Pub Date : 2024-06-18DOI: 10.1007/s10909-024-03174-2
T. de Haan, T. Adkins, M. Hazumi, D. Kaneko, J. Montgomery, G. Smecher, A. Suzuki, Y. Zhou
We present a method for precise monitoring of the loop gain of transition edge sensors (TES) under electrothermal feedback. The measurement is implemented on the ICE DfMux electronics and operates simultaneously with Digital Active Nulling (DAN). It uses one additional bias sinusoid per TES and does not require any additional readout channels. The loop gain monitor is being implemented on the Simons Array and is an integral part of the baseline calibration strategy for the upcoming LiteBIRD satellite.
{"title":"Monitoring TES Loop Gain in Frequency Multiplexed Readout","authors":"T. de Haan, T. Adkins, M. Hazumi, D. Kaneko, J. Montgomery, G. Smecher, A. Suzuki, Y. Zhou","doi":"10.1007/s10909-024-03174-2","DOIUrl":"10.1007/s10909-024-03174-2","url":null,"abstract":"<div><p>We present a method for precise monitoring of the loop gain of transition edge sensors (TES) under electrothermal feedback. The measurement is implemented on the ICE DfMux electronics and operates simultaneously with Digital Active Nulling (DAN). It uses one additional bias sinusoid per TES and does not require any additional readout channels. The loop gain monitor is being implemented on the Simons Array and is an integral part of the baseline calibration strategy for the upcoming <i>LiteBIRD</i> satellite.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 Part 3","pages":"427 - 435"},"PeriodicalIF":1.1,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141528884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1007/s10909-024-03173-3
Edward Wassell, Joseph Adams, Simon Bandler, James Chervenak, Renata Cumbee, Fred Finkbeiner, Joshua Fuhrman, Samuel Hull, Richard Kelley, Caroline Kilbourne, Jennette Mateo, Haruka Muramatsu, Frederick Porter, Asha Rani, Kazuhiro Sakai, Stephen Smith, Nicholas Wakeham, Sang Yoon
High quantum efficiency (QE) X-ray absorbers are needed for future X-ray astrophysics telescopes. The Advanced Telescope for High ENergy Astrophysics (ATHENA) mission requirements for the X-ray Integral Field Unit (X-IFU) instrument dictate, at their most stringent, that the absorber achieve vertical QE > 90.6% at 7 keV and low total heat capacity, 0.731 pJ/K. The absorber we have designed is 313 µm square composed of 1.05 μm Au and 5.51 μm electroplated Bi films (Barret et al. in Exp Astron 55:373–426, 2023). Overhanging the TES, the absorber is mechanically supported by 6 small legs whose 5 μm diameter is tuned to the target thermal conductance for the device. Further requirements for the absorber for X-IFU include a > 40% reflectance at wavelengths from 1 to 20 μm to reduce shot noise from infrared radiation from higher temperature stages in the cryostat. We meet this requirement by capping our absorbers with an evaporated Ti/Au thin film. Additionally, narrow gaps between absorbers are required for high fill fraction, as well as low levels of fine particulate remaining on the substrate and zero shorts between absorbers that may cause thermal crosstalk. The Light Element Mapper (LEM) is an X-ray probe concept optimized to explore the soft X-ray emission from 0.2 to 2.0 keV. These pixels for LEM require high residual resistance ratio (RRR) thin 0.5 µm Au absorbers to thermalize uniformly and narrow < 2 μm gaps between pixels for high areal fill fraction. This paper reports upon technology developments required to successfully yield arrays of pixels for both mission concepts and presents first testing results of devices with these new absorber recipes.
{"title":"Microcalorimeter Absorber Optimization for ATHENA and LEM","authors":"Edward Wassell, Joseph Adams, Simon Bandler, James Chervenak, Renata Cumbee, Fred Finkbeiner, Joshua Fuhrman, Samuel Hull, Richard Kelley, Caroline Kilbourne, Jennette Mateo, Haruka Muramatsu, Frederick Porter, Asha Rani, Kazuhiro Sakai, Stephen Smith, Nicholas Wakeham, Sang Yoon","doi":"10.1007/s10909-024-03173-3","DOIUrl":"10.1007/s10909-024-03173-3","url":null,"abstract":"<div><p>High quantum efficiency (QE) X-ray absorbers are needed for future X-ray astrophysics telescopes. The Advanced Telescope for High ENergy Astrophysics (ATHENA) mission requirements for the X-ray Integral Field Unit (X-IFU) instrument dictate, at their most stringent, that the absorber achieve vertical QE > 90.6% at 7 keV and low total heat capacity, 0.731 pJ/K. The absorber we have designed is 313 µm square composed of 1.05 μm Au and 5.51 μm electroplated Bi films (Barret et al. in Exp Astron 55:373–426, 2023). Overhanging the TES, the absorber is mechanically supported by 6 small legs whose 5 μm diameter is tuned to the target thermal conductance for the device. Further requirements for the absorber for X-IFU include a > 40% reflectance at wavelengths from 1 to 20 μm to reduce shot noise from infrared radiation from higher temperature stages in the cryostat. We meet this requirement by capping our absorbers with an evaporated Ti/Au thin film. Additionally, narrow gaps between absorbers are required for high fill fraction, as well as low levels of fine particulate remaining on the substrate and zero shorts between absorbers that may cause thermal crosstalk. The Light Element Mapper (LEM) is an X-ray probe concept optimized to explore the soft X-ray emission from 0.2 to 2.0 keV. These pixels for LEM require high residual resistance ratio (RRR) thin 0.5 µm Au absorbers to thermalize uniformly and narrow < 2 μm gaps between pixels for high areal fill fraction. This paper reports upon technology developments required to successfully yield arrays of pixels for both mission concepts and presents first testing results of devices with these new absorber recipes.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 Part 3","pages":"417 - 426"},"PeriodicalIF":1.1,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03173-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1007/s10909-024-03110-4
Jean-Marc Martin, Junhan Kim, Fabien Defrance, Shibo Shu, Andrew D. Beyer, Peter K. Day, Jack Sayers, Sunil R. Golwala
We present the optical characterization of two-scale hierarchical phased-array antenna kinetic inductance detectors (KIDs) for millimeter/submillimeter wavelengths. Our KIDs have a lumped-element architecture with parallel plate capacitors and aluminum inductors. The incoming light is received with a hierarchical phased array of slot dipole antennas, split into 4 frequency bands (between 125 GHz and 365 GHz) with on-chip lumped-element band-pass filters, and routed to different KIDs using microstriplines. Individual pixels detect light for the 3 higher-frequency bands (190–365 GHz), and the signals from four individual pixels are coherently summed to create a larger pixel detecting light for the lowest frequency band (125–175 GHz). The spectral response of the band-pass filters was measured using Fourier transform spectroscopy (FTS), the far-field beam pattern of the phased-array antennas was obtained using an infrared source mounted on a 2-axis translating stage, and the optical efficiency of the KIDs was characterized by observing loads at 294 K and 77 K. We report on the results of these three measurements.
