Toshali Mitra, Sukrut Mondkar, Ayan Mukhopadhyay, Alexander Soloviev
Semi-holography provides a formulation of dynamics in gauge theories involving both weakly self-interacting (perturbative) and strongly self-interacting (non-perturbative) degrees of freedom. These two subsectors interact via their effective metrics and sources, while the full local energy-momentum tensor is conserved in the physical background metric. In the large N limit, the subsectors have their individual entropy currents, and so the full system can reach a pseudo-equilibrium state in which each subsector has a different physical temperature.
We first complete the proof that the global thermal equilibrium state, where both subsectors have the same physical temperature, can be defined in consistency with the principles of thermodynamics and statistical mechanics. Particularly, we show that the global equilibrium state is the unique state with maximum entropy in the microcanonical ensemble. Furthermore, we show that in the large N limit, a typical non-equilibrium state of the full isolated system relaxes to the global equilibrium state when the average energy density is large compared to the scale set by the inter-system coupling. We discuss quantum statistical perspectives.
{"title":"Hybrid thermalization in the large N limit","authors":"Toshali Mitra, Sukrut Mondkar, Ayan Mukhopadhyay, Alexander Soloviev","doi":"10.1007/JHEP01(2026)078","DOIUrl":"10.1007/JHEP01(2026)078","url":null,"abstract":"<p>Semi-holography provides a formulation of dynamics in gauge theories involving both weakly self-interacting (perturbative) and strongly self-interacting (non-perturbative) degrees of freedom. These two subsectors interact via their effective metrics and sources, while the full local energy-momentum tensor is conserved in the physical background metric. In the large <i>N</i> limit, the subsectors have their individual entropy currents, and so the full system can reach a pseudo-equilibrium state in which each subsector has a different physical temperature.</p><p>We first complete the proof that the global thermal equilibrium state, where both subsectors have the <i>same</i> physical temperature, can be defined in consistency with the principles of thermodynamics and statistical mechanics. Particularly, we show that the global equilibrium state is the unique state with maximum entropy in the microcanonical ensemble. Furthermore, we show that in the large <i>N</i> limit, a <i>typical</i> non-equilibrium state of the full isolated system relaxes to the global equilibrium state when the average energy density is large compared to the scale set by the inter-system coupling. We discuss quantum statistical perspectives.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)078.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145982833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yohei Ema, Ting Gao, Wenqi Ke, Zhen Liu, Ishmam Mahbub
We recursively construct tree-level electromagnetic and gravitational Compton amplitudes of higher-spin massive particles by the all-line transverse momentum shift. With three-point amplitude as input, we demonstrate that higher-point electromagnetic and gravitational Compton amplitudes are on-shell constructible up to spin s = 3/2 and s = 5/2, respectively, under the all-line transverse shift after imposing the current constraint condition. We unambiguously derive the four-point electromagnetic and gravitational Compton amplitudes for s ≤ 3/2 and s ≤ 5/2, which are uniquely determined by the on-shell recursion relation and are free from unphysical spurious poles. In addition, we explore amplitudes of spin-3/2 particles with non-minimal three-point interactions with photon, as well as s > 3/2 particles, and comment on their notable features. Our work furthers the understanding of on-shell methods for massive amplitudes, with hopes to shed light on physical observables in particle physics and higher-spin amplitudes relevant for Kerr black-hole scattering.
{"title":"On-shell recursion relations for higher-spin Compton amplitudes","authors":"Yohei Ema, Ting Gao, Wenqi Ke, Zhen Liu, Ishmam Mahbub","doi":"10.1007/JHEP01(2026)069","DOIUrl":"10.1007/JHEP01(2026)069","url":null,"abstract":"<p>We recursively construct tree-level electromagnetic and gravitational Compton amplitudes of higher-spin massive particles by the all-line transverse momentum shift. With three-point amplitude as input, we demonstrate that higher-point electromagnetic and gravitational Compton amplitudes are on-shell constructible up to spin <i>s</i> = 3/2 and <i>s</i> = 5/2, respectively, under the all-line transverse shift after imposing the current constraint condition. We unambiguously derive the four-point electromagnetic and gravitational Compton amplitudes for <i>s</i> ≤ 3/2 and <i>s</i> ≤ 5/2, which are uniquely determined by the on-shell recursion relation and are free from unphysical spurious poles. In addition, we explore amplitudes of spin-3/2 particles with non-minimal three-point interactions with photon, as well as <i>s</i> > 3/2 particles, and comment on their notable features. Our work furthers the understanding of on-shell methods for massive amplitudes, with hopes to shed light on physical observables in particle physics and higher-spin amplitudes relevant for Kerr black-hole scattering.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)069.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We compute the tensor meson pole contributions to the Hadronic Light-by-Light piece of aμ in the purely hadronic region, using Resonance Chiral Theory. Given the differences between the dispersive and holographic groups determinations and the resulting discussion of the corresponding uncertainty estimate for the Hadronic Light-by-Light section of the muon g − 2 theory initiative second White Paper, we consider timely to present an alternative evaluation. In our approach, in addition to the lightest tensor meson nonet, two vector meson resonance nonets are considered, in the chiral limit. Disregarding operators with derivatives, only the form factor ({mathcal{F}}_{1}^{T}) is non-vanishing, as assumed in the dispersive study. All parameters are determined by imposing a set of short-distance QCD constraints, and the radiative tensor decay widths. In this case, we obtain the following results for the different contributions (in units of 10−11): ({a}_{mu }^{{text{a}}_{2}-{text{pole}}}=-left(1.02{left(10right)}_{text{stat}}{{(}_{-0.12}^{+0.00})}_{text{syst}}right)), ({a}_{mu }^{{text{f}}_{2}-{text{pole}}}=-left(3.2{left(3right)}_{text{stat}}{{(}_{-0.4}^{+0.0})}_{text{syst}}right)) and ({a}_{mu }^{{text{f}}_{2}{prime}-{text{pole}}}=-left(0.042{left(13right)}_{text{stat}}right)), which add up to ({a}_{mu }^{{text{a}}_{2}+{f}_{2}+{f}_{2}{prime}-{text{pole}}}=-left({4.3}_{-0.5}^{+0.3}right)), in close agreement with the holographic result when truncated to ({mathcal{F}}_{1}^{T}) only. However, with an ad-hoc extended Lagrangian, that also generates ({mathcal{F}}_{3}^{T}), as in the holographic approach, we have found: ({a}_{mu }^{{text{a}}_{2}-{text{pole}}}=+0.47{left(1.43right)}_{text{norm}}{left(3right)}_{text{stat}}{{(}_{-0.00}^{+0.06})}_{text{syst}}), ({a}_{mu }^{{text{f}}_{2}-{text{pole}}}=+1.18{left(4.18right)}_{text{norm}}{left(12right)}_{text{stat}}{{(}_{-0.00}^{+0.24})}_{text{syst}}) and ({a}_{mu }^{{text{f}}_{2}{prime}-{text{pole}}}=+0.040{left(78right)}_{text{norm}}{left(2right)}_{text{stat}}), summing to ({a}_{mu }^{{{a}_{2}+{f}_{2}+f}_{2}{prime}-{text{pole}}}=+1.7(4.4)), which agree with these recent determinations within uncertainties (dominated by the ({mathcal{F}}_{3}^{T}) normalization). We point out that RχT generates all five form factors, differently to previous approaches. The contributions to aμ of ({mathcal{F}}_{text{2,4},5}) cannot be evaluated in the current basis, preventing for the moment a complete calculation of ({a}_{mu }^{text{T}-{text{pole}}{text{s}}}) within our framework.
{"title":"Tensor meson pole contributions to the HLbL piece of ({a}_{mu }^{text{HLbL}}) within RχT","authors":"Emilio J. Estrada, Pablo Roig","doi":"10.1007/JHEP01(2026)070","DOIUrl":"10.1007/JHEP01(2026)070","url":null,"abstract":"<p>We compute the tensor meson pole contributions to the Hadronic Light-by-Light piece of <i>a</i><sub><i>μ</i></sub> in the purely hadronic region, using Resonance Chiral Theory. Given the differences between the dispersive and holographic groups determinations and the resulting discussion of the corresponding uncertainty estimate for the Hadronic Light-by-Light section of the muon <i>g</i> − 2 theory initiative second White Paper, we consider timely to present an alternative evaluation. In our approach, in addition to the lightest tensor meson nonet, two vector meson resonance nonets are considered, in the chiral limit. Disregarding operators with derivatives, only the form factor <span>({mathcal{F}}_{1}^{T})</span> is non-vanishing, as assumed in the dispersive study. All parameters are determined by imposing a set of short-distance QCD constraints, and the radiative tensor decay widths. In this case, we obtain the following results for the different contributions (in units of 10<sup>−11</sup>): <span>({a}_{mu }^{{text{a}}_{2}-{text{pole}}}=-left(1.02{left(10right)}_{text{stat}}{{(}_{-0.12}^{+0.00})}_{text{syst}}right))</span>, <span>({a}_{mu }^{{text{f}}_{2}-{text{pole}}}=-left(3.2{left(3right)}_{text{stat}}{{(}_{-0.4}^{+0.0})}_{text{syst}}right))</span> and <span>({a}_{mu }^{{text{f}}_{2}{prime}-{text{pole}}}=-left(0.042{left(13right)}_{text{stat}}right))</span>, which add up to <span>({a}_{mu }^{{text{a}}_{2}+{f}_{2}+{f}_{2}{prime}-{text{pole}}}=-left({4.3}_{-0.5}^{+0.3}right))</span>, in close agreement with the holographic result when truncated to <span>({mathcal{F}}_{1}^{T})</span> only. However, with an ad-hoc extended Lagrangian, that also generates <span>({mathcal{F}}_{3}^{T})</span>, as in the holographic approach, we have found: <span>({a}_{mu }^{{text{a}}_{2}-{text{pole}}}=+0.47{left(1.43right)}_{text{norm}}{left(3right)}_{text{stat}}{{(}_{-0.00}^{+0.06})}_{text{syst}})</span>, <span>({a}_{mu }^{{text{f}}_{2}-{text{pole}}}=+1.18{left(4.18right)}_{text{norm}}{left(12right)}_{text{stat}}{{(}_{-0.00}^{+0.24})}_{text{syst}})</span> and <span>({a}_{mu }^{{text{f}}_{2}{prime}-{text{pole}}}=+0.040{left(78right)}_{text{norm}}{left(2right)}_{text{stat}})</span>, summing to <span>({a}_{mu }^{{{a}_{2}+{f}_{2}+f}_{2}{prime}-{text{pole}}}=+1.7(4.4))</span>, which agree with these recent determinations within uncertainties (dominated by the <span>({mathcal{F}}_{3}^{T})</span> normalization). We point out that <i>RχT</i> generates all five form factors, differently to previous approaches. The contributions to <i>a</i><sub><i>μ</i></sub> of <span>({mathcal{F}}_{text{2,4},5})</span> cannot be evaluated in the current basis, preventing for the moment a complete calculation of <span>({a}_{mu }^{text{T}-{text{pole}}{text{s}}})</span> within our framework.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)070.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145982657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simone Alioli, Georgios Billis, Alessandro Broggio, Giovanni Stagnitto
We present the implementation of next-to-next-to-leading order (NNLO) QCD fully-differential corrections within the Geneva framework, for both colour-singlet and colour-singlet+jet processes at hadron colliders, by employing a nonlocal subtraction approach. In particular, we discuss the implementation details and the challenges that arise when utilizing a dynamical infrared cutoff parameter. Additionally, we combine the subtraction with the projection-to-Born method in order to include fiducial power corrections. As a test case, we provide predictions for Drell-Yan and Z+jet production at the LHC, using N-jettiness as resolution variable. We validate the NNLO corrections of Geneva against nnlojet finding excellent agreement. Finally, we discuss how to extend our method to calculate the N3LO QCD fully-differential corrections to colour-singlet production at hadron colliders.
{"title":"NNLO predictions with nonlocal subtractions and fiducial power corrections in GENEVA","authors":"Simone Alioli, Georgios Billis, Alessandro Broggio, Giovanni Stagnitto","doi":"10.1007/JHEP01(2026)065","DOIUrl":"10.1007/JHEP01(2026)065","url":null,"abstract":"<p>We present the implementation of next-to-next-to-leading order (NNLO) QCD fully-differential corrections within the G<span>eneva</span> framework, for both colour-singlet and colour-singlet+jet processes at hadron colliders, by employing a nonlocal subtraction approach. In particular, we discuss the implementation details and the challenges that arise when utilizing a dynamical infrared cutoff parameter. Additionally, we combine the subtraction with the projection-to-Born method in order to include fiducial power corrections. As a test case, we provide predictions for Drell-Yan and <i>Z</i>+jet production at the LHC, using <i>N</i>-jettiness as resolution variable. We validate the NNLO corrections of G<span>eneva</span> against <span>nnlojet</span> finding excellent agreement. Finally, we discuss how to extend our method to calculate the N<sup>3</sup>LO QCD fully-differential corrections to colour-singlet production at hadron colliders.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)065.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145982658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Song Li, Jin Min Yang, Mengchao Zhang, Yang Zhang, Rui Zhu
In the phenomenological study of dark photon, its mass origin is usually not of concern. However, in theoretical model construction, its mass is often generated via a dark Higgs mechanism, which leads to the presence of a light (non-decoupled) dark Higgs particle. In this work, we study the impact of such a dark Higgs particle on the collider detection of the dark photon. We focus on the process of final state dark photon radiating dark Higgs, which is called dark final state radiation (FSR). Considering the effects on both the signal cross section and the distribution of the squared missing mass, the invisible dark photon search at BaBar is reanalyzed and a new exclusion limit for invisible dark photon is presented.
{"title":"Unraveling dark Higgs mechanism via dark photon production at an e+e− collider","authors":"Song Li, Jin Min Yang, Mengchao Zhang, Yang Zhang, Rui Zhu","doi":"10.1007/JHEP01(2026)071","DOIUrl":"10.1007/JHEP01(2026)071","url":null,"abstract":"<p>In the phenomenological study of dark photon, its mass origin is usually not of concern. However, in theoretical model construction, its mass is often generated via a dark Higgs mechanism, which leads to the presence of a light (non-decoupled) dark Higgs particle. In this work, we study the impact of such a dark Higgs particle on the collider detection of the dark photon. We focus on the process of final state dark photon radiating dark Higgs, which is called dark final state radiation (FSR). Considering the effects on both the signal cross section and the distribution of the squared missing mass, the invisible dark photon search at BaBar is reanalyzed and a new exclusion limit for invisible dark photon is presented.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)071.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The LHCb collaboration, R. Aaij, A. S. W. Abdelmotteleb, C. Abellan Beteta, F. Abudinén, T. Ackernley, A. A. Adefisoye, B. Adeva, M. Adinolfi, P. Adlarson, C. Agapopoulou, C. A. Aidala, Z. Ajaltouni, S. Akar, K. Akiba, P. Albicocco, J. Albrecht, R. Aleksiejunas, F. Alessio, Z. Aliouche, P. Alvarez Cartelle, R. Amalric, S. Amato, J. L. Amey, Y. Amhis, L. An, L. Anderlini, M. Andersson, P. Andreola, M. Andreotti, S. Andres Estrada, A. Anelli, D. Ao, F. Archilli, Z. Areg, M. Argenton, S. Arguedas Cuendis, A. Artamonov, M. Artuso, E. Aslanides, R. Ataíde Da Silva, M. Atzeni, B. Audurier, J. A. Authier, D. Bacher, I. Bachiller Perea, S. Bachmann, M. Bachmayer, J. J. Back, P. Baladron Rodriguez, V. Balagura, A. Balboni, W. Baldini, L. Balzani, H. Bao, J. Baptista de Souza Leite, C. Barbero Pretel, M. Barbetti, I. R. Barbosa, R. J. Barlow, M. Barnyakov, S. Barsuk, W. Barter, J. Bartz, S. Bashir, B. Batsukh, P. B. Battista, A. Bay, A. Beck, M. Becker, F. Bedeschi, I. B. Bediaga, N. A. Behling, S. Belin, K. Belous, I. Belov, I. Belyaev, G. Benane, G. Bencivenni, E. Ben-Haim, A. Berezhnoy, R. Bernet, S. Bernet Andres, A. Bertolin, C. Betancourt, F. Betti, J. Bex, Ia. Bezshyiko, O. Bezshyyko, J. Bhom, M. S. Bieker, N. V. Biesuz, P. Billoir, A. Biolchini, M. Birch, F. C. R. Bishop, A. Bitadze, A. Bizzeti, T. Blake, F. Blanc, J. E. Blank, S. Blusk, V. Bocharnikov, J. A. Boelhauve, O. Boente