN在进化过程中是一种可信的原型古氮酶。此外,NifEN在组装和催化方面的双重功能使其成为重建NifDK功能变体或等同物的良好模板,这有助于研究氮酶的机制和异源合成。这一观点概述了我们最近对NifEN的研究,重点关注其在氮酶组装、催化和进化中的功能多样性。
{"title":"NifEN: a versatile player in nitrogenase assembly, catalysis and evolution.","authors":"Yilin Hu, Markus W Ribbe","doi":"10.1007/s00775-024-02086-6","DOIUrl":"https://doi.org/10.1007/s00775-024-02086-6","url":null,"abstract":"<p><p>The Mo-nitrogenase catalyzes the reduction of N<sub>2</sub> to NH<sub>3</sub> at the cofactor of its catalytic NifDK component. NifEN shares considerable homology with NifDK in primary sequence, tertiary structure and associated metallocenters. Better known for its biosynthetic function to convert an all-iron precursor (L-cluster; [Fe<sub>8</sub>S<sub>9</sub>C]) to a mature cofactor (M-cluster; [(R-homocitrate) MoFe<sub>7</sub>S<sub>9</sub>C]), NifEN also mimics NifDK in catalyzing substrate reduction at ambient conditions. The recently discovered ability of NifEN to reduce N<sub>2</sub> to NH<sub>3</sub> is particularly interesting, as it points to NifEN as a plausible, prototype ancient nitrogenase during evolution. Moreover, the dual function of NifEN in assembly and catalysis makes it a great template to reconstruct the functional variants or equivalents of NifDK, which could facilitate the mechanistic investigation and heterologous synthesis of nitrogenase. This perspective provides an overview of our recent studies of NifEN, with a focus on the implications of its functional versatility for nitrogenase assembly, catalysis and evolution.</p>","PeriodicalId":603,"journal":{"name":"Journal of Biological Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1007/s00775-024-02087-5
Jennifer McGarry, Breeanna Mintmier, Mikayla C. Metzger, Nitai C. Giri, Nicholas Britt, Partha Basu, Jarett Wilcoxen
Nitrate reductases play pivotal roles in nitrogen metabolism by leveraging the molybdopterin cofactor to facilitate the reduction of nitrate to nitrite. Periplasmic nitrate reductases (NapA) utilize nitrate as a terminal electron acceptor when oxygen is limiting, helping to drive anaerobic metabolism in bacteria. Despite extensive research into NapA homologs, open questions about the mechanism remain especially at the molecular level. More broadly, little is understood of how the molybdopterin cofactor is tuned for catalysis in these enzymes enabling broad substrate scope and reactivity observed in molybdenum-containing enzymes. Here, we have prepared NapA from Campylobacter jejuni under single turnover conditions to generate a singly reduced enzyme that can be further examined by electron paramagnetic resonance (EPR) spectroscopy. Our results provide new context into the known spectra and related structures of NapA and related enzymes. These insights open new avenues for understanding nitrate reductase mechanisms, molybdenum coordination dynamics, and the role of pyranopterin ligands in catalysis.
{"title":"Insights into periplasmic nitrate reductase function under single turnover","authors":"Jennifer McGarry, Breeanna Mintmier, Mikayla C. Metzger, Nitai C. Giri, Nicholas Britt, Partha Basu, Jarett Wilcoxen","doi":"10.1007/s00775-024-02087-5","DOIUrl":"10.1007/s00775-024-02087-5","url":null,"abstract":"<div><p>Nitrate reductases play pivotal roles in nitrogen metabolism by leveraging the molybdopterin cofactor to facilitate the reduction of nitrate to nitrite. Periplasmic nitrate reductases (NapA) utilize nitrate as a terminal electron acceptor when oxygen is limiting, helping to drive anaerobic metabolism in bacteria. Despite extensive research into NapA homologs, open questions about the mechanism remain especially at the molecular level. More broadly, little is understood of how the molybdopterin cofactor is tuned for catalysis in these enzymes enabling broad substrate scope and reactivity observed in molybdenum-containing enzymes. Here, we have prepared NapA from <i>Campylobacter jejuni</i> under single turnover conditions to generate a singly reduced enzyme that can be further examined by electron paramagnetic resonance (EPR) spectroscopy. Our results provide new context into the known spectra and related structures of NapA and related enzymes. These insights open new avenues for understanding nitrate reductase mechanisms, molybdenum coordination dynamics, and the role of pyranopterin ligands in catalysis.</p></div>","PeriodicalId":603,"journal":{"name":"Journal of Biological Inorganic Chemistry","volume":"29 7-8","pages":"811 - 819"},"PeriodicalIF":2.7,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01DOI: 10.1007/s00775-024-02080-y
Anna Karen Hernández-Gallardo, Trinidad Arcos-López, Jahir Marceliano Bahena-Lopez, Carlos Tejeda-Guzmán, Salvador Gallardo-Hernández, Samuel M. Webb, Thomas Kroll, Pier Lorenzo Solari, Carolina Sánchez-López, Christophe Den Auwer, Liliana Quintanar, Fanis Missirlis
The rise of atmospheric oxygen as a result of photosynthesis in cyanobacteria and chloroplasts has transformed most environmental iron into the ferric state. In contrast, cells within organisms maintain a reducing internal milieu and utilize predominantly ferrous iron. Ferric reductases are enzymes that transfer electrons to ferric ions, either extracellularly or within endocytic vesicles, enabling cellular ferrous iron uptake through Divalent Metal Transporter 1. In mammals, duodenal cytochrome b is a ferric reductase of the intestinal epithelium, but how insects reduce and absorb dietary iron remains unknown. Here we provide indirect evidence of extracellular ferric reductase activity in a small subset of Drosophila melanogaster intestinal epithelial cells, positioned at the neck of the midgut’s anterior region. Dietary-supplemented bathophenanthroline sulphate (BPS) captures locally generated ferrous iron and precipitates into pink granules, whose chemical identity was probed combining in situ X-ray absorption near edge structure and electron paramagnetic resonance spectroscopies. An increased presence of manganese ions upon BPS feeding was also found. Control animals were fed with ferric ammonium citrate, which is accumulated into ferritin iron in distinct intestinal subregions suggesting iron trafficking between different cells inside the animal. Spectroscopic signals from the biological samples were compared to purified Drosophila and horse spleen ferritin and to chemically synthesized BPS-iron and BPS-manganese complexes. The results corroborated the presence of BPS-iron in a newly identified ferric iron reductase region of the intestine, which we propose constitutes the major site of iron absorption in this organism.