{"title":"Hierarchical Phased-Array Antennas Coupled to Al KIDs: A Scalable Architecture for Multi-band Millimeter/Submillimeter Focal Planes","authors":"Jean-Marc Martin, Junhan Kim, Fabien Defrance, Shibo Shu, Andrew D. Beyer, Peter K. Day, Jack Sayers, Sunil R. Golwala","doi":"10.1007/s10909-024-03110-4","DOIUrl":"10.1007/s10909-024-03110-4","url":null,"abstract":"<div><p>We present the optical characterization of two-scale hierarchical phased-array antenna kinetic inductance detectors (KIDs) for millimeter/submillimeter wavelengths. Our KIDs have a lumped-element architecture with parallel plate capacitors and aluminum inductors. The incoming light is received with a hierarchical phased array of slot dipole antennas, split into 4 frequency bands (between 125 GHz and 365 GHz) with on-chip lumped-element band-pass filters, and routed to different KIDs using microstriplines. Individual pixels detect light for the 3 higher-frequency bands (190–365 GHz), and the signals from four individual pixels are coherently summed to create a larger pixel detecting light for the lowest frequency band (125–175 GHz). The spectral response of the band-pass filters was measured using Fourier transform spectroscopy (FTS), the far-field beam pattern of the phased-array antennas was obtained using an infrared source mounted on a 2-axis translating stage, and the optical efficiency of the KIDs was characterized by observing loads at 294 K and 77 K. We report on the results of these three measurements.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 Part 3","pages":"104 - 111"},"PeriodicalIF":1.1,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03110-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15DOI: 10.1007/s10909-024-03171-5
S. V. Aksenov, M. Yu. Kagan
We study different resonances (first of all of the Fano type) in the interference device formed by the Aharonov–Bohm ring with superconducting (SC) wire in the topologically nontrivial state playing a role of a bridge between top and bottom arms. We analyze Majorana modes on the ends of the SC wire and show that the collapse of the additional Fano resonance, that is initially induced by transport scheme asymmetry, is connected with the increase of the length of the bridge when the binding energy of the Majorana end modes tends to zero. In local transport regime, the Fano resonances are stable against the change of the transport symmetry. The reasons of both collapse and sustainability are analyzed using a spinless toy model including the Kitaev chain.
{"title":"Majorana Modes and Fano Resonances in Aharonov–Bohm Ring with Topologically Nontrivial Superconducting Bridge","authors":"S. V. Aksenov, M. Yu. Kagan","doi":"10.1007/s10909-024-03171-5","DOIUrl":"10.1007/s10909-024-03171-5","url":null,"abstract":"<div><p>We study different resonances (first of all of the Fano type) in the interference device formed by the Aharonov–Bohm ring with superconducting (SC) wire in the topologically nontrivial state playing a role of a bridge between top and bottom arms. We analyze Majorana modes on the ends of the SC wire and show that the collapse of the additional Fano resonance, that is initially induced by transport scheme asymmetry, is connected with the increase of the length of the bridge when the binding energy of the Majorana end modes tends to zero. In local transport regime, the Fano resonances are stable against the change of the transport symmetry. The reasons of both collapse and sustainability are analyzed using a spinless toy model including the Kitaev chain.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"217 1-2","pages":"145 - 166"},"PeriodicalIF":1.1,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141337460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15DOI: 10.1007/s10909-024-03165-3
S. Autti, R. P. Haley, A. Jennings, G. R. Pickett, E. V. Surovtsev, V. Tsepelin, D. E. Zmeev
Vibrating probes when immersed in a fluid can provide powerful tools for characterising the surrounding medium. In superfluid (^3)He-B, a condensate of Cooper pairs, the dissipation arising from the scattering of quasiparticle excitations from a mechanical oscillator provides the basis of extremely sensitive thermometry and bolometry at sub-millikelvin temperatures. The unique properties of the Andreev reflection process in this condensate also assist by providing a significantly enhanced dissipation. While existing models for such damping on an oscillating cylinder have been verified experimentally, they are valid only for flows with scales much greater than the coherence length of (^3)He, which is of the order of a hundred nanometres. With our increasing proficiency in fabricating nanosized oscillators, which can be readily used in this superfluid, there is a pressing need for the development of new models that account for the modification of the flow around these smaller oscillators. Here we report preliminary results on measurements of the damping in superfluid (^3)He-B of a range of cylindrical nanosized oscillators with radii comparable to the coherence length and outline a model for calculating the associated drag.
{"title":"Drag on Cylinders Moving in Superfluid (^3)He-B as the Dimension Spans the Coherence Length","authors":"S. Autti, R. P. Haley, A. Jennings, G. R. Pickett, E. V. Surovtsev, V. Tsepelin, D. E. Zmeev","doi":"10.1007/s10909-024-03165-3","DOIUrl":"10.1007/s10909-024-03165-3","url":null,"abstract":"<div><p>Vibrating probes when immersed in a fluid can provide powerful tools for characterising the surrounding medium. In superfluid <span>(^3)</span>He-B, a condensate of Cooper pairs, the dissipation arising from the scattering of quasiparticle excitations from a mechanical oscillator provides the basis of extremely sensitive thermometry and bolometry at sub-millikelvin temperatures. The unique properties of the Andreev reflection process in this condensate also assist by providing a significantly enhanced dissipation. While existing models for such damping on an oscillating cylinder have been verified experimentally, they are valid only for flows with scales much greater than the coherence length of <span>(^3)</span>He, which is of the order of a hundred nanometres. With our increasing proficiency in fabricating nanosized oscillators, which can be readily used in this superfluid, there is a pressing need for the development of new models that account for the modification of the flow around these smaller oscillators. Here we report preliminary results on measurements of the damping in superfluid <span>(^3)</span>He-B of a range of cylindrical nanosized oscillators with radii comparable to the coherence length and outline a model for calculating the associated drag.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"217 1-2","pages":"264 - 278"},"PeriodicalIF":1.1,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03165-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141337504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1007/s10909-024-03169-z
Erkki Thuneberg
We study Andreev reflection in a one-dimensional square-well pair potential. We discuss the history of the model. The current-phase relation is presented as a sum over Matsubara frequencies. How the current arises from bound and continuum levels is found by analytic continuation. We discuss two limiting cases of the square-well potential, the zero-length well and the infinite well. The model is quantitatively valid in some cases but forms the basis for understanding a wide range of problems in inhomogeneous superconductivity and superfluidity.
{"title":"Square-well Model for Superconducting Pair Potential","authors":"Erkki Thuneberg","doi":"10.1007/s10909-024-03169-z","DOIUrl":"10.1007/s10909-024-03169-z","url":null,"abstract":"<div><p>We study Andreev reflection in a one-dimensional square-well pair potential. We discuss the history of the model. The current-phase relation is presented as a sum over Matsubara frequencies. How the current arises from bound and continuum levels is found by analytic continuation. We discuss two limiting cases of the square-well potential, the zero-length well and the infinite well. The model is quantitatively valid in some cases but forms the basis for understanding a wide range of problems in inhomogeneous superconductivity and superfluidity.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"217 1-2","pages":"12 - 23"},"PeriodicalIF":1.1,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03169-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1007/s10909-024-03138-6
Maria Appavou, Lucas Ribeiro, Paul Nicaise, Jie Hu, Jean-Marc Martin, Josiane Firminy, Christine Chaumont, Piercarlo Bonifacio, Faouzi Boussaha
We report on simulations of a novel design of optical design of optical titanium nitride (TiN)-based Kinetic Inductance Detectors (KIDs) in order to improve in order to improve their response to optical photons. We propose to separate the meander from the substrate to trap hot phonons generated by optical photons, preventing their rapid propagation through the substrate. These phonons would in turn contribute to the breaking of more Cooper pairs, thereby increasing the response of the detector. In our design, the meander is suspended a few hundred nanometers above the substrate. Furthermore, reflective gold (Au) or aluminum (Al)-based layers can be placed under the meander to improve photon coupling in the optical wavelengths.
{"title":"Design and Simulation of TiN-Based Suspended Meander Kinetic Inductance Detectors (KIDs) for Visible and Near-Infrared Astronomy Applications","authors":"Maria Appavou, Lucas Ribeiro, Paul Nicaise, Jie Hu, Jean-Marc Martin, Josiane Firminy, Christine Chaumont, Piercarlo Bonifacio, Faouzi Boussaha","doi":"10.1007/s10909-024-03138-6","DOIUrl":"10.1007/s10909-024-03138-6","url":null,"abstract":"<div><p>We report on simulations of a novel design of optical design of optical titanium nitride (TiN)-based Kinetic Inductance Detectors (KIDs) in order to improve in order to improve their response to optical photons. We propose to separate the meander from the substrate to trap hot phonons generated by optical photons, preventing their rapid propagation through the substrate. These phonons would in turn contribute to the breaking of more Cooper pairs, thereby increasing the response of the detector. In our design, the meander is suspended a few hundred nanometers above the substrate. Furthermore, reflective gold (Au) or aluminum (Al)-based layers can be placed under the meander to improve photon coupling in the optical wavelengths.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 Part 3","pages":"320 - 327"},"PeriodicalIF":1.1,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141522796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1007/s10909-024-03168-0
Hussein Sabbah, D. Kabouchi, Z. Fadil, R. El Fdil, A. Mhirech, E. Salmani, Mohamed A. Habila, P. Rosaiah, Chaitany Jayprakash Raorane
This study employs comprehensive Monte Carlo simulations to gain detailed insights into the dielectric response of borophene core–shell structures. Key parameters, including exchange coupling interactions, external electric fields, temperature, and crystal fields, were systematically explored, providing a nuanced understanding of the system's behavior. The dynamics revealed by this study lays the foundation for future research, guiding efforts toward optimizing and customizing the dielectric properties of this structure. This exploration holds promise for potential applications tailored to sophisticated electronic devices.
{"title":"Exploring the Dielectric Response of Borophene Core–Shell Structure through Monte Carlo Simulations","authors":"Hussein Sabbah, D. Kabouchi, Z. Fadil, R. El Fdil, A. Mhirech, E. Salmani, Mohamed A. Habila, P. Rosaiah, Chaitany Jayprakash Raorane","doi":"10.1007/s10909-024-03168-0","DOIUrl":"10.1007/s10909-024-03168-0","url":null,"abstract":"<div><p>This study employs comprehensive Monte Carlo simulations to gain detailed insights into the dielectric response of borophene core–shell structures. Key parameters, including exchange coupling interactions, external electric fields, temperature, and crystal fields, were systematically explored, providing a nuanced understanding of the system's behavior. The dynamics revealed by this study lays the foundation for future research, guiding efforts toward optimizing and customizing the dielectric properties of this structure. This exploration holds promise for potential applications tailored to sophisticated electronic devices.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 3-4","pages":"668 - 682"},"PeriodicalIF":1.1,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141359745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-09DOI: 10.1007/s10909-024-03170-6
G. M. Seidel, C. Enss
The quasiparticle propagation away from the track of a highly ionizing particle in superfluid helium at low temperatures has previously been shown to exhibit anisotropy. We discuss the mechanism responsible for this behavior and show that it occurs for nuclear scattering by dark matter for recoil energies down to a few keV, and perhaps lower. This directionality makes it possible to search for and distinguish galactic dark matter with interaction cross sections that reach into the neutrino fog where coherent neutrino-nucleus scattering presents an irreducible background.
