首页 > 最新文献

2008 IEEE 35th International Conference on Plasma Science最新文献

英文 中文
Enhanced magnetic energy released in solid-state and plasma loads on a nanosecond pulse power generator 在纳秒脉冲发电机上固态和等离子体负载释放的增强磁能
Pub Date : 2008-06-15 DOI: 10.1109/PLASMA.2008.4590967
A. Chuvatin, V. Kantsyrev, A. Astanovitskiy, R. Presura, A. Safronova, A. Esaulov, W. Cline, K. Williamson, I. Shrestha, M. Yilmaz, G. Osbome, T. Jarrett, B. LeGalloudec, N. Nalajala, L. Rudakov, M. Cuneo, T. Pointon, K. Mikkelson
The requirements on lossless power transport through vacuum interface and MITL's limit from above the physical volume and hence inductance of the vacuum part of pulse power generators. This in turn limits the generator-to-load energy coupling and hence the magnetic energy available in vacuum loads used in high energy density physics research. We obtained on Zebra generator (1.9 Ohm, 1 MA, 100 ns) an enhanced load magnetic energy corresponding to the load current increase from the nominal 0.95 MA to 1.65 (plusmn0.05) MA. This improvement was achieved without changing the generator architecture, but through better generator-to-load energy coupling using the new Load Current Multipliers (LCM) technique. The average experimental load-to-generator current amplitude ratio in LCM with both a 7 nH constant-inductance load and with z-pinch loads was 1.7plusmn0.2. We report on new generator electrotechnical parameters with LCM and on characterization of the plasma dynamics and radiative properties of planar wire-array z-pinches at the achieved enhanced load magnetic energy level.
脉冲发电机真空部分的物理体积和电感对真空界面无损传输功率的要求和MITL的限制。这反过来又限制了发电机与负载的能量耦合,从而限制了用于高能量密度物理研究的真空负载中可用的磁能。我们在Zebra发电机(1.9欧姆,1 MA, 100 ns)上获得了负载磁能的增强,对应于负载电流从标称的0.95 MA增加到1.65 (plusmn0.05) MA。这一改进在不改变发电机结构的情况下实现,但通过使用新的负载电流乘法器(LCM)技术实现了更好的发电机-负载能量耦合。在7 nH恒感负载和z夹紧负载下,LCM的平均实验负载与发电机电流幅值比为1.7±0.2。我们报道了新的LCM发电机的电工技术参数,以及在提高负载磁能水平下平面线阵z-钳位的等离子体动力学和辐射特性的表征。
{"title":"Enhanced magnetic energy released in solid-state and plasma loads on a nanosecond pulse power generator","authors":"A. Chuvatin, V. Kantsyrev, A. Astanovitskiy, R. Presura, A. Safronova, A. Esaulov, W. Cline, K. Williamson, I. Shrestha, M. Yilmaz, G. Osbome, T. Jarrett, B. LeGalloudec, N. Nalajala, L. Rudakov, M. Cuneo, T. Pointon, K. Mikkelson","doi":"10.1109/PLASMA.2008.4590967","DOIUrl":"https://doi.org/10.1109/PLASMA.2008.4590967","url":null,"abstract":"The requirements on lossless power transport through vacuum interface and MITL's limit from above the physical volume and hence inductance of the vacuum part of pulse power generators. This in turn limits the generator-to-load energy coupling and hence the magnetic energy available in vacuum loads used in high energy density physics research. We obtained on Zebra generator (1.9 Ohm, 1 MA, 100 ns) an enhanced load magnetic energy corresponding to the load current increase from the nominal 0.95 MA to 1.65 (plusmn0.05) MA. This improvement was achieved without changing the generator architecture, but through better generator-to-load energy coupling using the new Load Current Multipliers (LCM) technique. The average experimental load-to-generator current amplitude ratio in LCM with both a 7 nH constant-inductance load and with z-pinch loads was 1.7plusmn0.2. We report on new generator electrotechnical parameters with LCM and on characterization of the plasma dynamics and radiative properties of planar wire-array z-pinches at the achieved enhanced load magnetic energy level.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87107622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic heating in capacitively coupled plasmas 电容耦合等离子体中的随机加热
Pub Date : 2008-06-15 DOI: 10.1109/PLASMA.2008.4590832
M. Bayrak, R. Brinkmann
This paper presents a new numerical method for solving the reduced kinetic equation. This technique is based on the finite volume control method, which is often used in computational fluid dynamics. Additionally, in the boundary conditions the stochastic heating mechanism of the sheath is taken into account. Furthermore, the quasineutrality condition instead of the Poisson equation to solve the potential is used.
