Pub Date : 2024-08-02DOI: 10.1007/s10008-024-06030-1
Yuling Xia, Lijie Zhang, Kang Zhu, Binze Zhang, Changrong Xia
Solid oxide fuel cell (SOFC) with high conversion efficiency has drawn great attention for a sustainable future. Its electrolyte, typically yttria-stabilized zirconia (YSZ), is usually sintered above 1400 °C with commercially available powder materials. To lower the sintering temperature, yttria-doped bismuth oxide (YDB) is investigated in this work as an additive to form composite electrolytes. Dilatometric analysis reveals that the temperature corresponding to the maximum shrinkage rate is decreased from 1260 to 870 °C by YDB. Meanwhile, adding YDB results in the formation of poor conductive second phase monoclinic zirconia (m-ZrO2), especially when YDB content reaches 3 mol%. Thus, total conductivity decreases and then increases with YDB content. It is noted that the grain boundary conductivity is substantially improved, which is caused by bismuth enrichment at the grain boundary region of the dense composite electrolyte.
{"title":"Sintering composite electrolytes of yttria-doped bismuth oxide and yttria-stabilized zirconia for solid oxide fuel cells","authors":"Yuling Xia, Lijie Zhang, Kang Zhu, Binze Zhang, Changrong Xia","doi":"10.1007/s10008-024-06030-1","DOIUrl":"https://doi.org/10.1007/s10008-024-06030-1","url":null,"abstract":"<p>Solid oxide fuel cell (SOFC) with high conversion efficiency has drawn great attention for a sustainable future. Its electrolyte, typically yttria-stabilized zirconia (YSZ), is usually sintered above 1400 °C with commercially available powder materials. To lower the sintering temperature, yttria-doped bismuth oxide (YDB) is investigated in this work as an additive to form composite electrolytes. Dilatometric analysis reveals that the temperature corresponding to the maximum shrinkage rate is decreased from 1260 to 870 °C by YDB. Meanwhile, adding YDB results in the formation of poor conductive second phase monoclinic zirconia (m-ZrO<sub>2</sub>), especially when YDB content reaches 3 mol%. Thus, total conductivity decreases and then increases with YDB content. It is noted that the grain boundary conductivity is substantially improved, which is caused by bismuth enrichment at the grain boundary region of the dense composite electrolyte.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"21 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141886892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1007/s10008-024-06019-w
Najmeh Ahledel, Martin Couillard, Elena A. Baranova
The electrochemical promotion of nano-sized Pd catalysis deposited on yttria-stabilized zirconia (YSZ) solid electrolyte (Pd/YSZ) was studied for complete methane oxidation in excess of oxygen. The as-prepared and used Pd/YSZ catalysts were characterized using TEM, SEM, and XRD techniques. In this study, for the first time, we demonstrated the electrochemical promotion of complete methane oxidation over Pd at temperatures as low as 300 °C. The electrochemical promotion of Pd/YSZ was carried out at different cathodic and anodic polarization values in excess of oxygen (pO2 = 6 kPa) in temperatures ranging from 300—420 °C. Upon anodic and cathodic polarization the highest rate increase of 17.7 and 1.4 was observed at 420 °C, respectively. Chronoamperometric rate transients showed continuous rate increase with the polarization time indicating continuous activation of Pd/YSZ and formation of PdOx active phase. When polarization was stopped the reaction rate slowly returned to its initial state showing the persistent EPOC, i.e., the open-circuit reaction rate after polarization was enhanced compared to initial open-circuit conditions (γ = 1.6 after 29 h of polarization). The changes occurring in the Pd catalyst during the polarization were studied using electrochemical techniques, such as cyclic voltammetry, steady-state polarization and electrochemical impedance spectroscopy (EIS).