首页 > 最新文献

Journal of High Energy Physics最新文献

英文 中文
Hybrid thermalization in the large N limit 大N极限下的杂化热化
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-12 DOI: 10.1007/JHEP01(2026)078
Toshali Mitra, Sukrut Mondkar, Ayan Mukhopadhyay, Alexander Soloviev

Semi-holography provides a formulation of dynamics in gauge theories involving both weakly self-interacting (perturbative) and strongly self-interacting (non-perturbative) degrees of freedom. These two subsectors interact via their effective metrics and sources, while the full local energy-momentum tensor is conserved in the physical background metric. In the large N limit, the subsectors have their individual entropy currents, and so the full system can reach a pseudo-equilibrium state in which each subsector has a different physical temperature.

We first complete the proof that the global thermal equilibrium state, where both subsectors have the same physical temperature, can be defined in consistency with the principles of thermodynamics and statistical mechanics. Particularly, we show that the global equilibrium state is the unique state with maximum entropy in the microcanonical ensemble. Furthermore, we show that in the large N limit, a typical non-equilibrium state of the full isolated system relaxes to the global equilibrium state when the average energy density is large compared to the scale set by the inter-system coupling. We discuss quantum statistical perspectives.

半全息提供了规范理论中涉及弱自相互作用(摄动)和强自相互作用(非摄动)自由度的动力学公式。这两个子扇区通过它们的有效度量和源相互作用,而完整的局部能量动量张量在物理背景度量中守恒。在大N极限下,子扇区具有各自的熵流,因此整个系统可以达到每个子扇区具有不同物理温度的伪平衡状态。我们首先完成了证明全局热平衡状态,其中两个子部门具有相同的物理温度,可以根据热力学和统计力学原理定义。特别地,我们证明了全局平衡态是微正则系综中熵最大的唯一状态。进一步证明了在大N极限下,与系统间耦合设定的尺度相比,当平均能量密度较大时,典型的全孤立系统的非平衡态松弛到全局平衡态。我们讨论量子统计的观点。
{"title":"Hybrid thermalization in the large N limit","authors":"Toshali Mitra,&nbsp;Sukrut Mondkar,&nbsp;Ayan Mukhopadhyay,&nbsp;Alexander Soloviev","doi":"10.1007/JHEP01(2026)078","DOIUrl":"10.1007/JHEP01(2026)078","url":null,"abstract":"<p>Semi-holography provides a formulation of dynamics in gauge theories involving both weakly self-interacting (perturbative) and strongly self-interacting (non-perturbative) degrees of freedom. These two subsectors interact via their effective metrics and sources, while the full local energy-momentum tensor is conserved in the physical background metric. In the large <i>N</i> limit, the subsectors have their individual entropy currents, and so the full system can reach a pseudo-equilibrium state in which each subsector has a different physical temperature.</p><p>We first complete the proof that the global thermal equilibrium state, where both subsectors have the <i>same</i> physical temperature, can be defined in consistency with the principles of thermodynamics and statistical mechanics. Particularly, we show that the global equilibrium state is the unique state with maximum entropy in the microcanonical ensemble. Furthermore, we show that in the large <i>N</i> limit, a <i>typical</i> non-equilibrium state of the full isolated system relaxes to the global equilibrium state when the average energy density is large compared to the scale set by the inter-system coupling. We discuss quantum statistical perspectives.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)078.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145982833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-shell recursion relations for higher-spin Compton amplitudes 高自旋康普顿振幅的壳上递推关系
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-09 DOI: 10.1007/JHEP01(2026)069
Yohei Ema, Ting Gao, Wenqi Ke, Zhen Liu, Ishmam Mahbub

We recursively construct tree-level electromagnetic and gravitational Compton amplitudes of higher-spin massive particles by the all-line transverse momentum shift. With three-point amplitude as input, we demonstrate that higher-point electromagnetic and gravitational Compton amplitudes are on-shell constructible up to spin s = 3/2 and s = 5/2, respectively, under the all-line transverse shift after imposing the current constraint condition. We unambiguously derive the four-point electromagnetic and gravitational Compton amplitudes for s ≤ 3/2 and s ≤ 5/2, which are uniquely determined by the on-shell recursion relation and are free from unphysical spurious poles. In addition, we explore amplitudes of spin-3/2 particles with non-minimal three-point interactions with photon, as well as s > 3/2 particles, and comment on their notable features. Our work furthers the understanding of on-shell methods for massive amplitudes, with hopes to shed light on physical observables in particle physics and higher-spin amplitudes relevant for Kerr black-hole scattering.

我们用直线横向动量位移递归地构造了高自旋大质量粒子的树能级电磁和引力康普顿幅值。以三点振幅为输入,我们证明了施加电流约束条件后,在全线横向位移下,更高的点电磁康普顿振幅和引力康普顿振幅分别在自旋s = 3/2和s = 5/2的壳上可构造。我们明确地导出了s≤3/2和s≤5/2的四点电磁和引力康普顿振幅,它们是由壳上递推关系唯一确定的,并且没有非物理的伪极。此外,我们探讨了与光子具有非极小三点相互作用的自旋3/2粒子的振幅,以及s >; 3/2粒子,并评论了它们的显著特征。我们的工作进一步加深了对大质量振幅的壳层方法的理解,希望能阐明粒子物理学中的物理观测结果和与克尔黑洞散射相关的高自旋振幅。
{"title":"On-shell recursion relations for higher-spin Compton amplitudes","authors":"Yohei Ema,&nbsp;Ting Gao,&nbsp;Wenqi Ke,&nbsp;Zhen Liu,&nbsp;Ishmam Mahbub","doi":"10.1007/JHEP01(2026)069","DOIUrl":"10.1007/JHEP01(2026)069","url":null,"abstract":"<p>We recursively construct tree-level electromagnetic and gravitational Compton amplitudes of higher-spin massive particles by the all-line transverse momentum shift. With three-point amplitude as input, we demonstrate that higher-point electromagnetic and gravitational Compton amplitudes are on-shell constructible up to spin <i>s</i> = 3/2 and <i>s</i> = 5/2, respectively, under the all-line transverse shift after imposing the current constraint condition. We unambiguously derive the four-point electromagnetic and gravitational Compton amplitudes for <i>s</i> ≤ 3/2 and <i>s</i> ≤ 5/2, which are uniquely determined by the on-shell recursion relation and are free from unphysical spurious poles. In addition, we explore amplitudes of spin-3/2 particles with non-minimal three-point interactions with photon, as well as <i>s</i> &gt; 3/2 particles, and comment on their notable features. Our work furthers the understanding of on-shell methods for massive amplitudes, with hopes to shed light on physical observables in particle physics and higher-spin amplitudes relevant for Kerr black-hole scattering.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)069.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tensor meson pole contributions to the HLbL piece of ({a}_{mu }^{text{HLbL}}) within RχT 张量介子极对RχT内({a}_{mu }^{text{HLbL}})的HLbL块的贡献
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-09 DOI: 10.1007/JHEP01(2026)070
Emilio J. Estrada, Pablo Roig

We compute the tensor meson pole contributions to the Hadronic Light-by-Light piece of aμ in the purely hadronic region, using Resonance Chiral Theory. Given the differences between the dispersive and holographic groups determinations and the resulting discussion of the corresponding uncertainty estimate for the Hadronic Light-by-Light section of the muon g − 2 theory initiative second White Paper, we consider timely to present an alternative evaluation. In our approach, in addition to the lightest tensor meson nonet, two vector meson resonance nonets are considered, in the chiral limit. Disregarding operators with derivatives, only the form factor ({mathcal{F}}_{1}^{T}) is non-vanishing, as assumed in the dispersive study. All parameters are determined by imposing a set of short-distance QCD constraints, and the radiative tensor decay widths. In this case, we obtain the following results for the different contributions (in units of 10−11): ({a}_{mu }^{{text{a}}_{2}-{text{pole}}}=-left(1.02{left(10right)}_{text{stat}}{{(}_{-0.12}^{+0.00})}_{text{syst}}right)), ({a}_{mu }^{{text{f}}_{2}-{text{pole}}}=-left(3.2{left(3right)}_{text{stat}}{{(}_{-0.4}^{+0.0})}_{text{syst}}right)) and ({a}_{mu }^{{text{f}}_{2}{prime}-{text{pole}}}=-left(0.042{left(13right)}_{text{stat}}right)), which add up to ({a}_{mu }^{{text{a}}_{2}+{f}_{2}+{f}_{2}{prime}-{text{pole}}}=-left({4.3}_{-0.5}^{+0.3}right)), in close agreement with the holographic result when truncated to ({mathcal{F}}_{1}^{T}) only. However, with an ad-hoc extended Lagrangian, that also generates ({mathcal{F}}_{3}^{T}), as in the holographic approach, we have found: ({a}_{mu }^{{text{a}}_{2}-{text{pole}}}=+0.47{left(1.43right)}_{text{norm}}{left(3right)}_{text{stat}}{{(}_{-0.00}^{+0.06})}_{text{syst}}), ({a}_{mu }^{{text{f}}_{2}-{text{pole}}}=+1.18{left(4.18right)}_{text{norm}}{left(12right)}_{text{stat}}{{(}_{-0.00}^{+0.24})}_{text{syst}}) and ({a}_{mu }^{{text{f}}_{2}{prime}-{text{pole}}}=+0.040{left(78right)}_{text{norm}}{left(2right)}_{text{stat}}), summing to ({a}_{mu }^{{{a}_{2}+{f}_{2}+f}_{2}{prime}-{text{pole}}}=+1.7(4.4)), which agree with these recent determinations within uncertainties (dominated by the ({mathcal{F}}_{3}^{T}) normalization). We point out that RχT generates all five form factors, differently to previous approaches. The contributions to aμ of ({mathcal{F}}_{text{2,4},5}) cannot be evaluated in the current basis, preventing for the moment a complete calculation of ({a}_{mu }^{text{T}-{text{pole}}{text{s}}}) within our framework.