本文提出了一种新的求解简化动力学方程的数值方法。该技术基于计算流体力学中常用的有限体积控制方法。此外,在边界条件下考虑了护套的随机加热机制。此外,用准中性条件代替泊松方程求解势。
{"title":"Stochastic heating in capacitively coupled plasmas","authors":"M. Bayrak, R. Brinkmann","doi":"10.1109/PLASMA.2008.4590832","DOIUrl":"https://doi.org/10.1109/PLASMA.2008.4590832","url":null,"abstract":"This paper presents a new numerical method for solving the reduced kinetic equation. This technique is based on the finite volume control method, which is often used in computational fluid dynamics. Additionally, in the boundary conditions the stochastic heating mechanism of the sheath is taken into account. Furthermore, the quasineutrality condition instead of the Poisson equation to solve the potential is used.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88354616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulations of explosive arc suppression used in fast fault current limiters 快速故障限流器中爆炸电弧抑制的数值模拟
Pub Date : 2008-06-15 DOI: 10.1109/PLASMA.2008.4590942
K. Niayesh, J. Jadidian, E. Hashemi, E. Agheb, A.A. Shaygani-Akmal
Numerical simulations are presented for physical behavior of the explosive current interrupter system consisting of two parallel half tube-shaped conductors (bursting bridge). The magnetohydrodynamic approach, together with the detailed explosion equations for the expanding electrodes, is used to describe the behavior of explosive arc suppression. Bursting bridge conduct a 50Hz high current (up to 200kA) filled with high explosive charge. After tripping, the explosive charge is detonated, explodes the tube-shaped conductors (bursting bridge), separates the electrodes and suppresses the plasma flow in an extremely fast manner. Such configuration has been used recently as a fast current limiter in electrical distribution networks with very high short circuit current levels.
对由两根平行半管状导线(爆破桥)组成的爆炸电流灭流系统的物理特性进行了数值模拟。采用磁流体力学方法,结合膨胀电极的详细爆炸方程,描述了爆炸电弧抑制的行为。爆破桥传导50Hz大电流(最大200kA),充满高爆药。跳闸后,炸药被引爆,爆炸管状导体(爆破桥),分离电极,以极快的方式抑制等离子体流动。这种结构最近被用作具有很高短路电流水平的配电网络中的快速限流器。
{"title":"Numerical simulations of explosive arc suppression used in fast fault current limiters","authors":"K. Niayesh, J. Jadidian, E. Hashemi, E. Agheb, A.A. Shaygani-Akmal","doi":"10.1109/PLASMA.2008.4590942","DOIUrl":"https://doi.org/10.1109/PLASMA.2008.4590942","url":null,"abstract":"Numerical simulations are presented for physical behavior of the explosive current interrupter system consisting of two parallel half tube-shaped conductors (bursting bridge). The magnetohydrodynamic approach, together with the detailed explosion equations for the expanding electrodes, is used to describe the behavior of explosive arc suppression. Bursting bridge conduct a 50Hz high current (up to 200kA) filled with high explosive charge. After tripping, the explosive charge is detonated, explodes the tube-shaped conductors (bursting bridge), separates the electrodes and suppresses the plasma flow in an extremely fast manner. Such configuration has been used recently as a fast current limiter in electrical distribution networks with very high short circuit current levels.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88447343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DC operated atmospheric pressure air plasma jet for biomedical applications 用于生物医学应用的直流操作大气压空气等离子体射流
Pub Date : 2008-06-15 DOI: 10.1109/PLASMA.2008.4591008
J. Kolb, R. O. Price, M. Stacey, R. J. Swanson, A. Bowman, R. Chiavarini, K. Schoenbach
We have previously presented a gas discharge assembly based on a microhollow cathode geometry which can be operated with a dc current at atmospheric pressure with ambient air1. By flowing air through the discharge channel at a rate of about 7 Ltr/min a 10-20-mm long plume is observed. The temperature in this expelled afterglow plasma reaches values that are close to room temperature at a distance of 5 mm from the discharge origin. Emission spectra show that atomic oxygen, hydroxyl ions and various nitrogen compounds are generated in the discharge and are driven out with the gas flow. The most prominent secondary discharge product, ozone, is detected in high concentrations. The low heavy-particle temperature allows us to use this exhaust stream on biological samples and tissues without thermal damage. The high levels of reactive species suggest an effective treatment for pathological skin conditions caused, in particular, by infectious agents. In the first experiments, we have successfully tested the efficacy of this afterglow plasma on Candida kefyr (a yeast), E.coli (bacteria), and a matching E.coli strain-specific virus, 0X174 (a bacteriophage). All pathogens investigated responded well to the treatment. In the yeast case, complete eradication of the organism in the treated area could be achieved with an exposure of 90 seconds at a distance of 5 mm. A 10-fold increase of exposure, to 900 seconds caused no observable damage to murine integument. The quantification of the response, and studies of possible mechanisms are underway.
我们之前已经提出了一种基于微空心阴极几何结构的气体放电组件,该组件可以在大气压下与环境空气一起使用直流电流进行操作。当空气以约7升/分钟的速度流过排出通道时,可以观察到10-20毫米长的羽流。在距离放电源5毫米的地方,被排出的余辉等离子体的温度达到接近室温的值。发射光谱显示,在放电过程中产生原子氧、羟基离子和各种氮化合物,并随气流排出。最突出的二次排放产物,臭氧,被检测到高浓度。低重粒子温度使我们能够在生物样本和组织上使用这种废气流而不会产生热损伤。高水平的反应性物质表明对病理性皮肤状况的有效治疗,特别是由传染性病原体引起的。在第一个实验中,我们成功地测试了这种余辉等离子体对念珠菌kefyr(一种酵母)、大肠杆菌(一种细菌)和与之匹配的大肠杆菌菌株特异性病毒0X174(一种噬菌体)的功效。所有调查的病原体对治疗反应良好。在酵母菌的情况下,在5毫米的距离上暴露90秒即可实现处理区域内生物体的完全根除。暴露量增加10倍至900秒,对小鼠的皮肤没有明显的损伤。反应的量化和可能机制的研究正在进行中。
{"title":"DC operated atmospheric pressure air plasma jet for biomedical applications","authors":"J. Kolb, R. O. Price, M. Stacey, R. J. Swanson, A. Bowman, R. Chiavarini, K. Schoenbach","doi":"10.1109/PLASMA.2008.4591008","DOIUrl":"https://doi.org/10.1109/PLASMA.2008.4591008","url":null,"abstract":"We have previously presented a gas discharge assembly based on a microhollow cathode geometry which can be operated with a dc current at atmospheric pressure with ambient air1. By flowing air through the discharge channel at a rate of about 7 Ltr/min a 10-20-mm long plume is observed. The temperature in this expelled afterglow plasma reaches values that are close to room temperature at a distance of 5 mm from the discharge origin. Emission spectra show that atomic oxygen, hydroxyl ions and various nitrogen compounds are generated in the discharge and are driven out with the gas flow. The most prominent secondary discharge product, ozone, is detected in high concentrations. The low heavy-particle temperature allows us to use this exhaust stream on biological samples and tissues without thermal damage. The high levels of reactive species suggest an effective treatment for pathological skin conditions caused, in particular, by infectious agents. In the first experiments, we have successfully tested the efficacy of this afterglow plasma on Candida kefyr (a yeast), E.coli (bacteria), and a matching E.coli strain-specific virus, 0X174 (a bacteriophage). All pathogens investigated responded well to the treatment. In the yeast case, complete eradication of the organism in the treated area could be achieved with an exposure of 90 seconds at a distance of 5 mm. A 10-fold increase of exposure, to 900 seconds caused no observable damage to murine integument. The quantification of the response, and studies of possible mechanisms are underway.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86474320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eletronical and optical characteristics of atmospheric pressure plasma enhanced chemical vapor deposition (APPECVD) system 常压等离子体增强化学气相沉积(APPECVD)系统的电子和光学特性
Pub Date : 2008-06-15 DOI: 10.1109/PLASMA.2008.4590732
L. Oksuz, A. Gulec, K. Ozaltin, K. Akkaya, G. Erkmen, A. Uygun
A dielectric barrier atmospheric pressure plasma discharge system with 13,56 MHz rf power supply and matching unit is built for plasma enhanced chemical vapor and composite deposition purposes. Plasma system is optimized for maximum power transfer by homemade matching circuit and uniform glow discharge is obtained with helium and argon flow. The optical, invasive electrical probe and noninvasive electrical characteristics are examined with and without monomer flow to the system. Time resolved ICCD pictures and electrical characteristics will be given with and without of monomers introduced to the system for polymerization.
针对等离子体增强化学气相沉积和复合材料沉积的需要,研制了具有1356 MHz射频电源和匹配单元的介质阻挡大气压等离子体放电系统。通过自制的匹配电路,对等离子体系统进行了最大功率传输优化,在氦气和氩气流动下获得了均匀的辉光放电。在有和没有单体流入系统的情况下,对光学、侵入性电探针和非侵入性电特性进行了检查。时间分辨的ICCD图片和电特性将给出是否引入单体系统进行聚合。
{"title":"Eletronical and optical characteristics of atmospheric pressure plasma enhanced chemical vapor deposition (APPECVD) system","authors":"L. Oksuz, A. Gulec, K. Ozaltin, K. Akkaya, G. Erkmen, A. Uygun","doi":"10.1109/PLASMA.2008.4590732","DOIUrl":"https://doi.org/10.1109/PLASMA.2008.4590732","url":null,"abstract":"A dielectric barrier atmospheric pressure plasma discharge system with 13,56 MHz rf power supply and matching unit is built for plasma enhanced chemical vapor and composite deposition purposes. Plasma system is optimized for maximum power transfer by homemade matching circuit and uniform glow discharge is obtained with helium and argon flow. The optical, invasive electrical probe and noninvasive electrical characteristics are examined with and without monomer flow to the system. Time resolved ICCD pictures and electrical characteristics will be given with and without of monomers introduced to the system for polymerization.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86195566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic and transport properties of H35 and F5 plasma cutting mixtures in non-equilibrium 非平衡状态下H35和F5等离子切割混合物的热力学和输运性质
Pub Date : 2008-06-15 DOI: 10.1109/PLASMA.2008.4590972
V. Colombo, E. Ghedini, P. Sanibondi
Plasma science is a field in which modeling is used to play an important role for understanding and predicting the physical behavior of a plasma discharge. An application of plasma modeling is on plasma arc cutting devices which are characterized by a partially ionized plasma and by the use a of wide variety of gas mixtures, depending on the application. Knowledge of the thermodynamic and transport properties of these mixtures is a necessary prerequisite in order to perform correct simulations of these devices. Due to the lack of experimental data, the most reliable way to obtain these coefficients, for a wide variety of mixtures in the range of 300K to 40000K, is the Chapman-Enskog method for the solution of the Boltzmann equation. In this method the distribution function of the species is assumed to be a first order perturbed Maxwellian distribution. In these work some results are presented for H35 (argon 65% and hydrogen 35%) and F5 (nitrogen 95% and hydrogen 5%) mixtures using numerical codes developed by the authors for the calculation of nonequilibrium composition, thermodynamic and transport properties using the Bonnefoi electron and heavy particles decoupling approach. Results are compared with data available from previously published reports to check their accuracy.
等离子体科学是一个使用建模来理解和预测等离子体放电物理行为的重要领域。等离子体建模的一个应用是等离子体电弧切割装置,其特点是部分电离等离子体,并根据应用使用各种各样的气体混合物。了解这些混合物的热力学和输运性质是对这些装置进行正确模拟的必要前提。由于缺乏实验数据,对于300K到40000K范围内各种各样的混合物,获得这些系数的最可靠的方法是求解玻尔兹曼方程的Chapman-Enskog方法。在该方法中,假定物种的分布函数为一阶摄动麦克斯韦分布。在这些工作中,作者利用Bonnefoi电子和重粒子解耦方法计算了H35(65%氩和35%氢)和F5(95%氮和5%氢)混合物的非平衡组成、热力学和输运性质,并给出了一些结果。将结果与以前发表的报告中的数据进行比较,以检查其准确性。
{"title":"Thermodynamic and transport properties of H35 and F5 plasma cutting mixtures in non-equilibrium","authors":"V. Colombo, E. Ghedini, P. Sanibondi","doi":"10.1109/PLASMA.2008.4590972","DOIUrl":"https://doi.org/10.1109/PLASMA.2008.4590972","url":null,"abstract":"Plasma science is a field in which modeling is used to play an important role for understanding and predicting the physical behavior of a plasma discharge. An application of plasma modeling is on plasma arc cutting devices which are characterized by a partially ionized plasma and by the use a of wide variety of gas mixtures, depending on the application. Knowledge of the thermodynamic and transport properties of these mixtures is a necessary prerequisite in order to perform correct simulations of these devices. Due to the lack of experimental data, the most reliable way to obtain these coefficients, for a wide variety of mixtures in the range of 300K to 40000K, is the Chapman-Enskog method for the solution of the Boltzmann equation. In this method the distribution function of the species is assumed to be a first order perturbed Maxwellian distribution. In these work some results are presented for H35 (argon 65% and hydrogen 35%) and F5 (nitrogen 95% and hydrogen 5%) mixtures using numerical codes developed by the authors for the calculation of nonequilibrium composition, thermodynamic and transport properties using the Bonnefoi electron and heavy particles decoupling approach. Results are compared with data available from previously published reports to check their accuracy.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82630195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Determination of ionization coefficient of atmospheric helium in DBD DBD中大气氦电离系数的测定
Pub Date : 2008-06-15 DOI: 10.1109/PLASMA.2008.4590783
Z. Liang, H. Luo, B. Lv, X. Wang, Z. Guan, L. Wang
Dielectric barrier discharge of helium at atmospheric pressure was investigated. Two plane-parallel electrodes, each covered by a 1-mm thick quartz plate, are 50 mm in diameter and the gas gap is 5 mm in length. Powered by an alternative voltage with a frequency of 33 kHz, a homogenous discharge was produced and characterized by one current pulse per half cycle of the applied voltage. The development of the discharge during one current pulse was recorded by taking a series of side-view photographs of 20 ns exposure time using an ICCD camera. It was important to find that a weakly luminous layer close to the anode was observed even at the time far ahead of the current pulse, which was considered as the result of a weak Townsend discharge. The distribution of light intensity in the gap was obtained by processing the photograph taken at the time of this weak Townsend discharge. The curve of this light distribution shows a shape quite similar to that of the total electron number in an electron avalanche as a function of the distance through which the avalanche passes. This suggested us that the curve could be used to determine ionization coefficient alpha in the Townsend discharge. The method is based on the proportionality of light intensity to the electron density in a discharge gap of a uniformly distributed electric field. By fitting a theoretically derived formula with the measured curve of light distribution, alpha was determined. It was found that the value of alpha is quite high even at relatively low reduced field. For instance, alpha =31 cm-1 for E/p = 3.6 V. cm-1 . Torr-1. The reason for this higher value of alpha may lie in the contribution of Penning ionization of helium metastables with impurities, especially with nitrogen molecules.
