首页 > 最新文献

Journal of Solid State Electrochemistry最新文献

英文 中文
Corrosion inhibition effect of sodium silicate/triethanolamine complex inhibitor on AZ91D magnesium alloy in 50% ethylene glycol coolant
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-10-17 DOI: 10.1007/s10008-024-06104-0
Jintai Pan, Junchao Huang, Fuli Deng, Dong Liu

Ethylene glycol solutions can cause severe corrosion in magnesium alloys, leading to safety and stability concerns. The addition of corrosion inhibitors to the environment is a simple and effective protective measure. This study introduces a compound corrosion inhibitor that combines inorganic and organic components, providing resistance to salts, high temperatures, and environmental factors. The corrosion inhibition of AZ91D magnesium alloy using a sodium silicate/triethanolamine compound inhibitor in 50% glycol coolant was investigated through electrochemical analysis, morphology characterization, and weight loss analysis. The results demonstrated that the sodium silicate/triethanolamine inhibitor effectively prevented corrosion of AZ91D magnesium alloy in 50% ethylene glycol, achieving a maximum inhibition efficiency of 96.4% with 2 g/L sodium silicate and 3 mL/L triethanolamine. The inhibitor exhibited continued effectiveness at elevated temperatures and showed minimal impact from external ions, providing strong protection for AZ91D magnesium alloy in glycol coolant. The outstanding performance can be attributed to the synergistic interaction of triethanolamine and sodium silicate, which form a protective film on the alloy’s surface. This compound inhibitor exhibits promising potential for safeguarding AZ91D magnesium alloy in similar environments. Furthermore, the proposed mechanism elucidates how the sodium silicate/triethanolamine mixture mitigates galvanic corrosion in the AZ91D magnesium alloy.

{"title":"Corrosion inhibition effect of sodium silicate/triethanolamine complex inhibitor on AZ91D magnesium alloy in 50% ethylene glycol coolant","authors":"Jintai Pan,&nbsp;Junchao Huang,&nbsp;Fuli Deng,&nbsp;Dong Liu","doi":"10.1007/s10008-024-06104-0","DOIUrl":"10.1007/s10008-024-06104-0","url":null,"abstract":"<div><p>Ethylene glycol solutions can cause severe corrosion in magnesium alloys, leading to safety and stability concerns. The addition of corrosion inhibitors to the environment is a simple and effective protective measure. This study introduces a compound corrosion inhibitor that combines inorganic and organic components, providing resistance to salts, high temperatures, and environmental factors. The corrosion inhibition of AZ91D magnesium alloy using a sodium silicate/triethanolamine compound inhibitor in 50% glycol coolant was investigated through electrochemical analysis, morphology characterization, and weight loss analysis. The results demonstrated that the sodium silicate/triethanolamine inhibitor effectively prevented corrosion of AZ91D magnesium alloy in 50% ethylene glycol, achieving a maximum inhibition efficiency of 96.4% with 2 g/L sodium silicate and 3 mL/L triethanolamine. The inhibitor exhibited continued effectiveness at elevated temperatures and showed minimal impact from external ions, providing strong protection for AZ91D magnesium alloy in glycol coolant. The outstanding performance can be attributed to the synergistic interaction of triethanolamine and sodium silicate, which form a protective film on the alloy’s surface. This compound inhibitor exhibits promising potential for safeguarding AZ91D magnesium alloy in similar environments. Furthermore, the proposed mechanism elucidates how the sodium silicate/triethanolamine mixture mitigates galvanic corrosion in the AZ91D magnesium alloy.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2","pages":"743 - 752"},"PeriodicalIF":2.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143109123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive analysis of supercapacitors with current limitations and emerging trends in research
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-10-14 DOI: 10.1007/s10008-024-06107-x
Maitri Libber, Narendra Gariya, Manoj Kumar

Supercapacitor technology has been continuously advancing to improve material performance and energy density by utilizing new technologies like hybrid materials and electrodes with nanostructures. Along with fundamental principles, this article covers various types of supercapacitors, such as hybrid, electric double-layer, and pseudocapacitors. Further, comprehensive electrochemical characterization methods, including galvanostatic charge–discharge, electrochemical impedance spectroscopy, cyclic voltammetry, and other techniques (structural characterization, which includes methods such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analysis), provide information on the behavior and performance of supercapacitors. Additionally, supercapacitors are being studied for their key applications, which include industrial uses, renewable energy systems, electric vehicles, and portable electronics. Along with discussing existing limitations—such as comparatively lower energy density in comparison to batteries—the article also highlights emerging trends that could help address these limitations in the future, like the development of innovative materials and inventive electrode designs. Finally, the discussion concludes with suggestions for future research focused on enhancing supercapacitor performance and broadening their range of applications, which highlights their contribution to the development of an ecosystem for energy storage that is more effective and sustainable.