我们利用共振手性理论计算了纯强子区域中强子aμ的光-光片的张量介子极贡献。鉴于色散群和全息群测定之间的差异,以及由此产生的μ子g−2理论倡议第二白皮书中强子光-光部分相应不确定性估计的讨论,我们认为及时提出另一种评估方法。在我们的方法中,除了最轻的张量介子nonet外,在手性极限下还考虑了两个矢量介子共振nonet。忽略带有导数的算子,只有形式因子({mathcal{F}}_{1}^{T})不会消失,正如在色散研究中假设的那样。所有参数都是通过施加一组短距离QCD约束和辐射张量衰减宽度来确定的。在这种情况下,我们得到了不同贡献的以下结果(以10−11为单位):({a}_{mu }^{{text{a}}_{2}-{text{pole}}}=-left(1.02{left(10right)}_{text{stat}}{{(}_{-0.12}^{+0.00})}_{text{syst}}right)), ({a}_{mu }^{{text{f}}_{2}-{text{pole}}}=-left(3.2{left(3right)}_{text{stat}}{{(}_{-0.4}^{+0.0})}_{text{syst}}right))和({a}_{mu }^{{text{f}}_{2}{prime}-{text{pole}}}=-left(0.042{left(13right)}_{text{stat}}right)),它们加起来等于({a}_{mu }^{{text{a}}_{2}+{f}_{2}+{f}_{2}{prime}-{text{pole}}}=-left({4.3}_{-0.5}^{+0.3}right)),与仅截断为({mathcal{F}}_{1}^{T})时的全息结果非常一致。然而,使用一个特别扩展的拉格朗日,它也产生({mathcal{F}}_{3}^{T}),就像在全息方法中一样,我们发现:({a}_{mu }^{{text{a}}_{2}-{text{pole}}}=+0.47{left(1.43right)}_{text{norm}}{left(3right)}_{text{stat}}{{(}_{-0.00}^{+0.06})}_{text{syst}}), ({a}_{mu }^{{text{f}}_{2}-{text{pole}}}=+1.18{left(4.18right)}_{text{norm}}{left(12right)}_{text{stat}}{{(}_{-0.00}^{+0.24})}_{text{syst}})和({a}_{mu }^{{text{f}}_{2}{prime}-{text{pole}}}=+0.040{left(78right)}_{text{norm}}{left(2right)}_{text{stat}}),求和为({a}_{mu }^{{{a}_{2}+{f}_{2}+f}_{2}{prime}-{text{pole}}}=+1.7(4.4)),这与最近在不确定性(由({mathcal{F}}_{3}^{T})归一化主导)内的这些确定一致。我们指出,RχT与之前的方法不同,可以生成所有五种形状因子。在当前的基础上无法评估({mathcal{F}}_{text{2,4},5})对μ的贡献,因此暂时无法在我们的框架内完整地计算({a}_{mu }^{text{T}-{text{pole}}{text{s}}})。
{"title":"Tensor meson pole contributions to the HLbL piece of ({a}_{mu }^{text{HLbL}}) within RχT","authors":"Emilio J. Estrada,&nbsp;Pablo Roig","doi":"10.1007/JHEP01(2026)070","DOIUrl":"10.1007/JHEP01(2026)070","url":null,"abstract":"<p>We compute the tensor meson pole contributions to the Hadronic Light-by-Light piece of <i>a</i><sub><i>μ</i></sub> in the purely hadronic region, using Resonance Chiral Theory. Given the differences between the dispersive and holographic groups determinations and the resulting discussion of the corresponding uncertainty estimate for the Hadronic Light-by-Light section of the muon <i>g</i> − 2 theory initiative second White Paper, we consider timely to present an alternative evaluation. In our approach, in addition to the lightest tensor meson nonet, two vector meson resonance nonets are considered, in the chiral limit. Disregarding operators with derivatives, only the form factor <span>({mathcal{F}}_{1}^{T})</span> is non-vanishing, as assumed in the dispersive study. All parameters are determined by imposing a set of short-distance QCD constraints, and the radiative tensor decay widths. In this case, we obtain the following results for the different contributions (in units of 10<sup>−11</sup>): <span>({a}_{mu }^{{text{a}}_{2}-{text{pole}}}=-left(1.02{left(10right)}_{text{stat}}{{(}_{-0.12}^{+0.00})}_{text{syst}}right))</span>, <span>({a}_{mu }^{{text{f}}_{2}-{text{pole}}}=-left(3.2{left(3right)}_{text{stat}}{{(}_{-0.4}^{+0.0})}_{text{syst}}right))</span> and <span>({a}_{mu }^{{text{f}}_{2}{prime}-{text{pole}}}=-left(0.042{left(13right)}_{text{stat}}right))</span>, which add up to <span>({a}_{mu }^{{text{a}}_{2}+{f}_{2}+{f}_{2}{prime}-{text{pole}}}=-left({4.3}_{-0.5}^{+0.3}right))</span>, in close agreement with the holographic result when truncated to <span>({mathcal{F}}_{1}^{T})</span> only. However, with an ad-hoc extended Lagrangian, that also generates <span>({mathcal{F}}_{3}^{T})</span>, as in the holographic approach, we have found: <span>({a}_{mu }^{{text{a}}_{2}-{text{pole}}}=+0.47{left(1.43right)}_{text{norm}}{left(3right)}_{text{stat}}{{(}_{-0.00}^{+0.06})}_{text{syst}})</span>, <span>({a}_{mu }^{{text{f}}_{2}-{text{pole}}}=+1.18{left(4.18right)}_{text{norm}}{left(12right)}_{text{stat}}{{(}_{-0.00}^{+0.24})}_{text{syst}})</span> and <span>({a}_{mu }^{{text{f}}_{2}{prime}-{text{pole}}}=+0.040{left(78right)}_{text{norm}}{left(2right)}_{text{stat}})</span>, summing to <span>({a}_{mu }^{{{a}_{2}+{f}_{2}+f}_{2}{prime}-{text{pole}}}=+1.7(4.4))</span>, which agree with these recent determinations within uncertainties (dominated by the <span>({mathcal{F}}_{3}^{T})</span> normalization). We point out that <i>RχT</i> generates all five form factors, differently to previous approaches. The contributions to <i>a</i><sub><i>μ</i></sub> of <span>({mathcal{F}}_{text{2,4},5})</span> cannot be evaluated in the current basis, preventing for the moment a complete calculation of <span>({a}_{mu }^{text{T}-{text{pole}}{text{s}}})</span> within our framework.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)070.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145982657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NNLO predictions with nonlocal subtractions and fiducial power corrections in GENEVA 日内瓦非局部减法和基准功率修正的NNLO预测
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-09 DOI: 10.1007/JHEP01(2026)065
Simone Alioli, Georgios Billis, Alessandro Broggio, Giovanni Stagnitto

We present the implementation of next-to-next-to-leading order (NNLO) QCD fully-differential corrections within the Geneva framework, for both colour-singlet and colour-singlet+jet processes at hadron colliders, by employing a nonlocal subtraction approach. In particular, we discuss the implementation details and the challenges that arise when utilizing a dynamical infrared cutoff parameter. Additionally, we combine the subtraction with the projection-to-Born method in order to include fiducial power corrections. As a test case, we provide predictions for Drell-Yan and Z+jet production at the LHC, using N-jettiness as resolution variable. We validate the NNLO corrections of Geneva against nnlojet finding excellent agreement. Finally, we discuss how to extend our method to calculate the N3LO QCD fully-differential corrections to colour-singlet production at hadron colliders.

我们提出了在日内瓦框架内,通过采用非局部减法方法,对强子对撞机上的色单重态和色单重态+射流过程进行次至次至领先阶(NNLO) QCD全微分修正的实现。特别地,我们讨论了实现细节和使用动态红外截止参数时出现的挑战。此外,我们将减法与投影到出生方法相结合,以包括基准功率修正。作为一个测试案例,我们使用n -喷射度作为分辨率变量,对大型强子对撞机的Drell-Yan和Z+射流产生进行了预测。我们验证了日内瓦的NNLO修正与nnlojet的修正结果非常一致。最后,我们讨论了如何将计算N3LO QCD全微分修正的方法扩展到强子对撞机的色单重态产生。
{"title":"NNLO predictions with nonlocal subtractions and fiducial power corrections in GENEVA","authors":"Simone Alioli,&nbsp;Georgios Billis,&nbsp;Alessandro Broggio,&nbsp;Giovanni Stagnitto","doi":"10.1007/JHEP01(2026)065","DOIUrl":"10.1007/JHEP01(2026)065","url":null,"abstract":"<p>We present the implementation of next-to-next-to-leading order (NNLO) QCD fully-differential corrections within the G<span>eneva</span> framework, for both colour-singlet and colour-singlet+jet processes at hadron colliders, by employing a nonlocal subtraction approach. In particular, we discuss the implementation details and the challenges that arise when utilizing a dynamical infrared cutoff parameter. Additionally, we combine the subtraction with the projection-to-Born method in order to include fiducial power corrections. As a test case, we provide predictions for Drell-Yan and <i>Z</i>+jet production at the LHC, using <i>N</i>-jettiness as resolution variable. We validate the NNLO corrections of G<span>eneva</span> against <span>nnlojet</span> finding excellent agreement. Finally, we discuss how to extend our method to calculate the N<sup>3</sup>LO QCD fully-differential corrections to colour-singlet production at hadron colliders.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)065.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145982658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling dark Higgs mechanism via dark photon production at an e+e− collider 通过在e+e−对撞机上产生暗光子来揭示暗希格斯机制
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-09 DOI: 10.1007/JHEP01(2026)071
Song Li, Jin Min Yang, Mengchao Zhang, Yang Zhang, Rui Zhu

In the phenomenological study of dark photon, its mass origin is usually not of concern. However, in theoretical model construction, its mass is often generated via a dark Higgs mechanism, which leads to the presence of a light (non-decoupled) dark Higgs particle. In this work, we study the impact of such a dark Higgs particle on the collider detection of the dark photon. We focus on the process of final state dark photon radiating dark Higgs, which is called dark final state radiation (FSR). Considering the effects on both the signal cross section and the distribution of the squared missing mass, the invisible dark photon search at BaBar is reanalyzed and a new exclusion limit for invisible dark photon is presented.

在暗光子的现象学研究中,其质量来源通常不受关注。然而,在理论模型构建中,它的质量通常是通过暗希格斯机制产生的,这导致了一个轻的(非解耦的)暗希格斯粒子的存在。在这项工作中,我们研究了这种暗希格斯粒子对对撞机探测暗光子的影响。研究了暗光子辐射暗希格斯粒子的最终态过程,称为暗终态辐射(FSR)。考虑到对信号截面和缺失质量平方分布的影响,重新分析了BaBar的不可见暗光子搜索,提出了新的不可见暗光子排除极限。
{"title":"Unraveling dark Higgs mechanism via dark photon production at an e+e− collider","authors":"Song Li,&nbsp;Jin Min Yang,&nbsp;Mengchao Zhang,&nbsp;Yang Zhang,&nbsp;Rui Zhu","doi":"10.1007/JHEP01(2026)071","DOIUrl":"10.1007/JHEP01(2026)071","url":null,"abstract":"<p>In the phenomenological study of dark photon, its mass origin is usually not of concern. However, in theoretical model construction, its mass is often generated via a dark Higgs mechanism, which leads to the presence of a light (non-decoupled) dark Higgs particle. In this work, we study the impact of such a dark Higgs particle on the collider detection of the dark photon. We focus on the process of final state dark photon radiating dark Higgs, which is called dark final state radiation (FSR). Considering the effects on both the signal cross section and the distribution of the squared missing mass, the invisible dark photon search at BaBar is reanalyzed and a new exclusion limit for invisible dark photon is presented.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)071.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A model-independent measurement of the CKM angle γ in the decays B± → [K+K−π+π−]Dh± and B± → [π+π−π+π−]Dh± (h = K, π) B±→[K+K−π+π−]Dh±和B±→[π+π−π+π−]Dh±(h = K, π)中CKM角γ与模型无关的测量
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-09 DOI: 10.1007/JHEP01(2026)062
The LHCb collaboration, R. Aaij, A. S. W. Abdelmotteleb, C. Abellan Beteta, F. Abudinén, T. Ackernley, A. A. Adefisoye, B. Adeva, M. Adinolfi, P. Adlarson, C. Agapopoulou, C. A. Aidala, Z. Ajaltouni, S. Akar, K. Akiba, P. Albicocco, J. Albrecht, R. Aleksiejunas, F. Alessio, Z. Aliouche, P. Alvarez Cartelle, R. Amalric, S. Amato, J. L. Amey, Y. Amhis, L. An, L. Anderlini, M. Andersson, P. Andreola, M. Andreotti, S. Andres Estrada, A. Anelli, D. Ao, F. Archilli, Z. Areg, M. Argenton, S. Arguedas Cuendis, A. Artamonov, M. Artuso, E. Aslanides, R. Ataíde Da Silva, M. Atzeni, B. Audurier, J. A. Authier, D. Bacher, I. Bachiller Perea, S. Bachmann, M. Bachmayer, J. J. Back, P. Baladron Rodriguez, V. Balagura, A. Balboni, W. Baldini, L. Balzani, H. Bao, J. Baptista de Souza Leite, C. Barbero Pretel, M. Barbetti, I. R. Barbosa, R. J. Barlow, M. Barnyakov, S. Barsuk, W. Barter, J. Bartz, S. Bashir, B. Batsukh, P. B. Battista, A. Bay, A. Beck, M. Becker, F. Bedeschi, I. B. Bediaga, N. A. Behling, S. Belin, K. Belous, I. Belov, I. Belyaev, G. Benane, G. Bencivenni, E. Ben-Haim, A. Berezhnoy, R. Bernet, S. Bernet Andres, A. Bertolin, C. Betancourt, F. Betti, J. Bex, Ia. Bezshyiko, O. Bezshyyko, J. Bhom, M. S. Bieker, N. V. Biesuz, P. Billoir, A. Biolchini, M. Birch, F. C. R. Bishop, A. Bitadze, A. Bizzeti, T. Blake, F. Blanc, J. E. Blank, S. Blusk, V. Bocharnikov, J. A. Boelhauve, O. Boente Garcia, T. Boettcher, A. Bohare, A. Boldyrev, C. S. Bolognani, R. Bolzonella, R. B. Bonacci, N. Bondar, A. Bordelius, F. Borgato, S. Borghi, M. Borsato, J. T. Borsuk, E. Bottalico, S. A. Bouchiba, M. Bovill, T. J. V. Bowcock, A. Boyer, C. Bozzi, J. D. Brandenburg, A. Brea Rodriguez, N. Breer, J. Brodzicka, A. Brossa Gonzalo, J. Brown, D. Brundu, E. Buchanan, L. Buonincontri, M. Burgos Marcos, A. T. Burke, C. Burr, J. S. Butter, J. Buytaert, W. Byczynski, S. Cadeddu, H. Cai, Y. Cai, A. Caillet, R. Calabrese, S. Calderon Ramirez, L. Calefice, S. Cali, M. Calvi, M. Calvo Gomez, P. Camargo Magalhaes, J. I. Cambon Bouzas, P. Campana, D. H. Campora Perez, A. F. Campoverde Quezada, S. Capelli, L. Capriotti, R. Caravaca-Mora, A. Carbone, L. Carcedo Salgado, R. Cardinale, A. Cardini, P. Carniti, L. Carus, A. Casais Vidal, R. Caspary, G. Casse, M. Cattaneo, G. Cavallero, V. Cavallini, S. Celani, S. Cesare, A. J. Chadwick, I. Chahrour, H. Chang, M. Charles, Ph. Charpentier, E. Chatzianagnostou, R. Cheaib, M. Chefdeville, C. Chen, J. Chen, S. Chen, Z. Chen, M. Cherif, A. Chernov, S. Chernyshenko, X. Chiotopoulos, V. Chobanova, M. Chrzaszcz, A. Chubykin, V. Chulikov, P. Ciambrone, X. Cid Vidal, G. Ciezarek, P. Cifra, P. E. L. Clarke, M. Clemencic, H. V. Cliff, J. Closier, C. Cocha Toapaxi, V. Coco, J. Cogan, E. Cogneras, L. Cojocariu, S. Collaviti, P. Collins, T. Colombo, M. Colonna, A. Comerma-Montells, L. Congedo, J. Connaughton, A. Contu, N. Cooke, C. Coronel, I. Corredoira, A. Correia, G. Corti, J. Cottee Meldrum, B. Couturier, D. C. Craik, M. Cruz Torres, E. Curras Rivera, R. Currie, C. L. Da Silva, S. Dadabaev, L. Dai, X. Dai, E. Dall’Occo, J. Dalseno, C. D’Ambrosio, J. Daniel, P. d’Argent, G. Darze, A. Davidson, J. E. Davies, O. De Aguiar Francisco, C. De Angelis, F. De Benedetti, J. de Boer, K. De Bruyn, S. De Capua, M. De Cian, U. De Freitas Carneiro Da Graca, E. De Lucia, J. M. De Miranda, L. De Paula, M. De Serio, P. De Simone, F. De Vellis, J. A. de Vries, F. Debernardis, D. Decamp, S. Dekkers, L. Del Buono, B. Delaney, H.-P. Dembinski, J. Deng, V. Denysenko, O. Deschamps, F. Dettori, B. Dey, P. Di Nezza, I. Diachkov, S. Didenko, S. Ding, Y. Ding, L. Dittmann, V. Dobishuk, A. D. Docheva, A. Doheny, C. Dong, A. M. Donohoe, F. Dordei, A. C. dos Reis, A. D. Dowling, L. Dreyfus, W. Duan, P. Duda, M. W. Dudek, L. Dufour, V. Duk, P. Durante, M. M. Duras, J. M. Durham, O. D. Durmus, A. Dziurda, A. Dzyuba, S. Easo, E. Eckstein, U. Egede, A. Egorychev, V. Egorychev, S. Eisenhardt, E. Ejopu, L. Eklund, M. Elashri, J. Ellbracht, S. Ely, A. Ene, J. Eschle, S. Esen, T. Evans, F. Fabiano, S. Faghih, L. N. Falcao, B. Fang, R. Fantechi, L. Fantini, M. Faria, K. Farmer, D. Fazzini, L. Felkowski, M. Feng, M. Feo, A. Fernandez Casani, M. Fernandez Gomez, A. D. Fernez, F. Ferrari, F. Ferreira Rodrigues, M. Ferrillo, M. Ferro-Luzzi, S. Filippov, R. A. Fini, M. Fiorini, M. Firlej, K. L. Fischer, D. S. Fitzgerald, C. Fitzpatrick, T. Fiutowski, F. Fleuret, A. Fomin, M. Fontana, L. F. Foreman, R. Forty, D. Foulds-Holt, V. Franco Lima, M. Franco Sevilla, M. Frank, E. Franzoso, G. Frau, C. Frei, D. A. Friday, J. Fu, Q. Führing, T. Fulghesu, G. Galati, M. D. Galati, A. Gallas Torreira, D. Galli, S. Gambetta, M. Gandelman, P. Gandini, B. Ganie, H. Gao, R. Gao, T. Q. Gao, Y. Gao, Y. Gao, Y. Gao, L. M. Garcia Martin, P. Garcia Moreno, J. García Pardiñas, P. Gardner, K. G. Garg, L. Garrido, C. Gaspar, A. Gavrikov, L. L. Gerken, E. Gersabeck, M. Gersabeck, T. Gershon, S. Ghizzo, Z. Ghorbanimoghaddam, L. Giambastiani, F. I. Giasemis, V. Gibson, H. K. Giemza, A. L. Gilman, M. Giovannetti, A. Gioventù, L. Girardey, M. A. Giza, F. C. Glaser, V. V. Gligorov, C. Göbel, L. Golinka-Bezshyyko, E. Golobardes, D. Golubkov, A. Golutvin, S. Gomez Fernandez, W. Gomulka, I. Gonçales Vaz, F. Goncalves Abrantes, M. Goncerz, G. Gong, J. A. Gooding, I. V. Gorelov, C. Gotti, E. Govorkova, J. P. Grabowski, L. A. Granado Cardoso, E. Graugés, E. Graverini, L. Grazette, G. Graziani, A. T. Grecu, L. M. Greeven, N. A. Grieser, L. Grillo, S. Gromov, C. Gu, M. Guarise, L. Guerry, V. Guliaeva, P. A. Günther, A.-K. Guseinov, E. Gushchin, Y. Guz, T. Gys, K. Habermann, T. Hadavizadeh, C. Hadjivasiliou, G. Haefeli, C. Haen, S. Haken, G. Hallett, P. M. Hamilton, J. Hammerich, Q. Han, X. Han, S. Hansmann-Menzemer, L. Hao, N. Harnew, T. H. Harris, M. Hartmann, S. Hashmi, J. He, A. Hedes, F. Hemmer, C. Henderson, R. Henderson, R. D. L. Henderson, A. M. Hennequin, K. Hennessy, L. Henry, J. Herd, P. Herrero Gascon, J. Heuel, A. Hicheur, G. Hijano Mendizabal, J. Horswill, R. Hou, Y. Hou, D. C. Houston, N. Howarth, J. Hu, W. Hu, X. Hu, W. Hulsbergen, R. J. Hunter, M. Hushchyn, D. Hutchcroft, M. Idzik, D. Ilin, P. Ilten, A. Iniukhin, A. Ishteev, K. Ivshin, H. Jage, S. J. Jaimes Elles, S. Jakobsen, E. Jans, B. K. Jashal, A. Jawahery, C. Jayaweera, V. Jevtic, Z. Jia, E. Jiang, X. Jiang, Y. Jiang, Y. J. Jiang, E. Jimenez Moya, N. Jindal, M. John, A. John Rubesh Rajan, D. Johnson, C. R. Jones, S. Joshi, B. Jost, J. Juan Castella, N. Jurik, I. Juszczak, D. Kaminaris, S. Kandybei, M. Kane, Y. Kang, C. Kar, M. Karacson, A. Kauniskangas, J. W. Kautz, M. K. Kazanecki, F. Keizer, M. Kenzie, T. Ketel, B. Khanji, A. Kharisova, S. Kholodenko, G. Khreich, T. Kirn, V. S. Kirsebom, O. Kitouni, S. Klaver, N. Kleijne, K. Klimaszewski, M. R. Kmiec, S. Koliiev, L. Kolk, A. Konoplyannikov, P. Kopciewicz, P. Koppenburg, A. Korchin, M. Korolev, I. Kostiuk, O. Kot, S. Kotriakhova, E. Kowalczyk, A. Kozachuk, P. Kravchenko, L. Kravchuk, O. Kravcov, M. Kreps, P. Krokovny, W. Krupa, W. Krzemien, O. Kshyvanskyi, S. Kubis, M. Kucharczyk, V. Kudryavtsev, E. Kulikova, A. Kupsc, V. Kushnir, B. Kutsenko, I. Kyryllin, D. Lacarrere, P. Laguarta Gonzalez, A. Lai, A. Lampis, D. Lancierini, C. Landesa Gomez, J. J. Lane, G. Lanfranchi, C. Langenbruch, J. Langer, O. Lantwin, T. Latham, F. Lazzari, C. Lazzeroni, R. Le Gac, H. Lee, R. Lefèvre, A. Leflat, S. Legotin, M. Lehuraux, E. Lemos Cid, O. Leroy, T. Lesiak, E. D. Lesser, B. Leverington, A. Li, C. Li, C. Li, H. Li, J. Li, K. Li, L. Li, M. Li, P. Li, P.-R. Li, Q. Li, T. Li, T. Li, Y. Li, Y. Li, Y. Li, Z. Lian, Q. Liang, X. Liang, S. Libralon, A. L. Lightbody, C. Lin, T. Lin, R. Lindner, H. Linton, R. Litvinov, D. Liu, F. L. Liu, G. Liu, K. Liu, S. Liu, W. Liu, Y. Liu, Y. Liu, Y. L. Liu, G. Loachamin Ordonez, A. Lobo Salvia, A. Loi, T. Long, F. C. L. Lopes, J. H. Lopes, A. Lopez Huertas, C. Lopez Iribarnegaray, S. López Soliño, Q. Lu, C. Lucarelli, D. Lucchesi, M. Lucio Martinez, Y. Luo, A. Lupato, E. Luppi, K. Lynch, X.-R. Lyu, G. M. Ma, S. Maccolini, F. Machefert, F. Maciuc, B. Mack, I. Mackay, L. M. Mackey, L. R. Madhan Mohan, M. J. Madurai, D. Magdalinski, D. Maisuzenko, J. J. Malczewski, S. Malde, L. Malentacca, A. Malinin, T. Maltsev, G. Manca, G. Mancinelli, C. Mancuso, R. Manera Escalero, F. M. Manganella, D. Manuzzi, D. Marangotto, J. F. Marchand, R. Marchevski, U. Marconi, E. Mariani, S. Mariani, C. Marin Benito, J. Marks, A. M. Marshall, L. Martel, G. Martelli, G. Martellotti, L. Martinazzoli, M. Martinelli, D. Martinez Gomez, D. Martinez Santos, F. Martinez Vidal, A. Martorell i Granollers, A. Massafferri, R. Matev, A. Mathad, V. Matiunin, C. Matteuzzi, K. R. Mattioli, A. Mauri, E. Maurice, J. Mauricio, P. Mayencourt, J. Mazorra de Cos, M. Mazurek, M. McCann, T. H. McGrath, N. T. McHugh, A. McNab, R. McNulty, B. Meadows, G. Meier, D. Melnychuk, D. Mendoza Granada, F. M. Meng, M. Merk, A. Merli, L. Meyer Garcia, D. Miao, H. Miao, M. Mikhasenko, D. A. Milanes, A. Minotti, E. Minucci, T. Miralles, B. Mitreska, D. S. Mitzel, A. Modak, L. Moeser, R. D. Moise, E. F. Molina Cardenas, T. Mombächer, M. Monk, S. Monteil, A. Morcillo Gomez, G. Morello, M. J. Morello, M. P. Morgenthaler, J. Moron, W. Morren, A. B. Morris, A. G. Morris, R. Mountain, H. Mu, Z. M. Mu, E. Muhammad, F. Muheim, M. Mulder, K. Müller, F. Muñoz-Rojas, R. Murta, V. Mytrochenko, P. Naik, T. Nakada, R. Nandakumar, T. Nanut, I. Nasteva, M. Needham, E. Nekrasova, N. Neri, S. Neubert, N. Neufeld, P. Neustroev, J. Nicolini, D. Nicotra, E. M. Niel, N. Nikitin, Q. Niu, P. Nogarolli, P. Nogga, C. Normand, J. Novoa Fernandez, G. Nowak, C. Nunez, H. N. Nur, A. Oblakowska-Mucha, V. Obraztsov, T. Oeser, A. Okhotnikov, O. Okhrimenko, R. Oldeman, F. Oliva, E. Olivart Pino, M. Olocco, C. J. G. Onderwater, R. H. O’Neil, J. S. Ordonez Soto, D. Osthues, J. M. Otalora Goicochea, P. Owen, A. Oyanguren, O. Ozcelik, F. Paciolla, A. Padee, K. O. Padeken, B. Pagare, T. Pajero, A. Palano, M. Palutan, C. Pan, X. Pan, S. Panebianco, G. Panshin, L. Paolucci, A. Papanestis, M. Pappagallo, L. L. Pappalardo, C. Pappenheimer, C. Parkes, D. Parmar, B. Passalacqua, G. Passaleva, D. Passaro, A. Pastore, M. Patel, J. Patoc, C. Patrignani, A. Paul, C. J. Pawley, A. Pellegrino, J. Peng, X. Peng, M. Pepe Altarelli, S. Perazzini, D. Pereima, H. Pereira Da Costa, M. Pereira Martinez, A. Pereiro Castro, C. Perez, P. Perret, A. Perrevoort, A. Perro, M. J. Peters, K. Petridis, A. Petrolini, J. P. Pfaller, H. Pham, L. Pica, M. Piccini, L. Piccolo, B. Pietrzyk, G. Pietrzyk, R. N. Pilato, D. Pinci, F. Pisani, M. Pizzichemi, V. M. Placinta, M. Plo Casasus, T. Poeschl, F. Polci, M. Poli Lener, A. Poluektov, N. Polukhina, I. Polyakov, E. Polycarpo, S. Ponce, D. Popov, S. Poslavskii, K. Prasanth, C. Prouve, D. Provenzano, V. Pugatch, G. Punzi, S. Qasim, Q. Q. Qian, W. Qian, N. Qin, S. Qu, R. Quagliani, R. I. Rabadan Trejo, R. Racz, J. H. Rademacker, M. Rama, M. Ramírez García, V. Ramos De Oliveira, M. Ramos Pernas, M. S. Rangel, F. Ratnikov, G. Raven, M. Rebollo De Miguel, F. Redi, J. Reich, F. Reiss, Z. Ren, P. K. Resmi, M. Ribalda Galvez, R. Ribatti, G. Ricart, D. Riccardi, S. Ricciardi, K. Richardson, M. Richardson-Slipper, K. Rinnert, P. Robbe, G. Robertson, E. Rodrigues, A. Rodriguez Alvarez, E. Rodriguez Fernandez, J. A. Rodriguez Lopez, E. Rodriguez Rodriguez, J. Roensch, A. Rogachev, A. Rogovskiy, D. L. Rolf, P. Roloff, V. Romanovskiy, A. Romero Vidal, G. Romolini, F. Ronchetti, T. Rong, M. Rotondo, S. R. Roy, M. S. Rudolph, M. Ruiz Diaz, R. A. Ruiz Fernandez, J. Ruiz Vidal, J. J. Saavedra-Arias, J. J. Saborido Silva, S. E. R. Sacha Emile R., R. Sadek, N. Sagidova, D. Sahoo, N. Sahoo, B. Saitta, M. Salomoni, I. Sanderswood, R. Santacesaria, C. Santamarina Rios, M. Santimaria, L. Santoro, E. Santovetti, A. Saputi, D. Saranin, A. Sarnatskiy, G. Sarpis, M. Sarpis, C. Satriano, A. Satta, M. Saur, D. Savrina, H. Sazak, F. Sborzacchi, A. Scarabotto, S. Schael, S. Scherl, M. Schiller, H. Schindler, M. Schmelling, B. Schmidt, S. Schmitt, H. Schmitz, O. Schneider, A. Schopper, N. Schulte, M. H. Schune, G. Schwering, B. Sciascia, A. Sciuccati, I. Segal, S. Sellam, A. Semennikov, T. Senger, M. Senghi Soares, A. Sergi, N. Serra, L. Sestini, A. Seuthe, B. Sevilla Sanjuan, Y. Shang, D. M. Shangase, M. Shapkin, R. S. Sharma, I. Shchemerov, L. Shchutska, T. Shears, L. Shekhtman, Z. Shen, S. Sheng, V. Shevchenko, B. Shi, Q. Shi, W. S. Shi, Y. Shimizu, E. Shmanin, R. Shorkin, J. D. Shupperd, R. Silva Coutinho, G. Simi, S. Simone, M. Singha, N. Skidmore, T. Skwarnicki, M. W. Slater, E. Smith, K. Smith, M. Smith, L. Soares Lavra, M. D. Sokoloff, F. J. P. Soler, A. Solomin, A. Solovev, N. S. Sommerfeld, R. Song, Y. Song, Y. Song, Y. S. Song, F. L. Souza De Almeida, B. Souza De Paula, K. M. Sowa, E. Spadaro Norella, E. Spedicato, J. G. Speer, P. Spradlin, V. Sriskaran, F. Stagni, M. Stahl, S. Stahl, S. Stanislaus, M. Stefaniak, E. N. Stein, O. Steinkamp, H. Stevens, D. Strekalina, Y. Su, F. Suljik, J. Sun, J. Sun, L. Sun, D. Sundfeld, W. Sutcliffe, K. Swientek, F. Swystun, A. Szabelski, T. Szumlak, Y. Tan, Y. Tang, Y. T. Tang, M. D. Tat, J. A. Teijeiro Jimenez, A. Terentev, F. Terzuoli, F. Teubert, E. Thomas, D. J. D. Thompson, A. R. Thomson-Strong, H. Tilquin, V. Tisserand, S. T’Jampens, M. Tobin, T. T. Todorov, L. Tomassetti, G. Tonani, X. Tong, T. Tork, D. Torres Machado, L. Toscano, D. Y. Tou, C. Trippl, G. Tuci, N. Tuning, L. H. Uecker, A. Ukleja, D. J. Unverzagt, A. Upadhyay, B. Urbach, A. Usachov, A. Ustyuzhanin, U. Uwer, V. Vagnoni, V. Valcarce Cadenas, G. Valenti, N. Valls Canudas, J. van Eldik, H. Van Hecke, E. van Herwijnen, C. B. Van Hulse, R. Van Laak, M. van Veghel, G. Vasquez, R. Vazquez Gomez, P. Vazquez Regueiro, C. Vázquez Sierra, S. Vecchi, J. J. Velthuis, M. Veltri, A. Venkateswaran, M. Verdoglia, M. Vesterinen, W. Vetens, D. Vico Benet, P. Vidrier Villalba, M. Vieites Diaz, X. Vilasis-Cardona, E. Vilella Figueras, A. Villa, P. Vincent, B. Vivacqua, F. C. Volle, D. vom Bruch, N. Voropaev, K. Vos, C. Vrahas, J. Wagner, J. Walsh, E. J. Walton, G. Wan, A. Wang, B. Wang, C. Wang, G. Wang, H. Wang, J. Wang, J. Wang, J. Wang, J. Wang, M. Wang, N. W. Wang, R. Wang, X. Wang, X. Wang, X. W. Wang, Y. Wang, Y. Wang, Y. H. Wang, Z. Wang, Z. Wang, Z. Wang, J. A. Ward, M. Waterlaat, N. K. Watson, D. Websdale, Y. Wei, J. Wendel, B. D. C. Westhenry, C. White, M. Whitehead, E. Whiter, A. R. Wiederhold, D. Wiedner, M. A. Wiegertjes, C. Wild, G. Wilkinson, M. K. Wilkinson, M. Williams, M. J. Williams, M. R. J. Williams, R. Williams, S. Williams, Z. Williams, F. F. Wilson, M. Winn, W. Wislicki, M. Witek, L. Witola, T. Wolf, E. Wood, G. Wormser, S. A. Wotton, H. Wu, J. Wu, X. Wu, Y. Wu, Z. Wu, K. Wyllie, S. Xian, Z. Xiang, Y. Xie, T. X. Xing, A. Xu, L. Xu, L. Xu, M. Xu, Z. Xu, Z. Xu, Z. Xu, K. Yang, X. Yang, Y. Yang, Z. Yang, V. Yeroshenko, H. Yeung, H. Yin, X. Yin, C. Y. Yu, J. Yu, X. Yuan, Y Yuan, E. Zaffaroni, M. Zavertyaev, M. Zdybal, F. Zenesini, C. Zeng, M. Zeng, C. Zhang, D. Zhang, J. Zhang, L. Zhang, R. Zhang, S. Zhang, S. Zhang, Y. Zhang, Y. Z. Zhang, Z. Zhang, Y. Zhao, A. Zhelezov, S. Z. Zheng, X. Z. Zheng, Y. Zheng, T. Zhou, X. Zhou, Y. Zhou, V. Zhovkovska, L. Z. Zhu, X. Zhu, X. Zhu, Y. Zhu, V. Zhukov, J. Zhuo, Q. Zou, D. Zuliani, G. Zunica

A model-independent determination of the CKM angle γ is presented, using the B± → [K+Kπ+π]Dh± and B± → [π+ππ+π]Dh± decays, with h = K, π. This measurement is the first phase-space binned study of these decay modes, and uses a sample of proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb1. The phase-space bins are optimised for sensitivity to γ, and in each bin external inputs from the BESIII experiment are used to constrain the charm strong-phase parameters. The result of this binned analysis is ( gamma ={left(53.{9}_{-8.9}^{+9.5}right)}^{{}^{circ}} ), where the uncertainty includes both statistical and systematic contributions. Furthermore, when combining with existing phase-space integrated measurements of the same decay modes, a value of ( gamma ={left(52.{6}_{-6.4}^{+8.5}right)}^{{}^{circ}} ) is obtained, which is one of the most precise determinations of γ to date.

利用B±→[K+K−π+π−]Dh±和B±→[π+π−π+π−]Dh±衰变,h = K, π,给出了与模型无关的CKM角γ的确定方法。这是第一次对这些衰变模式进行相空间分组研究,并使用了由LHCb实验收集的质子-质子碰撞数据样本,对应于9 fb−1的综合光度。相空间仓对γ的灵敏度进行了优化,并且在每个仓中使用BESIII实验的外部输入来约束魅力强相参数。这种分类分析的结果是( gamma ={left(53.{9}_{-8.9}^{+9.5}right)}^{{}^{circ}} ),其中的不确定性包括统计和系统贡献。此外,当与现有的相同衰减模式的相空间集成测量相结合时,得到了( gamma ={left(52.{6}_{-6.4}^{+8.5}right)}^{{}^{circ}} )的值,这是迄今为止最精确的γ测定之一。
{"title":"A model-independent measurement of the CKM angle γ in the decays B± → [K+K−π+π−]Dh± and B± → [π+π−π+π−]Dh± (h = K, π)","authors":"The LHCb collaboration,&nbsp;R. Aaij,&nbsp;A. S. W. Abdelmotteleb,&nbsp;C. Abellan Beteta,&nbsp;F. Abudinén,&nbsp;T. Ackernley,&nbsp;A. A. Adefisoye,&nbsp;B. Adeva,&nbsp;M. Adinolfi,&nbsp;P. Adlarson,&nbsp;C. Agapopoulou,&nbsp;C. A. Aidala,&nbsp;Z. Ajaltouni,&nbsp;S. Akar,&nbsp;K. Akiba,&nbsp;P. Albicocco,&nbsp;J. Albrecht,&nbsp;R. Aleksiejunas,&nbsp;F. Alessio,&nbsp;Z. Aliouche,&nbsp;P. Alvarez Cartelle,&nbsp;R. Amalric,&nbsp;S. Amato,&nbsp;J. L. Amey,&nbsp;Y. Amhis,&nbsp;L. An,&nbsp;L. Anderlini,&nbsp;M. Andersson,&nbsp;P. Andreola,&nbsp;M. Andreotti,&nbsp;S. Andres Estrada,&nbsp;A. Anelli,&nbsp;D. Ao,&nbsp;F. Archilli,&nbsp;Z. Areg,&nbsp;M. Argenton,&nbsp;S. Arguedas Cuendis,&nbsp;A. Artamonov,&nbsp;M. Artuso,&nbsp;E. Aslanides,&nbsp;R. Ataíde Da Silva,&nbsp;M. Atzeni,&nbsp;B. Audurier,&nbsp;J. A. Authier,&nbsp;D. Bacher,&nbsp;I. Bachiller Perea,&nbsp;S. Bachmann,&nbsp;M. Bachmayer,&nbsp;J. J. Back,&nbsp;P. Baladron Rodriguez,&nbsp;V. Balagura,&nbsp;A. Balboni,&nbsp;W. Baldini,&nbsp;L. Balzani,&nbsp;H. Bao,&nbsp;J. Baptista de Souza Leite,&nbsp;C. Barbero Pretel,&nbsp;M. Barbetti,&nbsp;I. R. Barbosa,&nbsp;R. J. Barlow,&nbsp;M. Barnyakov,&nbsp;S. Barsuk,&nbsp;W. Barter,&nbsp;J. Bartz,&nbsp;S. Bashir,&nbsp;B. Batsukh,&nbsp;P. B. Battista,&nbsp;A. Bay,&nbsp;A. Beck,&nbsp;M. Becker,&nbsp;F. Bedeschi,&nbsp;I. B. Bediaga,&nbsp;N. A. Behling,&nbsp;S. Belin,&nbsp;K. Belous,&nbsp;I. Belov,&nbsp;I. Belyaev,&nbsp;G. Benane,&nbsp;G. Bencivenni,&nbsp;E. Ben-Haim,&nbsp;A. Berezhnoy,&nbsp;R. Bernet,&nbsp;S. Bernet Andres,&nbsp;A. Bertolin,&nbsp;C. Betancourt,&nbsp;F. Betti,&nbsp;J. Bex,&nbsp;Ia. Bezshyiko,&nbsp;O. Bezshyyko,&nbsp;J. Bhom,&nbsp;M. S. Bieker,&nbsp;N. V. Biesuz,&nbsp;P. Billoir,&nbsp;A. Biolchini,&nbsp;M. Birch,&nbsp;F. C. R. Bishop,&nbsp;A. Bitadze,&nbsp;A. Bizzeti,&nbsp;T. Blake,&nbsp;F. Blanc,&nbsp;J. E. Blank,&nbsp;S. Blusk,&nbsp;V. Bocharnikov,&nbsp;J. A. Boelhauve,&nbsp;O. Boente Garcia,&nbsp;T. Boettcher,&nbsp;A. Bohare,&nbsp;A. Boldyrev,&nbsp;C. S. Bolognani,&nbsp;R. Bolzonella,&nbsp;R. B. Bonacci,&nbsp;N. Bondar,&nbsp;A. Bordelius,&nbsp;F. Borgato,&nbsp;S. Borghi,&nbsp;M. Borsato,&nbsp;J. T. Borsuk,&nbsp;E. Bottalico,&nbsp;S. A. Bouchiba,&nbsp;M. Bovill,&nbsp;T. J. V. Bowcock,&nbsp;A. Boyer,&nbsp;C. Bozzi,&nbsp;J. D. Brandenburg,&nbsp;A. Brea Rodriguez,&nbsp;N. Breer,&nbsp;J. Brodzicka,&nbsp;A. Brossa Gonzalo,&nbsp;J. Brown,&nbsp;D. Brundu,&nbsp;E. Buchanan,&nbsp;L. Buonincontri,&nbsp;M. Burgos Marcos,&nbsp;A. T. Burke,&nbsp;C. Burr,&nbsp;J. S. Butter,&nbsp;J. Buytaert,&nbsp;W. Byczynski,&nbsp;S. Cadeddu,&nbsp;H. Cai,&nbsp;Y. Cai,&nbsp;A. Caillet,&nbsp;R. Calabrese,&nbsp;S. Calderon Ramirez,&nbsp;L. Calefice,&nbsp;S. Cali,&nbsp;M. Calvi,&nbsp;M. Calvo Gomez,&nbsp;P. Camargo Magalhaes,&nbsp;J. I. Cambon Bouzas,&nbsp;P. Campana,&nbsp;D. H. Campora Perez,&nbsp;A. F. Campoverde Quezada,&nbsp;S. Capelli,&nbsp;L. Capriotti,&nbsp;R. Caravaca-Mora,&nbsp;A. Carbone,&nbsp;L. Carcedo Salgado,&nbsp;R. Cardinale,&nbsp;A. Cardini,&nbsp;P. Carniti,&nbsp;L. Carus,&nbsp;A. Casais Vidal,&nbsp;R. Caspary,&nbsp;G. Casse,&nbsp;M. Cattaneo,&nbsp;G. Cavallero,&nbsp;V. Cavallini,&nbsp;S. Celani,&nbsp;S. Cesare,&nbsp;A. J. Chadwick,&nbsp;I. Chahrour,&nbsp;H. Chang,&nbsp;M. Charles,&nbsp;Ph. Charpentier,&nbsp;E. Chatzianagnostou,&nbsp;R. Cheaib,&nbsp;M. Chefdeville,&nbsp;C. Chen,&nbsp;J. Chen,&nbsp;S. Chen,&nbsp;Z. Chen,&nbsp;M. Cherif,&nbsp;A. Chernov,&nbsp;S. Chernyshenko,&nbsp;X. Chiotopoulos,&nbsp;V. Chobanova,&nbsp;M. Chrzaszcz,&nbsp;A. Chubykin,&nbsp;V. Chulikov,&nbsp;P. Ciambrone,&nbsp;X. Cid Vidal,&nbsp;G. Ciezarek,&nbsp;P. Cifra,&nbsp;P. E. L. Clarke,&nbsp;M. Clemencic,&nbsp;H. V. Cliff,&nbsp;J. Closier,&nbsp;C. Cocha Toapaxi,&nbsp;V. Coco,&nbsp;J. Cogan,&nbsp;E. Cogneras,&nbsp;L. Cojocariu,&nbsp;S. Collaviti,&nbsp;P. Collins,&nbsp;T. Colombo,&nbsp;M. Colonna,&nbsp;A. Comerma-Montells,&nbsp;L. Congedo,&nbsp;J. Connaughton,&nbsp;A. Contu,&nbsp;N. Cooke,&nbsp;C. Coronel,&nbsp;I. Corredoira,&nbsp;A. Correia,&nbsp;G. Corti,&nbsp;J. Cottee Meldrum,&nbsp;B. Couturier,&nbsp;D. C. Craik,&nbsp;M. Cruz Torres,&nbsp;E. Curras Rivera,&nbsp;R. Currie,&nbsp;C. L. Da Silva,&nbsp;S. Dadabaev,&nbsp;L. Dai,&nbsp;X. Dai,&nbsp;E. Dall’Occo,&nbsp;J. Dalseno,&nbsp;C. D’Ambrosio,&nbsp;J. Daniel,&nbsp;P. d’Argent,&nbsp;G. Darze,&nbsp;A. Davidson,&nbsp;J. E. Davies,&nbsp;O. De Aguiar Francisco,&nbsp;C. De Angelis,&nbsp;F. De Benedetti,&nbsp;J. de Boer,&nbsp;K. De Bruyn,&nbsp;S. De Capua,&nbsp;M. De Cian,&nbsp;U. De Freitas Carneiro Da Graca,&nbsp;E. De Lucia,&nbsp;J. M. De Miranda,&nbsp;L. De Paula,&nbsp;M. De Serio,&nbsp;P. De Simone,&nbsp;F. De Vellis,&nbsp;J. A. de Vries,&nbsp;F. Debernardis,&nbsp;D. Decamp,&nbsp;S. Dekkers,&nbsp;L. Del Buono,&nbsp;B. Delaney,&nbsp;H.-P. Dembinski,&nbsp;J. Deng,&nbsp;V. Denysenko,&nbsp;O. Deschamps,&nbsp;F. Dettori,&nbsp;B. Dey,&nbsp;P. Di Nezza,&nbsp;I. Diachkov,&nbsp;S. Didenko,&nbsp;S. Ding,&nbsp;Y. Ding,&nbsp;L. Dittmann,&nbsp;V. Dobishuk,&nbsp;A. D. Docheva,&nbsp;A. Doheny,&nbsp;C. Dong,&nbsp;A. M. Donohoe,&nbsp;F. Dordei,&nbsp;A. C. dos Reis,&nbsp;A. D. Dowling,&nbsp;L. Dreyfus,&nbsp;W. Duan,&nbsp;P. Duda,&nbsp;M. W. Dudek,&nbsp;L. Dufour,&nbsp;V. Duk,&nbsp;P. Durante,&nbsp;M. M. Duras,&nbsp;J. M. Durham,&nbsp;O. D. Durmus,&nbsp;A. Dziurda,&nbsp;A. Dzyuba,&nbsp;S. Easo,&nbsp;E. Eckstein,&nbsp;U. Egede,&nbsp;A. Egorychev,&nbsp;V. Egorychev,&nbsp;S. Eisenhardt,&nbsp;E. Ejopu,&nbsp;L. Eklund,&nbsp;M. Elashri,&nbsp;J. Ellbracht,&nbsp;S. Ely,&nbsp;A. Ene,&nbsp;J. Eschle,&nbsp;S. Esen,&nbsp;T. Evans,&nbsp;F. Fabiano,&nbsp;S. Faghih,&nbsp;L. N. Falcao,&nbsp;B. Fang,&nbsp;R. Fantechi,&nbsp;L. Fantini,&nbsp;M. Faria,&nbsp;K. Farmer,&nbsp;D. Fazzini,&nbsp;L. Felkowski,&nbsp;M. Feng,&nbsp;M. Feo,&nbsp;A. Fernandez Casani,&nbsp;M. Fernandez Gomez,&nbsp;A. D. Fernez,&nbsp;F. Ferrari,&nbsp;F. Ferreira Rodrigues,&nbsp;M. Ferrillo,&nbsp;M. Ferro-Luzzi,&nbsp;S. Filippov,&nbsp;R. A. Fini,&nbsp;M. Fiorini,&nbsp;M. Firlej,&nbsp;K. L. Fischer,&nbsp;D. S. Fitzgerald,&nbsp;C. Fitzpatrick,&nbsp;T. Fiutowski,&nbsp;F. Fleuret,&nbsp;A. Fomin,&nbsp;M. Fontana,&nbsp;L. F. Foreman,&nbsp;R. Forty,&nbsp;D. Foulds-Holt,&nbsp;V. Franco Lima,&nbsp;M. Franco Sevilla,&nbsp;M. Frank,&nbsp;E. Franzoso,&nbsp;G. Frau,&nbsp;C. Frei,&nbsp;D. A. Friday,&nbsp;J. Fu,&nbsp;Q. Führing,&nbsp;T. Fulghesu,&nbsp;G. Galati,&nbsp;M. D. Galati,&nbsp;A. Gallas Torreira,&nbsp;D. Galli,&nbsp;S. Gambetta,&nbsp;M. Gandelman,&nbsp;P. Gandini,&nbsp;B. Ganie,&nbsp;H. Gao,&nbsp;R. Gao,&nbsp;T. Q. Gao,&nbsp;Y. Gao,&nbsp;Y. Gao,&nbsp;Y. Gao,&nbsp;L. M. Garcia Martin,&nbsp;P. Garcia Moreno,&nbsp;J. García Pardiñas,&nbsp;P. Gardner,&nbsp;K. G. Garg,&nbsp;L. Garrido,&nbsp;C. Gaspar,&nbsp;A. Gavrikov,&nbsp;L. L. Gerken,&nbsp;E. Gersabeck,&nbsp;M. Gersabeck,&nbsp;T. Gershon,&nbsp;S. Ghizzo,&nbsp;Z. Ghorbanimoghaddam,&nbsp;L. Giambastiani,&nbsp;F. I. Giasemis,&nbsp;V. Gibson,&nbsp;H. K. Giemza,&nbsp;A. L. Gilman,&nbsp;M. Giovannetti,&nbsp;A. Gioventù,&nbsp;L. Girardey,&nbsp;M. A. Giza,&nbsp;F. C. Glaser,&nbsp;V. V. Gligorov,&nbsp;C. Göbel,&nbsp;L. Golinka-Bezshyyko,&nbsp;E. Golobardes,&nbsp;D. Golubkov,&nbsp;A. Golutvin,&nbsp;S. Gomez Fernandez,&nbsp;W. Gomulka,&nbsp;I. Gonçales Vaz,&nbsp;F. Goncalves Abrantes,&nbsp;M. Goncerz,&nbsp;G. Gong,&nbsp;J. A. Gooding,&nbsp;I. V. Gorelov,&nbsp;C. Gotti,&nbsp;E. Govorkova,&nbsp;J. P. Grabowski,&nbsp;L. A. Granado Cardoso,&nbsp;E. Graugés,&nbsp;E. Graverini,&nbsp;L. Grazette,&nbsp;G. Graziani,&nbsp;A. T. Grecu,&nbsp;L. M. Greeven,&nbsp;N. A. Grieser,&nbsp;L. Grillo,&nbsp;S. Gromov,&nbsp;C. Gu,&nbsp;M. Guarise,&nbsp;L. Guerry,&nbsp;V. Guliaeva,&nbsp;P. A. Günther,&nbsp;A.-K. Guseinov,&nbsp;E. Gushchin,&nbsp;Y. Guz,&nbsp;T. Gys,&nbsp;K. Habermann,&nbsp;T. Hadavizadeh,&nbsp;C. Hadjivasiliou,&nbsp;G. Haefeli,&nbsp;C. Haen,&nbsp;S. Haken,&nbsp;G. Hallett,&nbsp;P. M. Hamilton,&nbsp;J. Hammerich,&nbsp;Q. Han,&nbsp;X. Han,&nbsp;S. Hansmann-Menzemer,&nbsp;L. Hao,&nbsp;N. Harnew,&nbsp;T. H. Harris,&nbsp;M. Hartmann,&nbsp;S. Hashmi,&nbsp;J. He,&nbsp;A. Hedes,&nbsp;F. Hemmer,&nbsp;C. Henderson,&nbsp;R. Henderson,&nbsp;R. D. L. Henderson,&nbsp;A. M. Hennequin,&nbsp;K. Hennessy,&nbsp;L. Henry,&nbsp;J. Herd,&nbsp;P. Herrero Gascon,&nbsp;J. Heuel,&nbsp;A. Hicheur,&nbsp;G. Hijano Mendizabal,&nbsp;J. Horswill,&nbsp;R. Hou,&nbsp;Y. Hou,&nbsp;D. C. Houston,&nbsp;N. Howarth,&nbsp;J. Hu,&nbsp;W. Hu,&nbsp;X. Hu,&nbsp;W. Hulsbergen,&nbsp;R. J. Hunter,&nbsp;M. Hushchyn,&nbsp;D. Hutchcroft,&nbsp;M. Idzik,&nbsp;D. Ilin,&nbsp;P. Ilten,&nbsp;A. Iniukhin,&nbsp;A. Ishteev,&nbsp;K. Ivshin,&nbsp;H. Jage,&nbsp;S. J. Jaimes Elles,&nbsp;S. Jakobsen,&nbsp;E. Jans,&nbsp;B. K. Jashal,&nbsp;A. Jawahery,&nbsp;C. Jayaweera,&nbsp;V. Jevtic,&nbsp;Z. Jia,&nbsp;E. Jiang,&nbsp;X. Jiang,&nbsp;Y. Jiang,&nbsp;Y. J. Jiang,&nbsp;E. Jimenez Moya,&nbsp;N. Jindal,&nbsp;M. John,&nbsp;A. John Rubesh Rajan,&nbsp;D. Johnson,&nbsp;C. R. Jones,&nbsp;S. Joshi,&nbsp;B. Jost,&nbsp;J. Juan Castella,&nbsp;N. Jurik,&nbsp;I. Juszczak,&nbsp;D. Kaminaris,&nbsp;S. Kandybei,&nbsp;M. Kane,&nbsp;Y. Kang,&nbsp;C. Kar,&nbsp;M. Karacson,&nbsp;A. Kauniskangas,&nbsp;J. W. Kautz,&nbsp;M. K. Kazanecki,&nbsp;F. Keizer,&nbsp;M. Kenzie,&nbsp;T. Ketel,&nbsp;B. Khanji,&nbsp;A. Kharisova,&nbsp;S. Kholodenko,&nbsp;G. Khreich,&nbsp;T. Kirn,&nbsp;V. S. Kirsebom,&nbsp;O. Kitouni,&nbsp;S. Klaver,&nbsp;N. Kleijne,&nbsp;K. Klimaszewski,&nbsp;M. R. Kmiec,&nbsp;S. Koliiev,&nbsp;L. Kolk,&nbsp;A. Konoplyannikov,&nbsp;P. Kopciewicz,&nbsp;P. Koppenburg,&nbsp;A. Korchin,&nbsp;M. Korolev,&nbsp;I. Kostiuk,&nbsp;O. Kot,&nbsp;S. Kotriakhova,&nbsp;E. Kowalczyk,&nbsp;A. Kozachuk,&nbsp;P. Kravchenko,&nbsp;L. Kravchuk,&nbsp;O. Kravcov,&nbsp;M. Kreps,&nbsp;P. Krokovny,&nbsp;W. Krupa,&nbsp;W. Krzemien,&nbsp;O. Kshyvanskyi,&nbsp;S. Kubis,&nbsp;M. Kucharczyk,&nbsp;V. Kudryavtsev,&nbsp;E. Kulikova,&nbsp;A. Kupsc,&nbsp;V. Kushnir,&nbsp;B. Kutsenko,&nbsp;I. Kyryllin,&nbsp;D. Lacarrere,&nbsp;P. Laguarta Gonzalez,&nbsp;A. Lai,&nbsp;A. Lampis,&nbsp;D. Lancierini,&nbsp;C. Landesa Gomez,&nbsp;J. J. Lane,&nbsp;G. Lanfranchi,&nbsp;C. Langenbruch,&nbsp;J. Langer,&nbsp;O. Lantwin,&nbsp;T. Latham,&nbsp;F. Lazzari,&nbsp;C. Lazzeroni,&nbsp;R. Le Gac,&nbsp;H. Lee,&nbsp;R. Lefèvre,&nbsp;A. Leflat,&nbsp;S. Legotin,&nbsp;M. Lehuraux,&nbsp;E. Lemos Cid,&nbsp;O. Leroy,&nbsp;T. Lesiak,&nbsp;E. D. Lesser,&nbsp;B. Leverington,&nbsp;A. Li,&nbsp;C. Li,&nbsp;C. Li,&nbsp;H. Li,&nbsp;J. Li,&nbsp;K. Li,&nbsp;L. Li,&nbsp;M. Li,&nbsp;P. Li,&nbsp;P.-R. Li,&nbsp;Q. Li,&nbsp;T. Li,&nbsp;T. Li,&nbsp;Y. Li,&nbsp;Y. Li,&nbsp;Y. Li,&nbsp;Z. Lian,&nbsp;Q. Liang,&nbsp;X. Liang,&nbsp;S. Libralon,&nbsp;A. L. Lightbody,&nbsp;C. Lin,&nbsp;T. Lin,&nbsp;R. Lindner,&nbsp;H. Linton,&nbsp;R. Litvinov,&nbsp;D. Liu,&nbsp;F. L. Liu,&nbsp;G. Liu,&nbsp;K. Liu,&nbsp;S. Liu,&nbsp;W. Liu,&nbsp;Y. Liu,&nbsp;Y. Liu,&nbsp;Y. L. Liu,&nbsp;G. Loachamin Ordonez,&nbsp;A. Lobo Salvia,&nbsp;A. Loi,&nbsp;T. Long,&nbsp;F. C. L. Lopes,&nbsp;J. H. Lopes,&nbsp;A. Lopez Huertas,&nbsp;C. Lopez Iribarnegaray,&nbsp;S. López Soliño,&nbsp;Q. Lu,&nbsp;C. Lucarelli,&nbsp;D. Lucchesi,&nbsp;M. Lucio Martinez,&nbsp;Y. Luo,&nbsp;A. Lupato,&nbsp;E. Luppi,&nbsp;K. Lynch,&nbsp;X.-R. Lyu,&nbsp;G. M. Ma,&nbsp;S. Maccolini,&nbsp;F. Machefert,&nbsp;F. Maciuc,&nbsp;B. Mack,&nbsp;I. Mackay,&nbsp;L. M. Mackey,&nbsp;L. R. Madhan Mohan,&nbsp;M. J. Madurai,&nbsp;D. Magdalinski,&nbsp;D. Maisuzenko,&nbsp;J. J. Malczewski,&nbsp;S. Malde,&nbsp;L. Malentacca,&nbsp;A. Malinin,&nbsp;T. Maltsev,&nbsp;G. Manca,&nbsp;G. Mancinelli,&nbsp;C. Mancuso,&nbsp;R. Manera Escalero,&nbsp;F. M. Manganella,&nbsp;D. Manuzzi,&nbsp;D. Marangotto,&nbsp;J. F. Marchand,&nbsp;R. Marchevski,&nbsp;U. Marconi,&nbsp;E. Mariani,&nbsp;S. Mariani,&nbsp;C. Marin Benito,&nbsp;J. Marks,&nbsp;A. M. Marshall,&nbsp;L. Martel,&nbsp;G. Martelli,&nbsp;G. Martellotti,&nbsp;L. Martinazzoli,&nbsp;M. Martinelli,&nbsp;D. Martinez Gomez,&nbsp;D. Martinez Santos,&nbsp;F. Martinez Vidal,&nbsp;A. Martorell i Granollers,&nbsp;A. Massafferri,&nbsp;R. Matev,&nbsp;A. Mathad,&nbsp;V. Matiunin,&nbsp;C. Matteuzzi,&nbsp;K. R. Mattioli,&nbsp;A. Mauri,&nbsp;E. Maurice,&nbsp;J. Mauricio,&nbsp;P. Mayencourt,&nbsp;J. Mazorra de Cos,&nbsp;M. Mazurek,&nbsp;M. McCann,&nbsp;T. H. McGrath,&nbsp;N. T. McHugh,&nbsp;A. McNab,&nbsp;R. McNulty,&nbsp;B. Meadows,&nbsp;G. Meier,&nbsp;D. Melnychuk,&nbsp;D. Mendoza Granada,&nbsp;F. M. Meng,&nbsp;M. Merk,&nbsp;A. Merli,&nbsp;L. Meyer Garcia,&nbsp;D. Miao,&nbsp;H. Miao,&nbsp;M. Mikhasenko,&nbsp;D. A. Milanes,&nbsp;A. Minotti,&nbsp;E. Minucci,&nbsp;T. Miralles,&nbsp;B. Mitreska,&nbsp;D. S. Mitzel,&nbsp;A. Modak,&nbsp;L. Moeser,&nbsp;R. D. Moise,&nbsp;E. F. Molina Cardenas,&nbsp;T. Mombächer,&nbsp;M. Monk,&nbsp;S. Monteil,&nbsp;A. Morcillo Gomez,&nbsp;G. Morello,&nbsp;M. J. Morello,&nbsp;M. P. Morgenthaler,&nbsp;J. Moron,&nbsp;W. Morren,&nbsp;A. B. Morris,&nbsp;A. G. Morris,&nbsp;R. Mountain,&nbsp;H. Mu,&nbsp;Z. M. Mu,&nbsp;E. Muhammad,&nbsp;F. Muheim,&nbsp;M. Mulder,&nbsp;K. Müller,&nbsp;F. Muñoz-Rojas,&nbsp;R. Murta,&nbsp;V. Mytrochenko,&nbsp;P. Naik,&nbsp;T. Nakada,&nbsp;R. Nandakumar,&nbsp;T. Nanut,&nbsp;I. Nasteva,&nbsp;M. Needham,&nbsp;E. Nekrasova,&nbsp;N. Neri,&nbsp;S. Neubert,&nbsp;N. Neufeld,&nbsp;P. Neustroev,&nbsp;J. Nicolini,&nbsp;D. Nicotra,&nbsp;E. M. Niel,&nbsp;N. Nikitin,&nbsp;Q. Niu,&nbsp;P. Nogarolli,&nbsp;P. Nogga,&nbsp;C. Normand,&nbsp;J. Novoa Fernandez,&nbsp;G. Nowak,&nbsp;C. Nunez,&nbsp;H. N. Nur,&nbsp;A. Oblakowska-Mucha,&nbsp;V. Obraztsov,&nbsp;T. Oeser,&nbsp;A. Okhotnikov,&nbsp;O. Okhrimenko,&nbsp;R. Oldeman,&nbsp;F. Oliva,&nbsp;E. Olivart Pino,&nbsp;M. Olocco,&nbsp;C. J. G. Onderwater,&nbsp;R. H. O’Neil,&nbsp;J. S. Ordonez Soto,&nbsp;D. Osthues,&nbsp;J. M. Otalora Goicochea,&nbsp;P. Owen,&nbsp;A. Oyanguren,&nbsp;O. Ozcelik,&nbsp;F. Paciolla,&nbsp;A. Padee,&nbsp;K. O. Padeken,&nbsp;B. Pagare,&nbsp;T. Pajero,&nbsp;A. Palano,&nbsp;M. Palutan,&nbsp;C. Pan,&nbsp;X. Pan,&nbsp;S. Panebianco,&nbsp;G. Panshin,&nbsp;L. Paolucci,&nbsp;A. Papanestis,&nbsp;M. Pappagallo,&nbsp;L. L. Pappalardo,&nbsp;C. Pappenheimer,&nbsp;C. Parkes,&nbsp;D. Parmar,&nbsp;B. Passalacqua,&nbsp;G. Passaleva,&nbsp;D. Passaro,&nbsp;A. Pastore,&nbsp;M. Patel,&nbsp;J. Patoc,&nbsp;C. Patrignani,&nbsp;A. Paul,&nbsp;C. J. Pawley,&nbsp;A. Pellegrino,&nbsp;J. Peng,&nbsp;X. Peng,&nbsp;M. Pepe Altarelli,&nbsp;S. Perazzini,&nbsp;D. Pereima,&nbsp;H. Pereira Da Costa,&nbsp;M. Pereira Martinez,&nbsp;A. Pereiro Castro,&nbsp;C. Perez,&nbsp;P. Perret,&nbsp;A. Perrevoort,&nbsp;A. Perro,&nbsp;M. J. Peters,&nbsp;K. Petridis,&nbsp;A. Petrolini,&nbsp;J. P. Pfaller,&nbsp;H. Pham,&nbsp;L. Pica,&nbsp;M. Piccini,&nbsp;L. Piccolo,&nbsp;B. Pietrzyk,&nbsp;G. Pietrzyk,&nbsp;R. N. Pilato,&nbsp;D. Pinci,&nbsp;F. Pisani,&nbsp;M. Pizzichemi,&nbsp;V. M. Placinta,&nbsp;M. Plo Casasus,&nbsp;T. Poeschl,&nbsp;F. Polci,&nbsp;M. Poli Lener,&nbsp;A. Poluektov,&nbsp;N. Polukhina,&nbsp;I. Polyakov,&nbsp;E. Polycarpo,&nbsp;S. Ponce,&nbsp;D. Popov,&nbsp;S. Poslavskii,&nbsp;K. Prasanth,&nbsp;C. Prouve,&nbsp;D. Provenzano,&nbsp;V. Pugatch,&nbsp;G. Punzi,&nbsp;S. Qasim,&nbsp;Q. Q. Qian,&nbsp;W. Qian,&nbsp;N. Qin,&nbsp;S. Qu,&nbsp;R. Quagliani,&nbsp;R. I. Rabadan Trejo,&nbsp;R. Racz,&nbsp;J. H. Rademacker,&nbsp;M. Rama,&nbsp;M. Ramírez García,&nbsp;V. Ramos De Oliveira,&nbsp;M. Ramos Pernas,&nbsp;M. S. Rangel,&nbsp;F. Ratnikov,&nbsp;G. Raven,&nbsp;M. Rebollo De Miguel,&nbsp;F. Redi,&nbsp;J. Reich,&nbsp;F. Reiss,&nbsp;Z. Ren,&nbsp;P. K. Resmi,&nbsp;M. Ribalda Galvez,&nbsp;R. Ribatti,&nbsp;G. Ricart,&nbsp;D. Riccardi,&nbsp;S. Ricciardi,&nbsp;K. Richardson,&nbsp;M. Richardson-Slipper,&nbsp;K. Rinnert,&nbsp;P. Robbe,&nbsp;G. Robertson,&nbsp;E. Rodrigues,&nbsp;A. Rodriguez Alvarez,&nbsp;E. Rodriguez Fernandez,&nbsp;J. A. Rodriguez Lopez,&nbsp;E. Rodriguez Rodriguez,&nbsp;J. Roensch,&nbsp;A. Rogachev,&nbsp;A. Rogovskiy,&nbsp;D. L. Rolf,&nbsp;P. Roloff,&nbsp;V. Romanovskiy,&nbsp;A. Romero Vidal,&nbsp;G. Romolini,&nbsp;F. Ronchetti,&nbsp;T. Rong,&nbsp;M. Rotondo,&nbsp;S. R. Roy,&nbsp;M. S. Rudolph,&nbsp;M. Ruiz Diaz,&nbsp;R. A. Ruiz Fernandez,&nbsp;J. Ruiz Vidal,&nbsp;J. J. Saavedra-Arias,&nbsp;J. J. Saborido Silva,&nbsp;S. E. R. Sacha Emile R.,&nbsp;R. Sadek,&nbsp;N. Sagidova,&nbsp;D. Sahoo,&nbsp;N. Sahoo,&nbsp;B. Saitta,&nbsp;M. Salomoni,&nbsp;I. Sanderswood,&nbsp;R. Santacesaria,&nbsp;C. Santamarina Rios,&nbsp;M. Santimaria,&nbsp;L. Santoro,&nbsp;E. Santovetti,&nbsp;A. Saputi,&nbsp;D. Saranin,&nbsp;A. Sarnatskiy,&nbsp;G. Sarpis,&nbsp;M. Sarpis,&nbsp;C. Satriano,&nbsp;A. Satta,&nbsp;M. Saur,&nbsp;D. Savrina,&nbsp;H. Sazak,&nbsp;F. Sborzacchi,&nbsp;A. Scarabotto,&nbsp;S. Schael,&nbsp;S. Scherl,&nbsp;M. Schiller,&nbsp;H. Schindler,&nbsp;M. Schmelling,&nbsp;B. Schmidt,&nbsp;S. Schmitt,&nbsp;H. Schmitz,&nbsp;O. Schneider,&nbsp;A. Schopper,&nbsp;N. Schulte,&nbsp;M. H. Schune,&nbsp;G. Schwering,&nbsp;B. Sciascia,&nbsp;A. Sciuccati,&nbsp;I. Segal,&nbsp;S. Sellam,&nbsp;A. Semennikov,&nbsp;T. Senger,&nbsp;M. Senghi Soares,&nbsp;A. Sergi,&nbsp;N. Serra,&nbsp;L. Sestini,&nbsp;A. Seuthe,&nbsp;B. Sevilla Sanjuan,&nbsp;Y. Shang,&nbsp;D. M. Shangase,&nbsp;M. Shapkin,&nbsp;R. S. Sharma,&nbsp;I. Shchemerov,&nbsp;L. Shchutska,&nbsp;T. Shears,&nbsp;L. Shekhtman,&nbsp;Z. Shen,&nbsp;S. Sheng,&nbsp;V. Shevchenko,&nbsp;B. Shi,&nbsp;Q. Shi,&nbsp;W. S. Shi,&nbsp;Y. Shimizu,&nbsp;E. Shmanin,&nbsp;R. Shorkin,&nbsp;J. D. Shupperd,&nbsp;R. Silva Coutinho,&nbsp;G. Simi,&nbsp;S. Simone,&nbsp;M. Singha,&nbsp;N. Skidmore,&nbsp;T. Skwarnicki,&nbsp;M. W. Slater,&nbsp;E. Smith,&nbsp;K. Smith,&nbsp;M. Smith,&nbsp;L. Soares Lavra,&nbsp;M. D. Sokoloff,&nbsp;F. J. P. Soler,&nbsp;A. Solomin,&nbsp;A. Solovev,&nbsp;N. S. Sommerfeld,&nbsp;R. Song,&nbsp;Y. Song,&nbsp;Y. Song,&nbsp;Y. S. Song,&nbsp;F. L. Souza De Almeida,&nbsp;B. Souza De Paula,&nbsp;K. M. Sowa,&nbsp;E. Spadaro Norella,&nbsp;E. Spedicato,&nbsp;J. G. Speer,&nbsp;P. Spradlin,&nbsp;V. Sriskaran,&nbsp;F. Stagni,&nbsp;M. Stahl,&nbsp;S. Stahl,&nbsp;S. Stanislaus,&nbsp;M. Stefaniak,&nbsp;E. N. Stein,&nbsp;O. Steinkamp,&nbsp;H. Stevens,&nbsp;D. Strekalina,&nbsp;Y. Su,&nbsp;F. Suljik,&nbsp;J. Sun,&nbsp;J. Sun,&nbsp;L. Sun,&nbsp;D. Sundfeld,&nbsp;W. Sutcliffe,&nbsp;K. Swientek,&nbsp;F. Swystun,&nbsp;A. Szabelski,&nbsp;T. Szumlak,&nbsp;Y. Tan,&nbsp;Y. Tang,&nbsp;Y. T. Tang,&nbsp;M. D. Tat,&nbsp;J. A. Teijeiro Jimenez,&nbsp;A. Terentev,&nbsp;F. Terzuoli,&nbsp;F. Teubert,&nbsp;E. Thomas,&nbsp;D. J. D. Thompson,&nbsp;A. R. Thomson-Strong,&nbsp;H. Tilquin,&nbsp;V. Tisserand,&nbsp;S. T’Jampens,&nbsp;M. Tobin,&nbsp;T. T. Todorov,&nbsp;L. Tomassetti,&nbsp;G. Tonani,&nbsp;X. Tong,&nbsp;T. Tork,&nbsp;D. Torres Machado,&nbsp;L. Toscano,&nbsp;D. Y. Tou,&nbsp;C. Trippl,&nbsp;G. Tuci,&nbsp;N. Tuning,&nbsp;L. H. Uecker,&nbsp;A. Ukleja,&nbsp;D. J. Unverzagt,&nbsp;A. Upadhyay,&nbsp;B. Urbach,&nbsp;A. Usachov,&nbsp;A. Ustyuzhanin,&nbsp;U. Uwer,&nbsp;V. Vagnoni,&nbsp;V. Valcarce Cadenas,&nbsp;G. Valenti,&nbsp;N. Valls Canudas,&nbsp;J. van Eldik,&nbsp;H. Van Hecke,&nbsp;E. van Herwijnen,&nbsp;C. B. Van Hulse,&nbsp;R. Van Laak,&nbsp;M. van Veghel,&nbsp;G. Vasquez,&nbsp;R. Vazquez Gomez,&nbsp;P. Vazquez Regueiro,&nbsp;C. Vázquez Sierra,&nbsp;S. Vecchi,&nbsp;J. J. Velthuis,&nbsp;M. Veltri,&nbsp;A. Venkateswaran,&nbsp;M. Verdoglia,&nbsp;M. Vesterinen,&nbsp;W. Vetens,&nbsp;D. Vico Benet,&nbsp;P. Vidrier Villalba,&nbsp;M. Vieites Diaz,&nbsp;X. Vilasis-Cardona,&nbsp;E. Vilella Figueras,&nbsp;A. Villa,&nbsp;P. Vincent,&nbsp;B. Vivacqua,&nbsp;F. C. Volle,&nbsp;D. vom Bruch,&nbsp;N. Voropaev,&nbsp;K. Vos,&nbsp;C. Vrahas,&nbsp;J. Wagner,&nbsp;J. Walsh,&nbsp;E. J. Walton,&nbsp;G. Wan,&nbsp;A. Wang,&nbsp;B. Wang,&nbsp;C. Wang,&nbsp;G. Wang,&nbsp;H. Wang,&nbsp;J. Wang,&nbsp;J. Wang,&nbsp;J. Wang,&nbsp;J. Wang,&nbsp;M. Wang,&nbsp;N. W. Wang,&nbsp;R. Wang,&nbsp;X. Wang,&nbsp;X. Wang,&nbsp;X. W. Wang,&nbsp;Y. Wang,&nbsp;Y. Wang,&nbsp;Y. H. Wang,&nbsp;Z. Wang,&nbsp;Z. Wang,&nbsp;Z. Wang,&nbsp;J. A. Ward,&nbsp;M. Waterlaat,&nbsp;N. K. Watson,&nbsp;D. Websdale,&nbsp;Y. Wei,&nbsp;J. Wendel,&nbsp;B. D. C. Westhenry,&nbsp;C. White,&nbsp;M. Whitehead,&nbsp;E. Whiter,&nbsp;A. R. Wiederhold,&nbsp;D. Wiedner,&nbsp;M. A. Wiegertjes,&nbsp;C. Wild,&nbsp;G. Wilkinson,&nbsp;M. K. Wilkinson,&nbsp;M. Williams,&nbsp;M. J. Williams,&nbsp;M. R. J. Williams,&nbsp;R. Williams,&nbsp;S. Williams,&nbsp;Z. Williams,&nbsp;F. F. Wilson,&nbsp;M. Winn,&nbsp;W. Wislicki,&nbsp;M. Witek,&nbsp;L. Witola,&nbsp;T. Wolf,&nbsp;E. Wood,&nbsp;G. Wormser,&nbsp;S. A. Wotton,&nbsp;H. Wu,&nbsp;J. Wu,&nbsp;X. Wu,&nbsp;Y. Wu,&nbsp;Z. Wu,&nbsp;K. Wyllie,&nbsp;S. Xian,&nbsp;Z. Xiang,&nbsp;Y. Xie,&nbsp;T. X. Xing,&nbsp;A. Xu,&nbsp;L. Xu,&nbsp;L. Xu,&nbsp;M. Xu,&nbsp;Z. Xu,&nbsp;Z. Xu,&nbsp;Z. Xu,&nbsp;K. Yang,&nbsp;X. Yang,&nbsp;Y. Yang,&nbsp;Z. Yang,&nbsp;V. Yeroshenko,&nbsp;H. Yeung,&nbsp;H. Yin,&nbsp;X. Yin,&nbsp;C. Y. Yu,&nbsp;J. Yu,&nbsp;X. Yuan,&nbsp;Y Yuan,&nbsp;E. Zaffaroni,&nbsp;M. Zavertyaev,&nbsp;M. Zdybal,&nbsp;F. Zenesini,&nbsp;C. Zeng,&nbsp;M. Zeng,&nbsp;C. Zhang,&nbsp;D. Zhang,&nbsp;J. Zhang,&nbsp;L. Zhang,&nbsp;R. Zhang,&nbsp;S. Zhang,&nbsp;S. Zhang,&nbsp;Y. Zhang,&nbsp;Y. Z. Zhang,&nbsp;Z. Zhang,&nbsp;Y. Zhao,&nbsp;A. Zhelezov,&nbsp;S. Z. Zheng,&nbsp;X. Z. Zheng,&nbsp;Y. Zheng,&nbsp;T. Zhou,&nbsp;X. Zhou,&nbsp;Y. Zhou,&nbsp;V. Zhovkovska,&nbsp;L. Z. Zhu,&nbsp;X. Zhu,&nbsp;X. Zhu,&nbsp;Y. Zhu,&nbsp;V. Zhukov,&nbsp;J. Zhuo,&nbsp;Q. Zou,&nbsp;D. Zuliani,&nbsp;G. Zunica","doi":"10.1007/JHEP01(2026)062","DOIUrl":"10.1007/JHEP01(2026)062","url":null,"abstract":"<p>A model-independent determination of the CKM angle <i>γ</i> is presented, using the <i>B</i><sup><i>±</i></sup> → [<i>K</i><sup>+</sup><i>K</i><sup><i>−</i></sup><i>π</i><sup>+</sup><i>π</i><sup><i>−</i></sup>]<sub><i>D</i></sub><i>h</i><sup><i>±</i></sup> and <i>B</i><sup><i>±</i></sup> → [<i>π</i><sup>+</sup><i>π</i><sup><i>−</i></sup><i>π</i><sup>+</sup><i>π</i><sup><i>−</i></sup>]<sub><i>D</i></sub><i>h</i><sup><i>±</i></sup> decays, with <i>h</i> = <i>K, π</i>. This measurement is the first phase-space binned study of these decay modes, and uses a sample of proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb<sup><i>−</i>1</sup>. The phase-space bins are optimised for sensitivity to <i>γ</i>, and in each bin external inputs from the BESIII experiment are used to constrain the charm strong-phase parameters. The result of this binned analysis is <span>( gamma ={left(53.{9}_{-8.9}^{+9.5}right)}^{{}^{circ}} )</span>, where the uncertainty includes both statistical and systematic contributions. Furthermore, when combining with existing phase-space integrated measurements of the same decay modes, a value of <span>( gamma ={left(52.{6}_{-6.4}^{+8.5}right)}^{{}^{circ}} )</span> is obtained, which is one of the most precise determinations of <i>γ</i> to date.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)062.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145982656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The bearable inhomogeneity of the baryon asymmetry 重子不对称的可忍受的不均匀性
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-09 DOI: 10.1007/JHEP01(2026)068
Hengameh Bagherian, Majid Ekhterachian, Stefan Stelzl