研究了常压下氦的介质阻挡放电。两个平面平行的电极,每一个被1毫米厚的石英板覆盖,直径为50毫米,气隙长度为5毫米。由频率为33 kHz的交替电压供电,产生均匀放电,其特征是每半周期施加电压一个电流脉冲。利用ICCD相机拍摄了一系列曝光时间为20ns的侧面照片,记录了一个电流脉冲放电的发展情况。重要的是发现,即使在电流脉冲之前很远的时候,也可以观察到靠近阳极的弱发光层,这被认为是弱汤森放电的结果。通过处理弱汤森德放电时拍摄的照片,得到了缝隙中的光强分布。这种光分布曲线的形状与电子雪崩中总电子数作为雪崩通过距离的函数的形状非常相似。这表明该曲线可用于确定汤森德放电中的电离系数。该方法基于均匀分布电场放电间隙中光强与电子密度的比例关系。通过理论推导公式与实测光分布曲线拟合,确定了alpha值。结果表明,即使在较低的还原场下,α的值也相当高。例如,E/p = 3.6 V. cm-1时alpha =31 cm-1。Torr-1。α值较高的原因可能是氦亚稳态与杂质,特别是氮分子的Penning电离的贡献。
{"title":"Determination of ionization coefficient of atmospheric helium in DBD","authors":"Z. Liang, H. Luo, B. Lv, X. Wang, Z. Guan, L. Wang","doi":"10.1109/PLASMA.2008.4590783","DOIUrl":"https://doi.org/10.1109/PLASMA.2008.4590783","url":null,"abstract":"Dielectric barrier discharge of helium at atmospheric pressure was investigated. Two plane-parallel electrodes, each covered by a 1-mm thick quartz plate, are 50 mm in diameter and the gas gap is 5 mm in length. Powered by an alternative voltage with a frequency of 33 kHz, a homogenous discharge was produced and characterized by one current pulse per half cycle of the applied voltage. The development of the discharge during one current pulse was recorded by taking a series of side-view photographs of 20 ns exposure time using an ICCD camera. It was important to find that a weakly luminous layer close to the anode was observed even at the time far ahead of the current pulse, which was considered as the result of a weak Townsend discharge. The distribution of light intensity in the gap was obtained by processing the photograph taken at the time of this weak Townsend discharge. The curve of this light distribution shows a shape quite similar to that of the total electron number in an electron avalanche as a function of the distance through which the avalanche passes. This suggested us that the curve could be used to determine ionization coefficient alpha in the Townsend discharge. The method is based on the proportionality of light intensity to the electron density in a discharge gap of a uniformly distributed electric field. By fitting a theoretically derived formula with the measured curve of light distribution, alpha was determined. It was found that the value of alpha is quite high even at relatively low reduced field. For instance, alpha =31 cm-1 for E/p = 3.6 V. cm-1 . Torr-1. The reason for this higher value of alpha may lie in the contribution of Penning ionization of helium metastables with impurities, especially with nitrogen molecules.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90183767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influences of gas flow on atmospheric pressure glow discharge in helium 气体流动对氦中大气压辉光放电的影响
Pub Date : 2008-06-15 DOI: 10.1109/PLASMA.2008.4590780
H. Luo, Z. Liang, B. Lv, X. Wang, Z. Guan, L. Wang
Atmospheric pressure glow discharge (APGD) was produced in a 5-mm helium gap between two plane-parallel electrodes of 50 mm in diameter, each covered by a 1-mm thick quartz plate. The influence of the helium gas flowing in parallel through the helium gap on APGD was studied. The helium flow rate varies up to 12 liter per minute, corresponding to helium at a speed of 67 cm/s flowing through a 5 mm x 60 mm cross section of the gap. The discharge current pulse appearing per half cycle of the applied voltage shifts forward as the helium flow speed increases. In accord with this phase shifting of the current pulse, the breakdown voltage of the helium gap that was deduced from the measured applied voltage and discharge current decreases from 1200 V to 950 V. Both amplitude, im, and pulse width (FWHM), tw, of the current pulse vary non-monotonically with the helium flow speed and are with same an inflexion point at flow speed of 1.4 cm/s. While im decreases from 31 mA to 20 mA and then slowly increases to 26 mA, tw increases from 750 ns to 1350 ns and then slowly decreases to about 900 ns. Although im varies with the flow speed in a way contrary to that of tw, the transferred charge calculated by integrating current over the time of one current pulse keeps almost a constant for different flow speed, which is consistent with the concept that the dielectric barrier acting as a capacitor. The side-view photographs of the discharge gap were taken by an ICCD camera with an exposure time of 20 ns. Compared with that in the case without helium flow, the discharge light with helium flow is relatively weaker over entire gap due to smaller discharge current. A distinct change in the discharge pattern with helium flow is that positive column gets shorter and Faraday dark space gets wider as the flow speed increases. It is important to find that spectrum line of 391.4 nm from the first negative system of nitrogen molecular ions gets weaker and weaker with the increase of helium flow speed. As is well known that the spectrum line of 391.4 nm is an indicative of Penning ionization between helium metastables and nitrogen impurity. The lower intensity of the spectrum line may be attributed to less impurity in the discharge gap with helium flow. As for the reason why the breakdown voltage of the helium gap decreases with helium flow, it was assumed that longer lifetimes of helium metastables result from the less impurity, quenchers of helium metastables, in the gap. For confirmation of this assumption, a monochrometer coupled with a photomultiplier is being prepared for measuring the time-resolved spectrum line of 391.4 nm.
大气压辉光放电(APGD)在两个直径为50 mm的平面平行电极之间的5 mm氦气间隙中产生,每个电极由1 mm厚的石英石板覆盖。研究了氦气平行流过氦气隙对APGD的影响。氦气的流速最高可达每分钟12升,相当于氦气以67厘米/秒的速度流过5毫米× 60毫米的间隙横截面。随着氦气流速的增加,每半周期出现的放电电流脉冲向前移动。随着电流脉冲的相移,由测量的施加电压和放电电流推导出的氦隙击穿电压从1200 V降低到950 V。电流脉冲的幅值im和脉宽tw随氦气流速呈非单调变化,且在流速为1.4 cm/s时均有一个拐点。im从31 ~ 20 mA减小,然后缓慢增大到26 mA, tw从750 ~ 1350 ns增大,然后缓慢减小到900 ns左右。虽然im随流速变化的方式与tw相反,但通过对一个电流脉冲时间内的电流积分计算的转移电荷在不同流速下几乎保持恒定,这与介质阻挡作为电容器的概念是一致的。用曝光时间为20 ns的ICCD相机拍摄了放电间隙的侧面照片。与无氦流情况相比,有氦流情况下,由于放电电流较小,整个间隙内的放电光相对较弱。随着氦流速度的增加,正柱变短,法拉第暗空间变宽,这是氦流放电模式的一个明显变化。值得注意的是,随着氦流速的增加,氮分子离子第一负极体系的391.4 nm谱线越来越弱。众所周知,391.4 nm的谱线是氦亚稳态与氮杂质之间Penning电离的指示线。谱线的强度较低可能是由于氦气流动时放电间隙中的杂质较少。对于氦隙的击穿电压随氦气的流动而降低的原因,认为氦隙中亚稳态氦的杂质猝灭剂较少,导致了亚稳态氦寿命的延长。为了证实这一假设,制备了一个单色计和光电倍增管,用于测量391.4 nm的时间分辨谱线。
{"title":"Influences of gas flow on atmospheric pressure glow discharge in helium","authors":"H. Luo, Z. Liang, B. Lv, X. Wang, Z. Guan, L. Wang","doi":"10.1109/PLASMA.2008.4590780","DOIUrl":"https://doi.org/10.1109/PLASMA.2008.4590780","url":null,"abstract":"Atmospheric pressure glow discharge (APGD) was produced in a 5-mm helium gap between two plane-parallel electrodes of 50 mm in diameter, each covered by a 1-mm thick quartz plate. The influence of the helium gas flowing in parallel through the helium gap on APGD was studied. The helium flow rate varies up to 12 liter per minute, corresponding to helium at a speed of 67 cm/s flowing through a 5 mm x 60 mm cross section of the gap. The discharge current pulse appearing per half cycle of the applied voltage shifts forward as the helium flow speed increases. In accord with this phase shifting of the current pulse, the breakdown voltage of the helium gap that was deduced from the measured applied voltage and discharge current decreases from 1200 V to 950 V. Both amplitude, im, and pulse width (FWHM), tw, of the current pulse vary non-monotonically with the helium flow speed and are with same an inflexion point at flow speed of 1.4 cm/s. While im decreases from 31 mA to 20 mA and then slowly increases to 26 mA, tw increases from 750 ns to 1350 ns and then slowly decreases to about 900 ns. Although im varies with the flow speed in a way contrary to that of tw, the transferred charge calculated by integrating current over the time of one current pulse keeps almost a constant for different flow speed, which is consistent with the concept that the dielectric barrier acting as a capacitor. The side-view photographs of the discharge gap were taken by an ICCD camera with an exposure time of 20 ns. Compared with that in the case without helium flow, the discharge light with helium flow is relatively weaker over entire gap due to smaller discharge current. A distinct change in the discharge pattern with helium flow is that positive column gets shorter and Faraday dark space gets wider as the flow speed increases. It is important to find that spectrum line of 391.4 nm from the first negative system of nitrogen molecular ions gets weaker and weaker with the increase of helium flow speed. As is well known that the spectrum line of 391.4 nm is an indicative of Penning ionization between helium metastables and nitrogen impurity. The lower intensity of the spectrum line may be attributed to less impurity in the discharge gap with helium flow. As for the reason why the breakdown voltage of the helium gap decreases with helium flow, it was assumed that longer lifetimes of helium metastables result from the less impurity, quenchers of helium metastables, in the gap. For confirmation of this assumption, a monochrometer coupled with a photomultiplier is being prepared for measuring the time-resolved spectrum line of 391.4 nm.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80672383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the cathodic region of a fluorescent lamp 荧光灯阴极区域的研究
Pub Date : 2008-06-15 DOI: 10.1109/PLASMA.2008.4590904
Z. Tlais, D. Buso, S. Bhosle, G. Zissis
In this work the absolute intensity of barium lines during dimming operation in the vicinity of fluorescent lamp electrodes is investigated using the method of atomic emission spectroscopy. Investigations of fluorescent lamps (FL) are often focused on the electrodes, since the lifetime of the lamps is typically limited by the electrode lifetime and durability. In general, a commercial electrode system consists of a tungsten coil coated with a work function reducing emitter mix of alkali oxides, such as BaO, SrO and CaO. One of the main issues with dimming is a reduction in lamp life when the additional heating of the electrodes is not optimal, causing not-optimal electrode temperatures. There is a need for design rules for dimming to reach "good" lamp life, based on "good" additional heating. Such dimming design rules can be derived from measurements of the absolute intensities of both neutral (Ba I) and ionised (Ba II) barium lines, as these are key parameters to describe the evaporation and the sputtering of the emitter material. During steady state operation free barium is produced, which transports to the surface by diffusion through the coating mass. Barium escapes from the emitter during the course of lamp operation due to sputtering (primarily during starting and dimming), where the discharge is sustained by secondary electron emission from the (cold) electrode, and due to evaporation (primarily during steady-state), where the discharge is sustained by thermionic emission from the (hot) electrode. In the first type of experiment, the atomic emission diagnostic is used for the detection and measurement the intensities of the neutral (Bal-553.5 nm) and ionised (Ball-455.4n m) barium. The FL is dimmed for a range of discharge currents and auxiliary coil heating currents. It is seen that there is a threshold discharge current in which the behaviour of barium intensity with respect to current is markedly different. In a second type of experiment, we can estimate the relative intensities for Ba I and Ba II from the relative area under their line of absolute intensities. From these two measurements we show that the Ba loss can very easily be reduced by appropriate auxiliary coil heating.
本文用原子发射光谱法研究了荧光灯电极附近调光过程中钡谱线的绝对强度。荧光灯(FL)的研究通常集中在电极上,因为灯的寿命通常受到电极寿命和耐久性的限制。一般来说,一个商业电极系统由一个钨线圈组成,涂有一层功函数降低发射极的碱氧化物混合物,如BaO, SrO和CaO。调光的主要问题之一是当电极的额外加热不是最佳时,会减少灯的寿命,导致非最佳电极温度。有必要设计规则调光,以达到“良好”的灯寿命,基于“良好”的额外加热。这种调光设计规则可以从测量中性(Ba I)和电离(Ba II)钡线的绝对强度中得出,因为这些是描述发射极材料蒸发和溅射的关键参数。在稳态运行过程中产生游离钡,通过涂层扩散输送到表面。在灯工作过程中,由于溅射(主要是在启动和调光期间)和蒸发(主要是在稳态期间),钡从发射器中逸出,其中放电由(冷)电极的二次电子发射维持,其中放电由(热)电极的热离子发射维持。在第一类实验中,原子发射诊断用于检测和测量中性(ball -553.5 nm)和电离(Ball-455.4n m)钡的强度。FL在放电电流和辅助线圈加热电流范围内变暗。可以看出,存在一个阈值放电电流,其中钡强度相对于电流的行为显着不同。在第二种类型的实验中,我们可以从Ba I和Ba II的绝对强度线下的相对面积来估计它们的相对强度。从这两个测量我们表明,Ba损耗可以很容易地减少适当的辅助线圈加热。
{"title":"Investigation of the cathodic region of a fluorescent lamp","authors":"Z. Tlais, D. Buso, S. Bhosle, G. Zissis","doi":"10.1109/PLASMA.2008.4590904","DOIUrl":"https://doi.org/10.1109/PLASMA.2008.4590904","url":null,"abstract":"In this work the absolute intensity of barium lines during dimming operation in the vicinity of fluorescent lamp electrodes is investigated using the method of atomic emission spectroscopy. Investigations of fluorescent lamps (FL) are often focused on the electrodes, since the lifetime of the lamps is typically limited by the electrode lifetime and durability. In general, a commercial electrode system consists of a tungsten coil coated with a work function reducing emitter mix of alkali oxides, such as BaO, SrO and CaO. One of the main issues with dimming is a reduction in lamp life when the additional heating of the electrodes is not optimal, causing not-optimal electrode temperatures. There is a need for design rules for dimming to reach \"good\" lamp life, based on \"good\" additional heating. Such dimming design rules can be derived from measurements of the absolute intensities of both neutral (Ba I) and ionised (Ba II) barium lines, as these are key parameters to describe the evaporation and the sputtering of the emitter material. During steady state operation free barium is produced, which transports to the surface by diffusion through the coating mass. Barium escapes from the emitter during the course of lamp operation due to sputtering (primarily during starting and dimming), where the discharge is sustained by secondary electron emission from the (cold) electrode, and due to evaporation (primarily during steady-state), where the discharge is sustained by thermionic emission from the (hot) electrode. In the first type of experiment, the atomic emission diagnostic is used for the detection and measurement the intensities of the neutral (Bal-553.5 nm) and ionised (Ball-455.4n m) barium. The FL is dimmed for a range of discharge currents and auxiliary coil heating currents. It is seen that there is a threshold discharge current in which the behaviour of barium intensity with respect to current is markedly different. In a second type of experiment, we can estimate the relative intensities for Ba I and Ba II from the relative area under their line of absolute intensities. From these two measurements we show that the Ba loss can very easily be reduced by appropriate auxiliary coil heating.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80749289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Measurements of 193 NM laser air breakdown and scaling to the microwave regime 193nm激光空气击穿的测量及对微波区的缩放
Pub Date : 2008-06-15 DOI: 10.1109/PLASMA.2008.4591173
M. Thiyagarajan, J. Scharer, J. Way, J. Hummelt
We report the measurements and analysis of air breakdown process by focusing 193 nm, 200 mJ, 10 MW high power UV laser radiation onto a 20-60 mum spot size that produces a maximum laser intensity of 1012-1013 W/cm2, well above the threshold flux for air ionization. The breakdown threshold is measured and compared with theoretical models including classical (collisional cascade) and quantum (multi-photon) ionization analyses. The air breakdown threshold is measured for a wide range of pressures ranging from 90 torr to 5 atmospheres. Higher pressure enhances the effective electric field due to the increased collisional frequency relative to the high laser frequency (1015 Hz). Multiphoton ionization (MPI) (n = 3) processes play a substantial role at 193 nm due to the high photon energy (6.4 eV). We examine regimes for which substantial MPI is present and analyze the plasma temperature and density evolution. The breakdown threshold data for air at 193 nm is correlated with the microwave breakdown regime using the concept of universal scaling, for which extensive microwave breakdown data is available as well as current microwave and mm wave breakdown experiments at Texas Tech University and MIT. An extensive range of optical and spectroscopic diagnostics with 5 ns time scale gating and 13 mum ICCD resolution has been constructed to characterize the plasma. The spatial and temporal evolution of the laser focused plasma is measured using shadowgraphy and two- color laser interferometry techniques. The plasma temperatures are obtained by measuring the velocity of the shock wave front and also by using optical emission spectroscopy. Optical emission spectroscopy is performed to diagnose the plasma temperature using the emission lines of O II ranging from 372.3 to 470.4 nm and the band of the N2 second positive system N2 (2+) (0,0) at 337.1 nm. Measurements of the core laser plasma density (ne= 8times1017/cc) and electron temperature (25 eV) decay are compared with a dominant two- and three-body recombination model with good correlation.