Garcia, T. Boettcher, A. Bohare, A. Boldyrev, C. S. Bolognani, R. Bolzonella, R. B. Bonacci, N. Bondar, A. Bordelius, F. Borgato, S. Borghi, M. Borsato, J. T. Borsuk, E. Bottalico, S. A. Bouchiba, M. Bovill, T. J. V. Bowcock, A. Boyer, C. Bozzi, J. D. Brandenburg, A. Brea Rodriguez, N. Breer, J. Brodzicka, A. Brossa Gonzalo, J. Brown, D. Brundu, E. Buchanan, L. Buonincontri, M. Burgos Marcos, A. T. Burke, C. Burr, J. S. Butter, J. Buytaert, W. Byczynski, S. Cadeddu, H. Cai, Y. Cai, A. Caillet, R. Calabrese, S. Calderon Ramirez, L. Calefice, S. Cali, M. Calvi, M. Calvo Gomez, P. Camargo Magalhaes, J. I. Cambon Bouzas, P. Campana, D. H. Campora Perez, A. F. Campoverde Quezada, S. Capelli, L. Capriotti, R. Caravaca-Mora, A. Carbone, L. Carcedo Salgado, R. Cardinale, A. Cardini, P. Carniti, L. Carus, A. Casais Vidal, R. Caspary, G. Casse, M. Cattaneo, G. Cavallero, V. Cavallini, S. Celani, S. Cesare, A. J. Chadwick, I. Chahrour, H. Chang, M. Charles, Ph. Charpentier, E. Chatzianagnostou, R. Cheaib, M. Chefdeville, C. Chen, J. Chen, S. Chen, Z. Chen, M. Cherif, A. Chernov, S. Chernyshenko, X. Chiotopoulos, V. Chobanova, M. Chrzaszcz, A. Chubykin, V. Chulikov, P. Ciambrone, X. Cid Vidal, G. Ciezarek, P. Cifra, P. E. L. Clarke, M. Clemencic, H. V. Cliff, J. Closier, C. Cocha Toapaxi, V. Coco, J. Cogan, E. Cogneras, L. Cojocariu, S. Collaviti, P. Collins, T. Colombo, M. Colonna, A. Comerma-Montells, L. Congedo, J. Connaughton, A. Contu, N. Cooke, C. Coronel, I. Corredoira, A. Correia, G. Corti, J. Cottee Meldrum, B. Couturier, D. C. Craik, M. Cruz Torres, E. Curras Rivera, R. Currie, C. L. Da Silva, S. Dadabaev, L. Dai, X. Dai, E. Dall’Occo, J. Dalseno, C. D’Ambrosio, J. Daniel, P. d’Argent, G. Darze, A. Davidson, J. E. Davies, O. De Aguiar Francisco, C. De Angelis, F. De Benedetti, J. de Boer, K. De Bruyn, S. De Capua, M. De Cian, U. De Freitas Carneiro Da Graca, E. De Lucia, J. M. De Miranda, L. De Paula, M. De Serio, P. De Simone, F. De Vellis, J. A. de Vries, F. Debernardis, D. Decamp, S. Dekkers, L. Del Buono, B. Delaney, H.-P. Dembinski, J. Deng, V. Denysenko, O. Deschamps, F. Dettori, B. Dey, P. Di Nezza, I. Diachkov, S. Didenko, S. Ding, Y. Ding, L. Dittmann, V. Dobishuk, A. D. Docheva, A. Doheny, C. Dong, A. M. Donohoe, F. Dordei, A. C. dos Reis, A. D. Dowling, L. Dreyfus, W. Duan, P. Duda, M. W. Dudek, L. Dufour, V. Duk, P. Durante, M. M. Duras, J. M. Durham, O. D. Durmus, A. Dziurda, A. Dzyuba, S. Easo, E. Eckstein, U. Egede, A. Egorychev, V. Egorychev, S. Eisenhardt, E. Ejopu, L. Eklund, M. Elashri, J. Ellbracht, S. Ely, A. Ene, J. Eschle, S. Esen, T. Evans, F. Fabiano, S. Faghih, L. N. Falcao, B. Fang, R. Fantechi, L. Fantini, M. Faria, K. Farmer, D. Fazzini, L. Felkowski, M. Feng, M. Feo, A. Fernandez Casani, M. Fernandez Gomez, A. D. Fernez, F. Ferrari, F. Ferreira Rodrigues, M. Ferrillo, M. Ferro-Luzzi, S. Filippov, R. A. Fini, M. Fiorini, M. Firlej, K. L. Fischer, D. S. Fitzgerald, C. Fitzpatrick, T. Fiutowski, F. Fleuret, A. Fomin, M. Fontana, L. F. Foreman, R. Forty, D. Foulds-Holt, V. Franco Lima, M. Franco Sevilla, M. Frank, E. Franzoso, G. Frau, C. Frei, D. A. Friday, J. Fu, Q. Führing, T. Fulghesu, G. Galati, M. D. Galati, A. Gallas Torreira, D. Galli, S. Gambetta, M. Gandelman, P. Gandini, B. Ganie, H. Gao, R. Gao, T. Q. Gao, Y. Gao, Y. Gao, Y. Gao, L. M. Garcia Martin, P. Garcia Moreno, J. García Pardiñas, P. Gardner, K. G. Garg, L. Garrido, C. Gaspar, A. Gavrikov, L. L. Gerken, E. Gersabeck, M. Gersabeck, T. Gershon, S. Ghizzo, Z. Ghorbanimoghaddam, L. Giambastiani, F. I. Giasemis, V. Gibson, H. K. Giemza, A. L. Gilman, M. Giovannetti, A. Gioventù, L. Girardey, M. A. Giza, F. C. Glaser, V. V. Gligorov, C. Göbel, L. Golinka-Bezshyyko, E. Golobardes, D. Golubkov, A. Golutvin, S. Gomez Fernandez, W. Gomulka, I. Gonçales Vaz, F. Goncalves Abrantes, M. Goncerz, G. Gong, J. A. Gooding, I. V. Gorelov, C. Gotti, E. Govorkova, J. P. Grabowski, L. A. Granado Cardoso, E. Graugés, E. Graverini, L. Grazette, G. Graziani, A. T. Grecu, L. M. Greeven, N. A. Grieser, L. Grillo, S. Gromov, C. Gu, M. Guarise, L. Guerry, V. Guliaeva, P. A. Günther, A.-K. Guseinov, E. Gushchin, Y. Guz, T. Gys, K. Habermann, T. Hadavizadeh, C. Hadjivasiliou, G. Haefeli, C. Haen, S. Haken, G. Hallett, P. M. Hamilton, J. Hammerich, Q. Han, X. Han, S. Hansmann-Menzemer, L. Hao, N. Harnew, T. H. Harris, M. Hartmann, S. Hashmi, J. He, A. Hedes, F. Hemmer, C. Henderson, R. Henderson, R. D. L. Henderson, A. M. Hennequin, K. Hennessy, L. Henry, J. Herd, P. Herrero Gascon, J. Heuel, A. Hicheur, G. Hijano Mendizabal, J. Horswill, R. Hou, Y. Hou, D. C. Houston, N. Howarth, J. Hu, W. Hu, X. Hu, W. Hulsbergen, R. J. Hunter, M. Hushchyn, D. Hutchcroft, M. Idzik, D. Ilin, P. Ilten, A. Iniukhin, A. Ishteev, K. Ivshin, H. Jage, S. J. Jaimes Elles, S. Jakobsen, E. Jans, B. K. Jashal, A. Jawahery, C. Jayaweera, V. Jevtic, Z. Jia, E. Jiang, X. Jiang, Y. Jiang, Y. J. Jiang, E. Jimenez