{"title":"Use of Superfluid Helium to Observe Directionality of Galactic Dark Matter","authors":"G. M. Seidel, C. Enss","doi":"10.1007/s10909-024-03170-6","DOIUrl":"10.1007/s10909-024-03170-6","url":null,"abstract":"<div><p>The quasiparticle propagation away from the track of a highly ionizing particle in superfluid helium at low temperatures has previously been shown to exhibit anisotropy. We discuss the mechanism responsible for this behavior and show that it occurs for nuclear scattering by dark matter for recoil energies down to a few keV, and perhaps lower. This directionality makes it possible to search for and distinguish galactic dark matter with interaction cross sections that reach into the neutrino fog where coherent neutrino-nucleus scattering presents an irreducible background.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 3-4","pages":"577 - 585"},"PeriodicalIF":1.1,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-08DOI: 10.1007/s10909-024-03130-0
Benjamin Westbrook, Bhoomija Prasad, Christopher R. Raum, Adrian T. Lee, Aritoki Suzuki, Johannes Hubmayr, Shannon M. Duff, Micheal J. Link, Tammy J. Lucas
The 2020 decadal review recognized the measurement of the polarization of the cosmic microwave background (CMB) to be a top priority for the decade. CMB experiments including POLARBEAR2/Simons Array, Atacama Cosmology Telescope/Advanced-ACT, SPT-3G, the Simons Observatory, and CMB-S4 have or will use transition edge sensor (TES) bolometer fabricated with Aluminum doped with Manganese (AlMn). AlMn is a popular material choice as the superconducting transition temperature ((T_c)) and normal resistance ((R_n)) of the TES can be tuned with Mn concentration, geometric patterning, film thickness, and thermal annealing. In addition the conductivity is appropriate for both time division multiplexing and frequency division multiplexing that require 10 m(Omega) and 1 (Omega) sensors respectively. In this paper we present work on the ability to tune the (T_c) of a film based on its time and temperature thermal tuning profile combined with room temperature monitoring of film resistivity. Such control allows for the fabrication of a wide range of TES parameters from a single AlMn concentration. Scanning electron microscope (SEM) imaging shows that the AlMn film’s grain boundaries are changed by thermal annealing making the film more conductive and raising its superconducting transition temperatures, and that at high enough temperatures will eventually recover the (T_c) of bulk Al. We find that baking films at (sim)200 (^circtext{C}) for tens of minutes yields a (T_c) that is suitable for 100 mK base temperature experiments and we present on the thermal tune profiles of several different thicknesses of AlMn.
{"title":"Thermal Annealing of AlMn Transition Edge Sensors for Optimization in Cosmic Microwave Background Experiments","authors":"Benjamin Westbrook, Bhoomija Prasad, Christopher R. Raum, Adrian T. Lee, Aritoki Suzuki, Johannes Hubmayr, Shannon M. Duff, Micheal J. Link, Tammy J. Lucas","doi":"10.1007/s10909-024-03130-0","DOIUrl":"10.1007/s10909-024-03130-0","url":null,"abstract":"<div><p>The 2020 decadal review recognized the measurement of the polarization of the cosmic microwave background (CMB) to be a top priority for the decade. CMB experiments including POLARBEAR2/Simons Array, Atacama Cosmology Telescope/Advanced-ACT, SPT-3G, the Simons Observatory, and CMB-S4 have or will use transition edge sensor (TES) bolometer fabricated with Aluminum doped with Manganese (AlMn). AlMn is a popular material choice as the superconducting transition temperature (<span>(T_c)</span>) and normal resistance (<span>(R_n)</span>) of the TES can be tuned with Mn concentration, geometric patterning, film thickness, and thermal annealing. In addition the conductivity is appropriate for both time division multiplexing and frequency division multiplexing that require 10 m<span>(Omega)</span> and 1 <span>(Omega)</span> sensors respectively. In this paper we present work on the ability to tune the <span>(T_c)</span> of a film based on its time and temperature thermal tuning profile combined with room temperature monitoring of film resistivity. Such control allows for the fabrication of a wide range of TES parameters from a single AlMn concentration. Scanning electron microscope (SEM) imaging shows that the AlMn film’s grain boundaries are changed by thermal annealing making the film more conductive and raising its superconducting transition temperatures, and that at high enough temperatures will eventually recover the <span>(T_c)</span> of bulk Al. We find that baking films at <span>(sim)</span>200 <span>(^circtext{C})</span> for tens of minutes yields a <span>(T_c)</span> that is suitable for 100 mK base temperature experiments and we present on the thermal tune profiles of several different thicknesses of AlMn.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 Part 3","pages":"264 - 272"},"PeriodicalIF":1.1,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141368034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}