我们报告了空气击穿过程的测量和分析,通过将193 nm, 200 mJ, 10 MW的高功率紫外激光辐射聚焦在20-60 μ m光斑上,产生的最大激光强度为1012-1013 W/cm2,远高于空气电离的阈值通量。测量了击穿阈值,并与经典(碰撞级联)和量子(多光子)电离分析等理论模型进行了比较。空气击穿阈值是在从90托到5个大气压的压力范围内测量的。相对于激光的高频率(1015hz),更高的压力增加了碰撞频率,从而增强了有效电场。多光子电离(MPI) (n = 3)过程在193 nm处由于高光子能量(6.4 eV)而发挥重要作用。我们研究了存在大量MPI的制度,并分析了等离子体温度和密度的演变。空气在193nm处的击穿阈值数据与微波击穿状态使用通用尺度的概念相关联,其中广泛的微波击穿数据可用,以及目前在德克萨斯理工大学和麻省理工学院的微波和毫米波击穿实验。广泛的光学和光谱诊断与5 ns时间尺度门控和13 mum ICCD分辨率已经构建表征等离子体。采用阴影法和双色激光干涉测量技术测量了激光聚焦等离子体的时空演化。等离子体温度是通过测量激波前的速度和利用光学发射光谱得到的。利用oii在372.3 ~ 470.4 nm范围内的发射谱线和N2(2+)(0,0)在337.1 nm范围内的发射谱线对等离子体温度进行了诊断。对核心激光等离子体密度(ne= 8times1017/cc)和电子温度(25ev)衰减的测量结果进行了比较,得到了具有良好相关性的二体和三体复合模型。
{"title":"Measurements of 193 NM laser air breakdown and scaling to the microwave regime","authors":"M. Thiyagarajan, J. Scharer, J. Way, J. Hummelt","doi":"10.1109/PLASMA.2008.4591173","DOIUrl":"https://doi.org/10.1109/PLASMA.2008.4591173","url":null,"abstract":"We report the measurements and analysis of air breakdown process by focusing 193 nm, 200 mJ, 10 MW high power UV laser radiation onto a 20-60 mum spot size that produces a maximum laser intensity of 1012-1013 W/cm2, well above the threshold flux for air ionization. The breakdown threshold is measured and compared with theoretical models including classical (collisional cascade) and quantum (multi-photon) ionization analyses. The air breakdown threshold is measured for a wide range of pressures ranging from 90 torr to 5 atmospheres. Higher pressure enhances the effective electric field due to the increased collisional frequency relative to the high laser frequency (1015 Hz). Multiphoton ionization (MPI) (n = 3) processes play a substantial role at 193 nm due to the high photon energy (6.4 eV). We examine regimes for which substantial MPI is present and analyze the plasma temperature and density evolution. The breakdown threshold data for air at 193 nm is correlated with the microwave breakdown regime using the concept of universal scaling, for which extensive microwave breakdown data is available as well as current microwave and mm wave breakdown experiments at Texas Tech University and MIT. An extensive range of optical and spectroscopic diagnostics with 5 ns time scale gating and 13 mum ICCD resolution has been constructed to characterize the plasma. The spatial and temporal evolution of the laser focused plasma is measured using shadowgraphy and two- color laser interferometry techniques. The plasma temperatures are obtained by measuring the velocity of the shock wave front and also by using optical emission spectroscopy. Optical emission spectroscopy is performed to diagnose the plasma temperature using the emission lines of O II ranging from 372.3 to 470.4 nm and the band of the N2 second positive system N2 (2+) (0,0) at 337.1 nm. Measurements of the core laser plasma density (ne= 8times1017/cc) and electron temperature (25 eV) decay are compared with a dominant two- and three-body recombination model with good correlation.","PeriodicalId":6359,"journal":{"name":"2008 IEEE 35th International Conference on Plasma Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83698755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2008 IEEE 35th International Conference on Plasma Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1