We study the implications of precision measurements of light-element abundances, in combination with the Cosmic Microwave Background, for scenarios of physics beyond the Standard Model that generate large inhomogeneities in the baryon-to-photon ratio. We show that precision Big Bang Nucleosynthesis (BBN) places strong constraints on any mechanism that produces large-scale inhomogeneities at temperatures around or below the TeV scale. In particular, we find that fluctuations of order 25% on comoving length scales larger than the horizon at T ≃ 3 TeV are incompatible with the observed light-element abundances. This sensitivity to early-universe physics arises because baryon-number inhomogeneities homogenize primarily through diffusion, a slow process. As a result, BBN serves as a novel probe of baryogenesis below the TeV scale, readily ruling out some proposed scenarios in the literature. We discuss the implications for electroweak baryogenesis, and further show that precision BBN provides a new probe of first-order phase transitions that generate gravitational waves in the pHz–mHz frequency range. This yields constraints on the electroweak phase transition, as well as first-order phase transitions that have been suggested as an explanation of the pulsar timing array signal. Finally, we comment on the future prospects for improving this probe.

我们研究了精确测量轻元素丰度的意义,结合宇宙微波背景,在标准模型之外的物理场景中产生重子与光子比的大不均匀性。我们表明,精确的大爆炸核合成(BBN)对任何在TeV或以下温度下产生大规模不均匀性的机制都有很强的限制。特别地,我们发现在T≃3 TeV处大于视界的移动长度尺度上,25%阶的波动与观测到的轻元素丰度不相容。这种对早期宇宙物理的敏感性是因为重子数的非均匀性主要通过扩散而均匀化,这是一个缓慢的过程。因此,BBN可以作为TeV尺度下重子发生的新探针,很容易排除文献中提出的一些情况。我们讨论了电弱重子发生的意义,并进一步表明,精密BBN为产生引力波的一阶相变提供了一种新的探测方法。这产生了对电弱相变的限制,以及一阶相变,已经被建议作为脉冲星定时阵列信号的解释。最后,对改进该探针的未来前景进行了展望。
{"title":"The bearable inhomogeneity of the baryon asymmetry","authors":"Hengameh Bagherian,&nbsp;Majid Ekhterachian,&nbsp;Stefan Stelzl","doi":"10.1007/JHEP01(2026)068","DOIUrl":"10.1007/JHEP01(2026)068","url":null,"abstract":"<p>We study the implications of precision measurements of light-element abundances, in combination with the Cosmic Microwave Background, for scenarios of physics beyond the Standard Model that generate large inhomogeneities in the baryon-to-photon ratio. We show that precision Big Bang Nucleosynthesis (BBN) places strong constraints on any mechanism that produces large-scale inhomogeneities at temperatures around or below the TeV scale. In particular, we find that fluctuations of order 25% on comoving length scales larger than the horizon at <i>T</i> ≃ 3 TeV are incompatible with the observed light-element abundances. This sensitivity to early-universe physics arises because baryon-number inhomogeneities homogenize primarily through diffusion, a slow process. As a result, BBN serves as a novel probe of baryogenesis below the TeV scale, readily ruling out some proposed scenarios in the literature. We discuss the implications for electroweak baryogenesis, and further show that precision BBN provides a new probe of first-order phase transitions that generate gravitational waves in the pHz–mHz frequency range. This yields constraints on the electroweak phase transition, as well as first-order phase transitions that have been suggested as an explanation of the pulsar timing array signal. Finally, we comment on the future prospects for improving this probe.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)068.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotics of spin-spin correlators weighted by fermion number measurements with low rapidity threshold in the 2D Ising free-fermion QFT 二维伊辛自由费米子量子傅里叶变换中低速度阈值费米子数测量加权自旋-自旋相关子的渐近性
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-09 DOI: 10.1007/JHEP01(2026)064
Yizhuang Liu

In the work, we study the averaged number of massive fermions above a low rapidity threshold Y, underlying the form-factor expansions of the spin-spin two-point correlators at an Euclidean distance r, in the 2D Ising QFT at the free massive fermion point. Despite the on-shell freeness, the spin operators are still far away from being Gaussian, and create particles in the asymptotic states with complicated correlations. We show how the number observables can still be incorporated into the integrable Sinh-Gordon/Painleve-III framework and controlled by linear differential equations with two variables (r, Y). We show how the differential equations and the information of two crucial scaling functions arising in the r → 0, ({e}^{Y}r=mathcal{O}(1)) scaling limit, can be combined to fully determine the small-r asymptotics of the observables, in the λ-extended form. The scaling functions, on the other hand, are obtained by summing the exponential form-factor expansions directly, generalizing the traditional Ising connecting computations. We show carefully, how the singularities cancel in the physical value limit λπ → 1 and how the power-corrections that collapse at this value can be resummed. In particular, we show for the physical λ-value, the scaling functions are related to integrated four-point functions in the Ising CFT and continue to control the asymptotics of the number-observables in the scaling limit up to (mathcal{O}({r}^{3})).

在这项工作中,我们研究了在自由费米子点的二维Ising QFT中,在欧几里得距离r处自旋-自旋两点相关器的形状因子展开的基础上,在低速度阈值Y以上的大质量费米子的平均数量。尽管在壳上自由,自旋算符仍然远离高斯,并且产生具有复杂相关性的渐近状态的粒子。我们展示了观测值的数量如何仍然可以纳入可积的Sinh-Gordon/ painlevel - iii框架,并由具有两个变量(r, Y)的线性微分方程控制。我们展示了如何将微分方程和在r→0,({e}^{Y}r=mathcal{O}(1))缩放极限处产生的两个关键缩放函数的信息结合起来,以λ扩展形式完全确定可观测值的小r渐近性。另一方面,通过直接对指数形式因子展开求和得到标度函数,推广了传统的Ising连接计算。我们仔细地展示了奇点如何在物理值极限λπ→1中抵消,以及如何恢复在该值处崩溃的功率校正。特别地,我们证明了对于物理λ值,标度函数与Ising CFT中的积分四点函数相关,并且继续控制标度极限中的数观测值的渐近性直到(mathcal{O}({r}^{3}))。
{"title":"Asymptotics of spin-spin correlators weighted by fermion number measurements with low rapidity threshold in the 2D Ising free-fermion QFT","authors":"Yizhuang Liu","doi":"10.1007/JHEP01(2026)064","DOIUrl":"10.1007/JHEP01(2026)064","url":null,"abstract":"<p>In the work, we study the averaged number of massive fermions above a low rapidity threshold <i>Y</i>, underlying the form-factor expansions of the spin-spin two-point correlators at an Euclidean distance <i>r</i>, in the 2D Ising QFT at the free massive fermion point. Despite the on-shell freeness, the spin operators are still far away from being Gaussian, and create particles in the asymptotic states with complicated correlations. We show how the number observables can still be incorporated into the integrable Sinh-Gordon/Painleve-III framework and controlled by linear differential equations with two variables (<i>r, Y</i>). We show how the differential equations and the information of two crucial <i>scaling functions</i> arising in the <i>r</i> → 0, <span>({e}^{Y}r=mathcal{O}(1))</span> <i>scaling limit</i>, can be combined to fully determine the small-<i>r</i> asymptotics of the observables, in the <i>λ-extended</i> form. The scaling functions, on the other hand, are obtained by summing the exponential form-factor expansions directly, generalizing the traditional Ising connecting computations. We show carefully, how the singularities cancel in the physical value limit <i>λπ</i> → 1 and how the power-corrections that collapse at this value can be resummed. In particular, we show for the physical <i>λ</i>-value, the scaling functions are related to integrated four-point functions in the Ising CFT and continue to control the asymptotics of the number-observables in the scaling limit up to <span>(mathcal{O}({r}^{3}))</span>.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)064.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalar-gravitational quasinormal modes and echoes in a five dimensional thick brane 五维厚膜中的标量引力拟正态模和回波
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-09 DOI: 10.1007/JHEP01(2026)066
Weike Deng, Sheng Long, Qin Tan, Zu-Cheng Chen, Jiliang Jing

The graviscalar perturbations of thick braneworld models provide critical insights into their matter-geometry relationship, distinct from tensor modes. This work systematically investigates quasinormal modes and gravitational echoes from graviscalar perturbations in a thick brane model exhibiting internal structure and brane splitting. We find that the splitting of the brane would completely alter the structure of the quasinormal spectrum and cause the appearance of echo signals. We also find a position-dependence of echo modes within the extra dimension. Observers located on a sub-brane detect clean periodic signals, whereas those situated between sub-branes observe more complex, modulated waveforms. This effect offers a distinct signature of the brane’s internal structure. The observed echoes, along with consistent frequency- and time-domain results, advance the understanding of thick brane dynamics and open an observational window into warped extra dimensions. Moreover, the similarity between the effective potential in thick brane scenarios and that in black holes and wormholes offers valuable perspectives for studying echo-related phenomena in these gravitational systems.

厚膜世界模型的引力摄动提供了对它们的物质-几何关系的关键见解,不同于张量模式。本研究系统地研究了一个具有内部结构和膜分裂的厚膜模型中的准正态模和重力场扰动的引力回波。我们发现,膜的分裂会完全改变准正谱的结构,并导致回波信号的出现。我们还发现了额外维度内回声模式的位置依赖性。位于子膜上的观测者检测到干净的周期信号,而位于子膜之间的观测者观察到更复杂的调制波形。这种效应为膜的内部结构提供了一个明显的特征。观测到的回声,以及一致的频域和时域结果,推进了对厚膜动力学的理解,并打开了一个观察扭曲额外维度的窗口。此外,厚膜情况下的有效势与黑洞和虫洞中的有效势之间的相似性为研究这些引力系统中的回波相关现象提供了有价值的视角。
{"title":"Scalar-gravitational quasinormal modes and echoes in a five dimensional thick brane","authors":"Weike Deng,&nbsp;Sheng Long,&nbsp;Qin Tan,&nbsp;Zu-Cheng Chen,&nbsp;Jiliang Jing","doi":"10.1007/JHEP01(2026)066","DOIUrl":"10.1007/JHEP01(2026)066","url":null,"abstract":"<p>The graviscalar perturbations of thick braneworld models provide critical insights into their matter-geometry relationship, distinct from tensor modes. This work systematically investigates quasinormal modes and gravitational echoes from graviscalar perturbations in a thick brane model exhibiting internal structure and brane splitting. We find that the splitting of the brane would completely alter the structure of the quasinormal spectrum and cause the appearance of echo signals. We also find a position-dependence of echo modes within the extra dimension. Observers located on a sub-brane detect clean periodic signals, whereas those situated between sub-branes observe more complex, modulated waveforms. This effect offers a distinct signature of the brane’s internal structure. The observed echoes, along with consistent frequency- and time-domain results, advance the understanding of thick brane dynamics and open an observational window into warped extra dimensions. Moreover, the similarity between the effective potential in thick brane scenarios and that in black holes and wormholes offers valuable perspectives for studying echo-related phenomena in these gravitational systems.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)066.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gauge origami and quiver W-algebras. Part IV. Pandharipande-Thomas qq-characters 规范折纸与颤振w代数。第四部分:Pandharipande-Thomas q-characters
IF 5.5 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-01-09 DOI: 10.1007/JHEP01(2026)063
Taro Kimura, Go Noshita

We develop a contour integral formalism for computing the K-theoretic equivariant 3-vertex. Within the Jeffrey-Kirwan (JK) residue framework, we show that, by an appropriate choice of the reference vector, both the equivariant Donaldson-Thomas (DT) and Pandharipande-Thomas (PT) 3-vertices can be extracted from the same integrand. We analyze three distinct limits of the PT 3-vertex, recovering the unrefined topological vertex, the refined topological vertex, and the Macdonald refined topological vertex. Higher-rank extensions of PT counting and the DT/PT correspondence are also explored. From a quantum algebraic perspective, we construct an operator version of the equivariant PT 3-vertex and term it the Pandharipande-Thomas qq-character. We then discuss its connection with the quantum toroidal ({mathfrak{g}mathfrak{l}}_{1}).

给出了计算k -理论等变3顶点的轮廓积分形式。在Jeffrey-Kirwan (JK)残差框架中,我们证明了通过适当选择参考向量,可以从相同的被积域中提取出等变的Donaldson-Thomas (DT)和Pandharipande-Thomas (PT) 3-顶点。我们分析了PT 3顶点的三种不同的极限,恢复了未精炼的拓扑顶点、精炼的拓扑顶点和麦克唐纳精炼的拓扑顶点。本文还探讨了PT计数的高阶扩展和DT/PT对应关系。从量子代数的角度,构造了等变PT 3顶点的算子版本,并将其记为Pandharipande-Thomas q-字符。然后讨论它与量子环面({mathfrak{g}mathfrak{l}}_{1})的联系。
{"title":"Gauge origami and quiver W-algebras. Part IV. Pandharipande-Thomas qq-characters","authors":"Taro Kimura,&nbsp;Go Noshita","doi":"10.1007/JHEP01(2026)063","DOIUrl":"10.1007/JHEP01(2026)063","url":null,"abstract":"<p>We develop a contour integral formalism for computing the K-theoretic equivariant 3-vertex. Within the Jeffrey-Kirwan (JK) residue framework, we show that, by an appropriate choice of the reference vector, both the equivariant Donaldson-Thomas (DT) and Pandharipande-Thomas (PT) 3-vertices can be extracted from the same integrand. We analyze three distinct limits of the PT 3-vertex, recovering the unrefined topological vertex, the refined topological vertex, and the Macdonald refined topological vertex. Higher-rank extensions of PT counting and the DT/PT correspondence are also explored. From a quantum algebraic perspective, we construct an operator version of the equivariant PT 3-vertex and term it the Pandharipande-Thomas <i>qq</i>-character. We then discuss its connection with the quantum toroidal <span>({mathfrak{g}mathfrak{l}}_{1})</span>.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)063.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of High Energy Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1