Moya, N. Jindal, M. John, A. John Rubesh Rajan, D. Johnson, C. R. Jones, S. Joshi, B. Jost, J. Juan Castella, N. Jurik, I. Juszczak, D. Kaminaris, S. Kandybei, M. Kane, Y. Kang, C. Kar, M. Karacson, A. Kauniskangas, J. W. Kautz, M. K. Kazanecki, F. Keizer, M. Kenzie, T. Ketel, B. Khanji, A. Kharisova, S. Kholodenko, G. Khreich, T. Kirn, V. S. Kirsebom, O. Kitouni, S. Klaver, N. Kleijne, K. Klimaszewski, M. R. Kmiec, S. Koliiev, L. Kolk, A. Konoplyannikov, P. Kopciewicz, P. Koppenburg, A. Korchin, M. Korolev, I. Kostiuk, O. Kot, S. Kotriakhova, E. Kowalczyk, A. Kozachuk, P. Kravchenko, L. Kravchuk, O. Kravcov, M. Kreps, P. Krokovny, W. Krupa, W. Krzemien, O. Kshyvanskyi, S. Kubis, M. Kucharczyk, V. Kudryavtsev, E. Kulikova, A. Kupsc, V. Kushnir, B. Kutsenko, I. Kyryllin, D. Lacarrere, P. Laguarta Gonzalez, A. Lai, A. Lampis, D. Lancierini, C. Landesa Gomez, J. J. Lane, G. Lanfranchi, C. Langenbruch, J. Langer, O. Lantwin, T. Latham, F. Lazzari, C. Lazzeroni, R. Le Gac, H. Lee, R. Lefèvre, A. Leflat, S. Legotin, M. Lehuraux, E. Lemos Cid, O. Leroy, T. Lesiak, E. D. Lesser, B. Leverington, A. Li, C. Li, C. Li, H. Li, J. Li, K. Li, L. Li, M. Li, P. Li, P.-R. Li, Q. Li, T. Li, T. Li, Y. Li, Y. Li, Y. Li, Z. Lian, Q. Liang, X. Liang, S. Libralon, A. L. Lightbody, C. Lin, T. Lin, R. Lindner, H. Linton, R. Litvinov, D. Liu, F. L. Liu, G. Liu, K. Liu, S. Liu, W. Liu, Y. Liu, Y. Liu, Y. L. Liu, G. Loachamin Ordonez, A. Lobo Salvia, A. Loi, T. Long, F. C. L. Lopes, J. H. Lopes, A. Lopez Huertas, C. Lopez Iribarnegaray, S. López Soliño, Q. Lu, C. Lucarelli, D. Lucchesi, M. Lucio Martinez, Y. Luo, A. Lupato, E. Luppi, K. Lynch, X.-R. Lyu, G. M. Ma, S. Maccolini, F. Machefert, F. Maciuc, B. Mack, I. Mackay, L. M. Mackey, L. R. Madhan Mohan, M. J. Madurai, D. Magdalinski, D. Maisuzenko, J. J. Malczewski, S. Malde, L. Malentacca, A. Malinin, T. Maltsev, G. Manca, G. Mancinelli, C. Mancuso, R. Manera Escalero, F. M. Manganella, D. Manuzzi, D. Marangotto, J. F. Marchand, R. Marchevski, U. Marconi, E. Mariani, S. Mariani, C. Marin Benito, J. Marks, A. M. Marshall, L. Martel, G. Martelli, G. Martellotti, L. Martinazzoli, M. Martinelli, D. Martinez Gomez, D. Martinez Santos, F. Martinez Vidal, A. Martorell i Granollers, A. Massafferri, R. Matev, A. Mathad, V. Matiunin, C. Matteuzzi, K. R. Mattioli, A. Mauri, E. Maurice, J. Mauricio, P. Mayencourt, J. Mazorra de Cos, M. Mazurek, M. McCann, T. H. McGrath, N. T. McHugh, A. McNab, R. McNulty, B. Meadows, G. Meier, D. Melnychuk, D. Mendoza Granada, F. M. Meng, M. Merk, A. Merli, L. Meyer Garcia, D. Miao, H. Miao, M. Mikhasenko, D. A. Milanes, A. Minotti, E. Minucci, T. Miralles, B. Mitreska, D. S. Mitzel, A. Modak, L. Moeser, R. D. Moise, E. F. Molina Cardenas, T. Mombächer, M. Monk, S. Monteil, A. Morcillo Gomez, G. Morello, M. J. Morello, M. P. Morgenthaler, J. Moron, W. Morren, A. B. Morris, A. G. Morris, R. Mountain, H. Mu, Z. M. Mu, E. Muhammad, F. Muheim, M. Mulder, K. Müller, F. Muñoz-Rojas, R. Murta, V. Mytrochenko, P. Naik, T. Nakada, R. Nandakumar, T. Nanut, I. Nasteva, M. Needham, E. Nekrasova, N. Neri, S. Neubert, N. Neufeld, P. Neustroev, J. Nicolini, D. Nicotra, E. M. Niel, N. Nikitin, Q. Niu, P. Nogarolli, P. Nogga, C. Normand, J. Novoa Fernandez, G. Nowak, C. Nunez, H. N. Nur, A. Oblakowska-Mucha, V. Obraztsov, T. Oeser, A. Okhotnikov, O. Okhrimenko, R. Oldeman, F. Oliva, E. Olivart Pino, M. Olocco, C. J. G. Onderwater, R. H. O’Neil, J. S. Ordonez Soto, D. Osthues, J. M. Otalora Goicochea, P. Owen, A. Oyanguren, O. Ozcelik, F. Paciolla, A. Padee, K. O. Padeken, B. Pagare, T. Pajero, A. Palano, M. Palutan, C. Pan, X. Pan, S. Panebianco, G. Panshin, L. Paolucci, A. Papanestis, M. Pappagallo, L. L. Pappalardo, C. Pappenheimer, C. Parkes, D. Parmar, B. Passalacqua, G. Passaleva, D. Passaro, A. Pastore, M. Patel, J. Patoc, C. Patrignani, A. Paul, C. J. Pawley, A. Pellegrino, J. Peng, X. Peng, M. Pepe Altarelli, S. Perazzini, D. Pereima, H. Pereira Da Costa, M. Pereira Martinez, A. Pereiro Castro, C. Perez, P. Perret, A. Perrevoort, A. Perro, M. J. Peters, K. Petridis, A. Petrolini, J. P. Pfaller, H. Pham, L. Pica, M. Piccini, L. Piccolo, B. Pietrzyk, G. Pietrzyk, R. N. Pilato, D. Pinci, F. Pisani, M. Pizzichemi, V. M. Placinta, M. Plo Casasus, T. Poeschl, F. Polci, M. Poli Lener, A. Poluektov, N. Polukhina, I. Polyakov, E. Polycarpo, S. Ponce, D. Popov, S. Poslavskii, K. Prasanth, C. Prouve, D. Provenzano, V. Pugatch, G. Punzi, S. Qasim, Q. Q. Qian, W. Qian, N. Qin, S. Qu, R. Quagliani, R. I. Rabadan Trejo, R. Racz, J. H. Rademacker, M. Rama, M. Ramírez García, V. Ramos De Oliveira, M. Ramos Pernas, M. S. Rangel, F. Ratnikov, G. Raven, M. Rebollo De Miguel, F. Redi, J. Reich, F. Reiss, Z. Ren, P. K. Resmi, M. Ribalda Galvez, R. Ribatti, G. Ricart, D. Riccardi, S. Ricciardi, K. Richardson, M. Richardson-Slipper, K. Rinnert, P. Robbe, G. Robertson, E. Rodrigues, A. Rodriguez Alvarez, E. Rodriguez Fernandez, J. A. Rodriguez Lopez, E. Rodriguez Rodriguez, J. Roensch, A. Rogachev, A. Rogovskiy, D. L. Rolf, P. Roloff, V. Romanovskiy, A. Romero Vidal, G. Romolini, F. Ronchetti, T. Rong, M. Rotondo, S. R. Roy, M. S. Rudolph, M. Ruiz Diaz, R. A. Ruiz Fernandez, J. Ruiz Vidal, J. J. Saavedra-Arias, J. J. Saborido Silva, S. E. R. Sacha Emile R., R. Sadek, N. Sagidova, D. Sahoo, N. Sahoo, B. Saitta, M. Salomoni, I. Sanderswood, R. Santacesaria, C. Santamarina Rios, M. Santimaria, L. Santoro, E. Santovetti, A. Saputi, D. Saranin, A. Sarnatskiy, G. Sarpis, M. Sarpis, C. Satriano, A. Satta, M. Saur, D. Savrina, H. Sazak, F. Sborzacchi, A. Scarabotto, S. Schael, S. Scherl, M. Schiller, H. Schindler, M. Schmelling, B. Schmidt, S. Schmitt, H. Schmitz, O. Schneider, A. Schopper, N. Schulte, M. H. Schune, G. Schwering, B. Sciascia, A. Sciuccati, I. Segal, S. Sellam, A. Semennikov, T. Senger, M. Senghi Soares, A. Sergi, N. Serra, L. Sestini, A. Seuthe, B. Sevilla Sanjuan, Y. Shang, D. M. Shangase, M. Shapkin, R. S. Sharma, I. Shchemerov, L. Shchutska, T. Shears, L. Shekhtman, Z. Shen, S. Sheng, V. Shevchenko, B. Shi, Q. Shi, W. S. Shi, Y. Shimizu, E. Shmanin, R. Shorkin, J. D. Shupperd, R. Silva Coutinho, G. Simi, S. Simone, M. Singha, N. Skidmore, T. Skwarnicki, M. W. Slater, E. Smith, K. Smith, M. Smith, L. Soares Lavra, M. D. Sokoloff, F. J. P. Soler, A. Solomin, A. Solovev, N. S. Sommerfeld, R. Song, Y. Song, Y. Song, Y. S. Song, F. L. Souza De Almeida, B. Souza De Paula, K. M. Sowa, E. Spadaro Norella, E. Spedicato, J. G. Speer, P. Spradlin, V. Sriskaran, F. Stagni, M. Stahl, S. Stahl, S. Stanislaus, M. Stefaniak, E. N. Stein, O. Steinkamp, H. Stevens, D. Strekalina, Y. Su, F. Suljik, J. Sun, J. Sun, L. Sun, D. Sundfeld, W. Sutcliffe, K. Swientek, F. Swystun, A. Szabelski, T. Szumlak, Y. Tan, Y. Tang, Y. T. Tang, M. D. Tat, J. A. Teijeiro Jimenez, A. Terentev, F. Terzuoli, F. Teubert, E. Thomas, D. J. D. Thompson, A. R. Thomson-Strong, H. Tilquin, V. Tisserand, S. T’Jampens, M. Tobin, T. T. Todorov, L. Tomassetti, G. Tonani, X. Tong, T. Tork, D. Torres Machado, L. Toscano, D. Y. Tou, C. Trippl, G. Tuci, N. Tuning, L. H. Uecker, A. Ukleja, D. J. Unverzagt, A. Upadhyay, B. Urbach, A. Usachov, A. Ustyuzhanin, U. Uwer, V. Vagnoni, V. Valcarce Cadenas, G. Valenti, N. Valls Canudas, J. van Eldik, H. Van Hecke, E. van Herwijnen, C. B. Van Hulse, R. Van Laak, M. van Veghel, G. Vasquez, R. Vazquez Gomez, P. Vazquez Regueiro, C. Vázquez Sierra, S. Vecchi, J. J. Velthuis, M. Veltri, A. Venkateswaran, M. Verdoglia, M. Vesterinen, W. Vetens, D. Vico Benet, P. Vidrier Villalba, M. Vieites Diaz, X. Vilasis-Cardona, E. Vilella Figueras, A. Villa, P. Vincent, B. Vivacqua, F. C. Volle, D. vom Bruch, N. Voropaev, K. Vos, C. Vrahas, J. Wagner, J. Walsh, E. J. Walton, G. Wan, A. Wang, B. Wang, C. Wang, G. Wang, H. Wang, J. Wang, J. Wang, J. Wang, J. Wang, M. Wang, N. W. Wang, R. Wang, X. Wang, X. Wang, X. W. Wang, Y. Wang, Y. Wang, Y. H. Wang, Z. Wang, Z. Wang, Z. Wang, J. A. Ward, M. Waterlaat, N. K. Watson, D. Websdale, Y. Wei, J. Wendel, B. D. C. Westhenry, C. White, M. Whitehead, E. Whiter, A. R. Wiederhold, D. Wiedner, M. A. Wiegertjes, C. Wild, G. Wilkinson, M. K. Wilkinson, M. Williams, M. J. Williams, M. R. J. Williams, R. Williams, S. Williams, Z. Williams, F. F. Wilson, M. Winn, W. Wislicki, M. Witek, L. Witola, T. Wolf, E. Wood, G. Wormser, S. A. Wotton, H. Wu, J. Wu, X. Wu, Y. Wu, Z. Wu, K. Wyllie, S. Xian, Z. Xiang, Y. Xie, T. X. Xing, A. Xu, L. Xu, L. Xu, M. Xu, Z. Xu, Z. Xu, Z. Xu, K. Yang, X. Yang, Y. Yang, Z. Yang, V. Yeroshenko, H. Yeung, H. Yin, X. Yin, C. Y. Yu, J. Yu, X. Yuan, Y Yuan, E. Zaffaroni, M. Zavertyaev, M. Zdybal, F. Zenesini, C. Zeng, M. Zeng, C. Zhang, D. Zhang, J. Zhang, L. Zhang, R. Zhang, S. Zhang, S. Zhang, Y. Zhang, Y. Z. Zhang, Z. Zhang, Y. Zhao, A. Zhelezov, S. Z. Zheng, X. Z. Zheng, Y. Zheng, T. Zhou, X. Zhou, Y. Zhou, V. Zhovkovska, L. Z. Zhu, X. Zhu, X. Zhu, Y. Zhu, V. Zhukov, J. Zhuo, Q. Zou, D. Zuliani, G. Zunica
A model-independent determination of the CKM angle γ is presented, using the B± → [K+K−π+π−]Dh± and B± → [π+π−π+π−]Dh± decays, with h = K, π. This measurement is the first phase-space binned study of these decay modes, and uses a sample of proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb−1. The phase-space bins are optimised for sensitivity to γ, and in each bin external inputs from the BESIII experiment are used to constrain the charm strong-phase parameters. The result of this binned analysis is ( gamma ={left(53.{9}_{-8.9}^{+9.5}right)}^{{}^{circ}} ), where the uncertainty includes both statistical and systematic contributions. Furthermore, when combining with existing phase-space integrated measurements of the same decay modes, a value of ( gamma ={left(52.{6}_{-6.4}^{+8.5}right)}^{{}^{circ}} ) is obtained, which is one of the most precise determinations of γ to date.
Hengameh Bagherian, Majid Ekhterachian, Stefan Stelzl
We study the implications of precision measurements of light-element abundances, in combination with the Cosmic Microwave Background, for scenarios of physics beyond the Standard Model that generate large inhomogeneities in the baryon-to-photon ratio. We show that precision Big Bang Nucleosynthesis (BBN) places strong constraints on any mechanism that produces large-scale inhomogeneities at temperatures around or below the TeV scale. In particular, we find that fluctuations of order 25% on comoving length scales larger than the horizon at T ≃ 3 TeV are incompatible with the observed light-element abundances. This sensitivity to early-universe physics arises because baryon-number inhomogeneities homogenize primarily through diffusion, a slow process. As a result, BBN serves as a novel probe of baryogenesis below the TeV scale, readily ruling out some proposed scenarios in the literature. We discuss the implications for electroweak baryogenesis, and further show that precision BBN provides a new probe of first-order phase transitions that generate gravitational waves in the pHz–mHz frequency range. This yields constraints on the electroweak phase transition, as well as first-order phase transitions that have been suggested as an explanation of the pulsar timing array signal. Finally, we comment on the future prospects for improving this probe.
{"title":"The bearable inhomogeneity of the baryon asymmetry","authors":"Hengameh Bagherian, Majid Ekhterachian, Stefan Stelzl","doi":"10.1007/JHEP01(2026)068","DOIUrl":"10.1007/JHEP01(2026)068","url":null,"abstract":"<p>We study the implications of precision measurements of light-element abundances, in combination with the Cosmic Microwave Background, for scenarios of physics beyond the Standard Model that generate large inhomogeneities in the baryon-to-photon ratio. We show that precision Big Bang Nucleosynthesis (BBN) places strong constraints on any mechanism that produces large-scale inhomogeneities at temperatures around or below the TeV scale. In particular, we find that fluctuations of order 25% on comoving length scales larger than the horizon at <i>T</i> ≃ 3 TeV are incompatible with the observed light-element abundances. This sensitivity to early-universe physics arises because baryon-number inhomogeneities homogenize primarily through diffusion, a slow process. As a result, BBN serves as a novel probe of baryogenesis below the TeV scale, readily ruling out some proposed scenarios in the literature. We discuss the implications for electroweak baryogenesis, and further show that precision BBN provides a new probe of first-order phase transitions that generate gravitational waves in the pHz–mHz frequency range. This yields constraints on the electroweak phase transition, as well as first-order phase transitions that have been suggested as an explanation of the pulsar timing array signal. Finally, we comment on the future prospects for improving this probe.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)068.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the work, we study the averaged number of massive fermions above a low rapidity threshold Y, underlying the form-factor expansions of the spin-spin two-point correlators at an Euclidean distance r, in the 2D Ising QFT at the free massive fermion point. Despite the on-shell freeness, the spin operators are still far away from being Gaussian, and create particles in the asymptotic states with complicated correlations. We show how the number observables can still be incorporated into the integrable Sinh-Gordon/Painleve-III framework and controlled by linear differential equations with two variables (r, Y). We show how the differential equations and the information of two crucial scaling functions arising in the r → 0, ({e}^{Y}r=mathcal{O}(1))scaling limit, can be combined to fully determine the small-r asymptotics of the observables, in the λ-extended form. The scaling functions, on the other hand, are obtained by summing the exponential form-factor expansions directly, generalizing the traditional Ising connecting computations. We show carefully, how the singularities cancel in the physical value limit λπ → 1 and how the power-corrections that collapse at this value can be resummed. In particular, we show for the physical λ-value, the scaling functions are related to integrated four-point functions in the Ising CFT and continue to control the asymptotics of the number-observables in the scaling limit up to (mathcal{O}({r}^{3})).