{"title":"A comprehensive analysis of supercapacitors with current limitations and emerging trends in research","authors":"Maitri Libber,&nbsp;Narendra Gariya,&nbsp;Manoj Kumar","doi":"10.1007/s10008-024-06107-x","DOIUrl":"10.1007/s10008-024-06107-x","url":null,"abstract":"<div><p>Supercapacitor technology has been continuously advancing to improve material performance and energy density by utilizing new technologies like hybrid materials and electrodes with nanostructures. Along with fundamental principles, this article covers various types of supercapacitors, such as hybrid, electric double-layer, and pseudocapacitors. Further, comprehensive electrochemical characterization methods, including galvanostatic charge–discharge, electrochemical impedance spectroscopy, cyclic voltammetry, and other techniques (structural characterization, which includes methods such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analysis), provide information on the behavior and performance of supercapacitors. Additionally, supercapacitors are being studied for their key applications, which include industrial uses, renewable energy systems, electric vehicles, and portable electronics. Along with discussing existing limitations—such as comparatively lower energy density in comparison to batteries—the article also highlights emerging trends that could help address these limitations in the future, like the development of innovative materials and inventive electrode designs. Finally, the discussion concludes with suggestions for future research focused on enhancing supercapacitor performance and broadening their range of applications, which highlights their contribution to the development of an ecosystem for energy storage that is more effective and sustainable.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2","pages":"513 - 527"},"PeriodicalIF":2.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An investigation on g-C3N4/ZnS/SnO2 ternary nanocomposites for electrochemical alkaline water splitting and photocatalytic methylene blue decomposition reactions
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-10-08 DOI: 10.1007/s10008-024-06099-8
S. Ashok, N. Kumaresan, Hanson Clinton D Souza, Tatianne Ferreira de Oliveira, V. Ganesh

In this study, we report the development of a cost-effective and highly efficient bi-functional g-C3N4/ZnS/SnO2 ternary nanocomposite for electrochemical hydrogen evolution reaction (HER) and photocatalytic applications under sunlight irradiation. The nanocomposites were synthesized using a facile hydrothermal method, combining semiconducting ZnS and SnO2 nanomaterials with g-C3N4 nanosheets. Comprehensive characterization techniques were employed to analyze the structural, morphological, electrochemical, and photocatalytic properties of the synthesized nanocomposite. X-ray diffraction (XRD) analysis demonstrates that the g-C3N4, g-C3N4/ZnS, and g-C3N4/ZnS/SnO2 nanostructures exhibit excellent crystallinity, as evidenced by the sharp and well-defined peaks in the XRD patterns. Field emission scanning electron microscopy (FESEM) reveals the deposition of spherical ZnS nanoparticles and agglomerated SnO2 nanoparticles on g-C3N4 nanosheets, forming a ternary nanocomposite structure. The g-C3N4/ZnS/SnO2 ternary nanocomposite exhibits a high Brunauer–Emmett–Teller (BET) surface area of 118.123 m2 g−1 and an optical band gap of 2.88 eV. Electrochemical measurements show that the nanocomposite has enhanced catalytic activity for the HER, with a low Tafel slope of 92 mV dec−1 and an overpotential of − 0.372 V vs. RHE at 10 mA cm−2. Furthermore, the g-C3N4/ZnS/SnO2 ternary nanocomposite demonstrates excellent photocatalytic performance, exhibiting high degradation efficiency against methylene blue (MB) dye under sunlight exposure. The synergistic effects of the ternary nanocomposite structure, high surface area, and suitable optical properties contribute to the enhanced photocatalytic and electrocatalytic activities. The developed g-C3N4/ZnS/SnO2 ternary nanocomposite shows great potential as a cost-effective and highly efficient bi-functional material for sustainable energy applications of hydrogen evaluation and environmental remediation.

{"title":"An investigation on g-C3N4/ZnS/SnO2 ternary nanocomposites for electrochemical alkaline water splitting and photocatalytic methylene blue decomposition reactions","authors":"S. Ashok,&nbsp;N. Kumaresan,&nbsp;Hanson Clinton D Souza,&nbsp;Tatianne Ferreira de Oliveira,&nbsp;V. Ganesh","doi":"10.1007/s10008-024-06099-8","DOIUrl":"10.1007/s10008-024-06099-8","url":null,"abstract":"<div><p>In this study, we report the development of a cost-effective and highly efficient bi-functional g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> ternary nanocomposite for electrochemical hydrogen evolution reaction (HER) and photocatalytic applications under sunlight irradiation. The nanocomposites were synthesized using a facile hydrothermal method, combining semiconducting ZnS and SnO<sub>2</sub> nanomaterials with g-C<sub>3</sub>N<sub>4</sub> nanosheets. