Pub Date : 2024-12-04DOI: 10.1007/s10825-024-02257-3
Khalequzzaman Ansary, Md. Mehedi Hassan, Mohammed Nadir Bin Ali, FNU Israfil, Mohammad Sarwar Hossain Mollah, Abdullah Bin Kasem Bhuiyan, Bikash Kumar Paul
This study introduces a distinctive entwined photonic crystal fiber (PCF) featuring two distinct and independent directed mode sections, collectively supporting a total of 112 orbital angular momentum (OAM) modes, comprising 76 + 36 modes. The confinement loss (CL) ranges approximately between (2.49701times 1{0}^{-11}) and (9.13425times 1{0}^{-9} text{dB}/text{m},) while highest attained OAM purity is (99.31969%) and (98.99258%) at (H{E}_{2, 1}) mode, respectively, for both inner and outer rings. All the modes demonstrate ERIDs exceeding (1{0}^{-4}), and minimum dispersion variation observed is (-856 text{ps}/text{km}-text{nm}). Additionally, we achieved an outstanding isolation performance with the highest attained ISO reaching (294 text{dB}) at ({text{HE}}_{9, 1}) mode and observed a substantial effective mode area of 9.15 μm2 and 25.8μm2, respectively, for inner and outer rings. This research leverages COMSOL Multiphysics' finite element method (FEM) and perfectly matched layer (PML) capabilities alongside MATLAB processing to calculate all key properties of the proposed fiber. Therefore, the suggested PCF demonstrates promising prospects for extended-range, high-capacity data transmission within optical communications and applications related to OAM sensing.
{"title":"Design of a nested photonic crystal fiber supporting 76 + 36 OAM modes for fiber communication","authors":"Khalequzzaman Ansary, Md. Mehedi Hassan, Mohammed Nadir Bin Ali, FNU Israfil, Mohammad Sarwar Hossain Mollah, Abdullah Bin Kasem Bhuiyan, Bikash Kumar Paul","doi":"10.1007/s10825-024-02257-3","DOIUrl":"10.1007/s10825-024-02257-3","url":null,"abstract":"<div><p>This study introduces a distinctive entwined photonic crystal fiber (PCF) featuring two distinct and independent directed mode sections, collectively supporting a total of 112 orbital angular momentum (OAM) modes, comprising 76 + 36 modes. The confinement loss (CL) ranges approximately between <span>(2.49701times 1{0}^{-11})</span> and <span>(9.13425times 1{0}^{-9} text{dB}/text{m},)</span> while highest attained OAM purity is <span>(99.31969%)</span> and <span>(98.99258%)</span> at <span>(H{E}_{2, 1})</span> mode, respectively, for both inner and outer rings. All the modes demonstrate ERIDs exceeding <span>(1{0}^{-4})</span>, and minimum dispersion variation observed is <span>(-856 text{ps}/text{km}-text{nm})</span>. Additionally, we achieved an outstanding isolation performance with the highest attained ISO reaching <span>(294 text{dB})</span> at <span>({text{HE}}_{9, 1})</span> mode and observed a substantial effective mode area of 9.15 μm<sup>2</sup> and 25.8μm<sup>2</sup>, respectively, for inner and outer rings. This research leverages COMSOL Multiphysics' finite element method (FEM) and perfectly matched layer (PML) capabilities alongside MATLAB processing to calculate all key properties of the proposed fiber. Therefore, the suggested PCF demonstrates promising prospects for extended-range, high-capacity data transmission within optical communications and applications related to OAM sensing.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1007/s10825-024-02252-8
Bilal Aladerah, Abeer Alrousan, Abdalla Obeidat, Abdullah Al-Sharif
This study investigates the influence of external hydrostatic pressure on the mechanical, electronic, and magnetic properties of cubic GdAlO3 using density functional theory (DFT) and Monte Carlo (MC) simulations. Mechanically, upon pressure increase, a sizable increase in the elastic constants C12, C11, and C44, as well as in bulk, Young's, and shear moduli of GdAlO3, is observed. This indicates an enhanced stiffness and resistance to deformation upon pressure increase. The band gap shows a notable increase in pressure, which is useful in tuning the electronic properties of specific electronic devices for potential applications. In addition, a stable overall magnetic moment is observed under pressure variation, with increased exchange interaction parameters for Gd-Gd pairs, indicating more robust ferromagnetic ordering. Furthermore, the Monte Carlo simulation revealed increased Curie temperature (TC) from 67K at 0 GPa to 142K at 90 GPa, underscoring strengthened magnetic interactions and thermal resilience under compression.
{"title":"Properties of cubic GdAlO3 perovskite under pressure: density functional theory and Monte Carlo simulations","authors":"Bilal Aladerah, Abeer Alrousan, Abdalla Obeidat, Abdullah Al-Sharif","doi":"10.1007/s10825-024-02252-8","DOIUrl":"10.1007/s10825-024-02252-8","url":null,"abstract":"<div><p>This study investigates the influence of external hydrostatic pressure on the mechanical, electronic, and magnetic properties of cubic GdAlO<sub>3</sub> using density functional theory (DFT) and Monte Carlo (MC) simulations. Mechanically, upon pressure increase, a sizable increase in the elastic constants C<sub>12</sub>, C<sub>11</sub>, and C<sub>44</sub>, as well as in bulk, Young's, and shear moduli of GdAlO<sub>3,</sub> is observed. This indicates an enhanced stiffness and resistance to deformation upon pressure increase. The band gap shows a notable increase in pressure, which is useful in tuning the electronic properties of specific electronic devices for potential applications. In addition, a stable overall magnetic moment is observed under pressure variation, with increased exchange interaction parameters for Gd-Gd pairs, indicating more robust ferromagnetic ordering. Furthermore, the Monte Carlo simulation revealed increased Curie temperature (T<sub>C</sub>) from 67K at 0 GPa to 142K at 90 GPa, underscoring strengthened magnetic interactions and thermal resilience under compression.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metal chalcogenide perovskites have a number of benefits over lead-halide perovskites, including superior moisture resistance, light-induced degradation together with nontoxic elemental composition, higher absorption, and exceptional carrier transport properties. These materials have orthorhombic phase Pnma and are potential candidate materials to be used as absorber materials in solar cells. In this study, we propose metal chalcogenide perovskites CaZrX3 (X = S, Se) as a candidate absorber material. Therefore, the investigation of the structural, electrical, optical, thermal, and thermoelectric properties of CaZrX3, where X = S, Se, is being carried out using first principles methods. These proposed semiconducting compounds will meet the requirement for stability against volume change. These materials show a direct band gap of 1.812 eV and 1.117 eV at the Γ point. To better understand the optical transitions in the material, the real and imaginary parts of the dielectric function have been calculated. The remarkable absorption coefficient ((alpha )) exceeding 105 cm−1 above photon energy exceeding bandgap indicates that the materials are suitable for the visible light absorption. For the estimation of photovoltaic performance of CaZrX3 (X = S, Se) and to demonstrate the high photo-absorptivity, the spectroscopic-limited maximum efficiency has been calculated. The results show a maximum photovoltaic efficiency of 26.4% and 32.4% for CaZrS3 and CaZrSe3 respectively at the thickness L = 100 nm. We have also calculated the thermoelectric coefficients. These perovskites are gaining more attention as a thermoelectric material because of their higher Seebeck coefficient, and ultra-low thermal conductivity.
与卤化铅钙钛矿相比,金属硫系钙钛矿具有许多优点,包括优越的抗湿性、光诱导降解以及无毒元素组成、更高的吸收率和特殊的载流子传输特性。这些材料具有正交相Pnma,是太阳能电池吸收材料的潜在候选材料。在本研究中,我们提出金属硫系钙钛矿CaZrX3 (X = S, Se)作为候选吸收材料。因此,使用第一性原理方法研究X = S, Se的CaZrX3的结构、电学、光学、热学和热电性质。这些半导体化合物将满足对体积变化的稳定性要求。这些材料在Γ点处的直接带隙分别为1.812 eV和1.117 eV。为了更好地理解材料中的光学跃迁,我们计算了介电函数的实部和虚部。光子能量超过带隙以上的显著吸收系数((alpha ))超过105 cm−1,表明该材料适合可见光吸收。为了估计CaZrX3 (X = S, Se)的光伏性能,并证明其具有较高的光吸收率,计算了光谱限制下的最大效率。结果表明,最大光伏效率为26.4% and 32.4% for CaZrS3 and CaZrSe3 respectively at the thickness L = 100 nm. We have also calculated the thermoelectric coefficients. These perovskites are gaining more attention as a thermoelectric material because of their higher Seebeck coefficient, and ultra-low thermal conductivity.
{"title":"Investigation of a potential photovoltaic absorber based on first principles spectroscopic screening of chalcogenide perovskites: CaZrX3 (X = S, Se)","authors":"Naincy Pandit, Rashmi Singh, Tarun Kumar Joshi, Akash Shukla, Peeyush Kumar Kamlesh, Anusha Dubey, Tanuj Kumar, Manendra S. Chauhan, Ajay Singh Verma","doi":"10.1007/s10825-024-02245-7","DOIUrl":"10.1007/s10825-024-02245-7","url":null,"abstract":"<div><p>Metal chalcogenide perovskites have a number of benefits over lead-halide perovskites, including superior moisture resistance, light-induced degradation together with nontoxic elemental composition, higher absorption, and exceptional carrier transport properties. These materials have orthorhombic phase <i>Pnma</i> and are potential candidate materials to be used as absorber materials in solar cells. In this study, we propose metal chalcogenide perovskites CaZrX<sub>3</sub> (<i>X</i> = S, Se) as a candidate absorber material. Therefore, the investigation of the structural, electrical, optical, thermal, and thermoelectric properties of CaZrX<sub>3</sub>, where <i>X</i> = S, Se, is being carried out using first principles methods. These proposed semiconducting compounds will meet the requirement for stability against volume change. These materials show a direct band gap of 1.812 eV and 1.117 eV at the Γ point. To better understand the optical transitions in the material, the real and imaginary parts of the dielectric function have been calculated. The remarkable absorption coefficient <span>((alpha ))</span> exceeding 10<sup>5</sup> cm<sup>−1</sup> above photon energy exceeding bandgap indicates that the materials are suitable for the visible light absorption. For the estimation of photovoltaic performance of CaZrX<sub>3</sub> (<i>X</i> = S, Se) and to demonstrate the high photo-absorptivity, the spectroscopic-limited maximum efficiency has been calculated. The results show a maximum photovoltaic efficiency of 26.4% and 32.4% for CaZrS<sub>3</sub> and CaZrSe<sub>3</sub> respectively at the thickness <i>L</i> = 100 nm. We have also calculated the thermoelectric coefficients. These perovskites are gaining more attention as a thermoelectric material because of their higher Seebeck coefficient, and ultra-low thermal conductivity.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142762014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s10825-024-02248-4
P. Rajasekar, H. Mangalam, K. H. Shakthi Murugan, K. Kalaiselvi
Recent advances in VLSI technology have led to the introduction of Quantum dot Cellular Automata (QCA) technology as a possible alternative to CMOS technology. This is owing mostly to its tiny feature size, high operating frequency, and low power consumption. During the preliminary research stage, QCA has been used to execute diverse models of combinatorial and sequential circuits, which serve as the fundamental functional components in a wide range of applications. Currently, research is focusing on the implementation of application-oriented architectures using QCA. The motivation behind this research work is to incorporate Galois Field (GF) functions into the AES Mix- Columns operation. We have proposed an Xtime multiplier implemented using QCA technology and analyzed the multiplier using various XOR models of QCA.
{"title":"Realization of energy efficient GF Xtime multiplier using quantum dot cellular automata (QCA) for AES-MixColumn","authors":"P. Rajasekar, H. Mangalam, K. H. Shakthi Murugan, K. Kalaiselvi","doi":"10.1007/s10825-024-02248-4","DOIUrl":"10.1007/s10825-024-02248-4","url":null,"abstract":"<div><p>Recent advances in VLSI technology have led to the introduction of Quantum dot Cellular Automata (QCA) technology as a possible alternative to CMOS technology. This is owing mostly to its tiny feature size, high operating frequency, and low power consumption. During the preliminary research stage, QCA has been used to execute diverse models of combinatorial and sequential circuits, which serve as the fundamental functional components in a wide range of applications. Currently, research is focusing on the implementation of application-oriented architectures using QCA. The motivation behind this research work is to incorporate Galois Field (GF) functions into the AES Mix- Columns operation. We have proposed an Xtime multiplier implemented using QCA technology and analyzed the multiplier using various XOR models of QCA.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s10825-024-02242-w
Ajay Yadav, Amit Prakash, Santosh Kumar, Ajay Kumar
The concept of optical switching utilizing directional couplers and the electro-optic effect has been leveraged to design various sequential circuits. By applying an appropriate voltage to the core of the couplers, switching of optical pulse signals is achieved through optical tunneling phenomena. This paper presents a comprehensive mathematical analysis of electro-optic effect-based switching, demonstrating its efficacy through 3-D MATLAB simulations of the optical switch layout. A clocked D flip-flop, incorporating an optical delay unit, is examined using 3-D numerical simulations, illustrating the spatial propagation of optical pulses and providing time domain plots for verification. Employing the proposed clocked D flip-flop as a basic module, optically clocked ripple up/down-counters are implemented. Additionally, the design and analysis of an optical 4-bit shift register are discussed, showcasing its ability to effectively shift pulses via 3-D simulations of optical field propagation and time domain plots. This study presents a comprehensive analysis of the extinction ratio, contrast ratio, and amplitude modulation characteristics of the proposed optical code converter circuit. These findings offer an effective methodology for implementing both basic sequential models and complex optical circuits.
{"title":"Next-generation high-performance complex optical sequential circuits: an electro-optic modulation in GaAlAs directional couplers","authors":"Ajay Yadav, Amit Prakash, Santosh Kumar, Ajay Kumar","doi":"10.1007/s10825-024-02242-w","DOIUrl":"10.1007/s10825-024-02242-w","url":null,"abstract":"<div><p>The concept of optical switching utilizing directional couplers and the electro-optic effect has been leveraged to design various sequential circuits. By applying an appropriate voltage to the core of the couplers, switching of optical pulse signals is achieved through optical tunneling phenomena. This paper presents a comprehensive mathematical analysis of electro-optic effect-based switching, demonstrating its efficacy through 3-D MATLAB simulations of the optical switch layout. A clocked D flip-flop, incorporating an optical delay unit, is examined using 3-D numerical simulations, illustrating the spatial propagation of optical pulses and providing time domain plots for verification. Employing the proposed clocked D flip-flop as a basic module, optically clocked ripple up/down-counters are implemented. Additionally, the design and analysis of an optical 4-bit shift register are discussed, showcasing its ability to effectively shift pulses via 3-D simulations of optical field propagation and time domain plots. This study presents a comprehensive analysis of the extinction ratio, contrast ratio, and amplitude modulation characteristics of the proposed optical code converter circuit. These findings offer an effective methodology for implementing both basic sequential models and complex optical circuits.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s10825-024-02237-7
Surya Prasad, Arunachalaperumal Chellaperumal
The computational characteristics of the fast Fourier transform associated with real-time information signals using traditional techniques is deemed the maximal hardware void with peak power consumption, which is an essential task for any researchers while illustrating the designs of architectures in very large-scale integration circuits. The proposed scheme associated with the pipeline reduces the time of processing at the cost of several registers, and to ensure the efficient contribution for reducing the power, the modification over the complex and critical multiplier has been introduced with minimal internal real-time multipliers, which in turn is reconstructed by canonical signed digit multipliers with the adaptation over the technique of resource sharing. The verification of the results of experimentation has been made. It is inferred that the proposed incorporated design is highly efficient regarding area, speed, and power compared to state-of-the-art techniques.
{"title":"Computation of an efficient pipelined fast Fourier transform architecture characterized with real-valued functions","authors":"Surya Prasad, Arunachalaperumal Chellaperumal","doi":"10.1007/s10825-024-02237-7","DOIUrl":"10.1007/s10825-024-02237-7","url":null,"abstract":"<div><p>The computational characteristics of the fast Fourier transform associated with real-time information signals using traditional techniques is deemed the maximal hardware void with peak power consumption, which is an essential task for any researchers while illustrating the designs of architectures in very large-scale integration circuits. The proposed scheme associated with the pipeline reduces the time of processing at the cost of several registers, and to ensure the efficient contribution for reducing the power, the modification over the complex and critical multiplier has been introduced with minimal internal real-time multipliers, which in turn is reconstructed by canonical signed digit multipliers with the adaptation over the technique of resource sharing. The verification of the results of experimentation has been made. It is inferred that the proposed incorporated design is highly efficient regarding area, speed, and power compared to state-of-the-art techniques.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s10825-024-02258-2
Mohsenifard Atefeh, Mohebbi Masoud
In this paper, a metal–insulator–metal (MIM) array nanostructure consisting of a bowtie aperture and cylindrical holes is proposed as a field amplifier. This hybrid array consists of a grating film made of gold in which some cylindrical holes are replaced with a bowtie aperture, sapphire substrate, and finally a metal film. The array of cylindrical holes acting as a two-dimensional grating can effectively excite propagating surface plasmon polariton modes along a metal film, but the electric field enhancement inside it is relatively weak. On the other hand, the bowtie aperture, with its sharp corners and small gap, can provide a greater intensity enhancement factor within its gap. The combination of these two MIM nanostructures forms a strong coupling between the propagating and localized surface plasmons, leading to an improvement in field confinement in the bowtie aperture in the sub-diffraction limit and its magnitude increase of 115 times. This effective enhancement can be used in plasmonic sensors, lasers, SERS, etc., applications.
{"title":"Laser interaction with a MIM nanostructure including bowtie aperture and cylindrical holes for plasmonic field enhancement based on strong coupling of LSPR and SPPs","authors":"Mohsenifard Atefeh, Mohebbi Masoud","doi":"10.1007/s10825-024-02258-2","DOIUrl":"10.1007/s10825-024-02258-2","url":null,"abstract":"<div><p>In this paper, a metal–insulator–metal (MIM) array nanostructure consisting of a bowtie aperture and cylindrical holes is proposed as a field amplifier. This hybrid array consists of a grating film made of gold in which some cylindrical holes are replaced with a bowtie aperture, sapphire substrate, and finally a metal film. The array of cylindrical holes acting as a two-dimensional grating can effectively excite propagating surface plasmon polariton modes along a metal film, but the electric field enhancement inside it is relatively weak. On the other hand, the bowtie aperture, with its sharp corners and small gap, can provide a greater intensity enhancement factor within its gap. The combination of these two MIM nanostructures forms a strong coupling between the propagating and localized surface plasmons, leading to an improvement in field confinement in the bowtie aperture in the sub-diffraction limit and its magnitude increase of 115 times. This effective enhancement can be used in plasmonic sensors, lasers, SERS, etc., applications.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142758007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s10825-024-02253-7
Bui Huu Thai, Chun-Hsing Shih, Nguyen Dang Chien
Quantum confinement effects (QCEs) are significant in tunnel field-effect transistors (TFETs) since their operation is based on the mechanism of band-to-band tunneling. This study presents a simple approach for integrating QCEs into the semiclassical TCAD simulations of TFETs. The approach was based on a post-processing computation in which 1D Schrodinger equations were first solved manually, then their solutions were used to modify the conduction and valence band profiles in the 2D TCAD simulations. For each bias condition, only a 1D potential profile at the position of the maximum tunneling generation was adopted to describe the QC through the solutions of Schrodinger equations for electrons and holes. The quantum-simulated results based on this simple method show good agreements with both quantum–mechanical simulations based on a sophisticated approach and experimental data. The analyses also show that the van Dort quantum model available in commercial TCAD simulators is not appropriate for describing QCEs in TFETs. The approach can be practically employed in studying the influences of QCEs on the electrical characteristics, in particular the dependence of QCEs on the body thickness of TFET devices.
{"title":"A simple approach for integrating quantum confinement effects into TCAD simulations of tunnel field-effect transistors","authors":"Bui Huu Thai, Chun-Hsing Shih, Nguyen Dang Chien","doi":"10.1007/s10825-024-02253-7","DOIUrl":"10.1007/s10825-024-02253-7","url":null,"abstract":"<div><p>Quantum confinement effects (QCEs) are significant in tunnel field-effect transistors (TFETs) since their operation is based on the mechanism of band-to-band tunneling. This study presents a simple approach for integrating QCEs into the semiclassical TCAD simulations of TFETs. The approach was based on a post-processing computation in which 1D Schrodinger equations were first solved manually, then their solutions were used to modify the conduction and valence band profiles in the 2D TCAD simulations. For each bias condition, only a 1D potential profile at the position of the maximum tunneling generation was adopted to describe the QC through the solutions of Schrodinger equations for electrons and holes. The quantum-simulated results based on this simple method show good agreements with both quantum–mechanical simulations based on a sophisticated approach and experimental data. The analyses also show that the van Dort quantum model available in commercial TCAD simulators is not appropriate for describing QCEs in TFETs. The approach can be practically employed in studying the influences of QCEs on the electrical characteristics, in particular the dependence of QCEs on the body thickness of TFET devices.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s10825-024-02264-4
Bikramjit Basumatary, Agile Mathew
A double-barrier quantum well is created using a larger band gap V-cut modified armchair graphene nanoribbon (AGNR) for the barrier region and a pristine AGNR with a smaller bandgap for the channel region. The numerical non-equilibrium Green’s function (NEGF) method, based on the pi-orbital tight-binding model, is employed to study the quantum transport properties of the device. The effects of various dimensional parameters, such as contact width, channel length, and distance between V-cuts in the barrier region, are investigated. The plot of the local density of states (LDOS) shows the formation of a single quantized quasi-energy state in the channel region, corresponding to a peak in transmission. The V–I characteristics of the device exhibit negative differential resistance (NDR) regions for a certain range of bias values. This device’s resonant tunneling performance parameters are compared with those of a similar, previously reported structure.
{"title":"Quantum transport properties of a double-barrier quantum well structure based on V-cut edge-patterned armchair graphene nanoribbon","authors":"Bikramjit Basumatary, Agile Mathew","doi":"10.1007/s10825-024-02264-4","DOIUrl":"10.1007/s10825-024-02264-4","url":null,"abstract":"<div><p>A double-barrier quantum well is created using a larger band gap V-cut modified armchair graphene nanoribbon (AGNR) for the barrier region and a pristine AGNR with a smaller bandgap for the channel region. The numerical non-equilibrium Green’s function (NEGF) method, based on the pi-orbital tight-binding model, is employed to study the quantum transport properties of the device. The effects of various dimensional parameters, such as contact width, channel length, and distance between V-cuts in the barrier region, are investigated. The plot of the local density of states (LDOS) shows the formation of a single quantized quasi-energy state in the channel region, corresponding to a peak in transmission. The V–I characteristics of the device exhibit negative differential resistance (NDR) regions for a certain range of bias values. This device’s resonant tunneling performance parameters are compared with those of a similar, previously reported structure.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s10825-024-02256-4
Arash Firouzimoghaddam, Hojjat Sharifi
This paper presents a novel photonic crystal structure for designing all-optical photonic crystal logic gates and functions based on threshold logic concept. The structure offers two- and three-input AND/NAND logic gates as well as three-input majority/minority functions. In this method, the summation of inputs values connects to a threshold detector with varying threshold values in order to achieve different logic gates and functions. Furthermore, the impact of variations in the diameter and position of rods on the performance of the proposed structures has been examined. Simulation results demonstrate the successful operation of the proposed structures even in the presence of 14% variation in rod diameter, indicating that the presented logic gates exhibit minimal sensitivity to process variations. The finite difference time domain method was used to evaluate the performance of the proposed structures with a switching power requirement of is 2.5 W.
{"title":"All-optical photonic crystal logic gates and functions based on threshold logic","authors":"Arash Firouzimoghaddam, Hojjat Sharifi","doi":"10.1007/s10825-024-02256-4","DOIUrl":"10.1007/s10825-024-02256-4","url":null,"abstract":"<div><p>This paper presents a novel photonic crystal structure for designing all-optical photonic crystal logic gates and functions based on threshold logic concept. The structure offers two- and three-input AND/NAND logic gates as well as three-input majority/minority functions. In this method, the summation of inputs values connects to a threshold detector with varying threshold values in order to achieve different logic gates and functions. Furthermore, the impact of variations in the diameter and position of rods on the performance of the proposed structures has been examined. Simulation results demonstrate the successful operation of the proposed structures even in the presence of 14% variation in rod diameter, indicating that the presented logic gates exhibit minimal sensitivity to process variations. The finite difference time domain method was used to evaluate the performance of the proposed structures with a switching power requirement of is 2.5 W.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}