{"title":"Asymptotics of spin-spin correlators weighted by fermion number measurements with low rapidity threshold in the 2D Ising free-fermion QFT","authors":"Yizhuang Liu","doi":"10.1007/JHEP01(2026)064","DOIUrl":"10.1007/JHEP01(2026)064","url":null,"abstract":"<p>In the work, we study the averaged number of massive fermions above a low rapidity threshold <i>Y</i>, underlying the form-factor expansions of the spin-spin two-point correlators at an Euclidean distance <i>r</i>, in the 2D Ising QFT at the free massive fermion point. Despite the on-shell freeness, the spin operators are still far away from being Gaussian, and create particles in the asymptotic states with complicated correlations. We show how the number observables can still be incorporated into the integrable Sinh-Gordon/Painleve-III framework and controlled by linear differential equations with two variables (<i>r, Y</i>). We show how the differential equations and the information of two crucial <i>scaling functions</i> arising in the <i>r</i> → 0, <span>({e}^{Y}r=mathcal{O}(1))</span> <i>scaling limit</i>, can be combined to fully determine the small-<i>r</i> asymptotics of the observables, in the <i>λ-extended</i> form. The scaling functions, on the other hand, are obtained by summing the exponential form-factor expansions directly, generalizing the traditional Ising connecting computations. We show carefully, how the singularities cancel in the physical value limit <i>λπ</i> → 1 and how the power-corrections that collapse at this value can be resummed. In particular, we show for the physical <i>λ</i>-value, the scaling functions are related to integrated four-point functions in the Ising CFT and continue to control the asymptotics of the number-observables in the scaling limit up to <span>(mathcal{O}({r}^{3}))</span>.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)064.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The graviscalar perturbations of thick braneworld models provide critical insights into their matter-geometry relationship, distinct from tensor modes. This work systematically investigates quasinormal modes and gravitational echoes from graviscalar perturbations in a thick brane model exhibiting internal structure and brane splitting. We find that the splitting of the brane would completely alter the structure of the quasinormal spectrum and cause the appearance of echo signals. We also find a position-dependence of echo modes within the extra dimension. Observers located on a sub-brane detect clean periodic signals, whereas those situated between sub-branes observe more complex, modulated waveforms. This effect offers a distinct signature of the brane’s internal structure. The observed echoes, along with consistent frequency- and time-domain results, advance the understanding of thick brane dynamics and open an observational window into warped extra dimensions. Moreover, the similarity between the effective potential in thick brane scenarios and that in black holes and wormholes offers valuable perspectives for studying echo-related phenomena in these gravitational systems.
{"title":"Scalar-gravitational quasinormal modes and echoes in a five dimensional thick brane","authors":"Weike Deng, Sheng Long, Qin Tan, Zu-Cheng Chen, Jiliang Jing","doi":"10.1007/JHEP01(2026)066","DOIUrl":"10.1007/JHEP01(2026)066","url":null,"abstract":"<p>The graviscalar perturbations of thick braneworld models provide critical insights into their matter-geometry relationship, distinct from tensor modes. This work systematically investigates quasinormal modes and gravitational echoes from graviscalar perturbations in a thick brane model exhibiting internal structure and brane splitting. We find that the splitting of the brane would completely alter the structure of the quasinormal spectrum and cause the appearance of echo signals. We also find a position-dependence of echo modes within the extra dimension. Observers located on a sub-brane detect clean periodic signals, whereas those situated between sub-branes observe more complex, modulated waveforms. This effect offers a distinct signature of the brane’s internal structure. The observed echoes, along with consistent frequency- and time-domain results, advance the understanding of thick brane dynamics and open an observational window into warped extra dimensions. Moreover, the similarity between the effective potential in thick brane scenarios and that in black holes and wormholes offers valuable perspectives for studying echo-related phenomena in these gravitational systems.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)066.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We develop a contour integral formalism for computing the K-theoretic equivariant 3-vertex. Within the Jeffrey-Kirwan (JK) residue framework, we show that, by an appropriate choice of the reference vector, both the equivariant Donaldson-Thomas (DT) and Pandharipande-Thomas (PT) 3-vertices can be extracted from the same integrand. We analyze three distinct limits of the PT 3-vertex, recovering the unrefined topological vertex, the refined topological vertex, and the Macdonald refined topological vertex. Higher-rank extensions of PT counting and the DT/PT correspondence are also explored. From a quantum algebraic perspective, we construct an operator version of the equivariant PT 3-vertex and term it the Pandharipande-Thomas qq-character. We then discuss its connection with the quantum toroidal ({mathfrak{g}mathfrak{l}}_{1}).
{"title":"Gauge origami and quiver W-algebras. Part IV. Pandharipande-Thomas qq-characters","authors":"Taro Kimura, Go Noshita","doi":"10.1007/JHEP01(2026)063","DOIUrl":"10.1007/JHEP01(2026)063","url":null,"abstract":"<p>We develop a contour integral formalism for computing the K-theoretic equivariant 3-vertex. Within the Jeffrey-Kirwan (JK) residue framework, we show that, by an appropriate choice of the reference vector, both the equivariant Donaldson-Thomas (DT) and Pandharipande-Thomas (PT) 3-vertices can be extracted from the same integrand. We analyze three distinct limits of the PT 3-vertex, recovering the unrefined topological vertex, the refined topological vertex, and the Macdonald refined topological vertex. Higher-rank extensions of PT counting and the DT/PT correspondence are also explored. From a quantum algebraic perspective, we construct an operator version of the equivariant PT 3-vertex and term it the Pandharipande-Thomas <i>qq</i>-character. We then discuss its connection with the quantum toroidal <span>({mathfrak{g}mathfrak{l}}_{1})</span>.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2026 1","pages":""},"PeriodicalIF":5.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP01(2026)063.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145930704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}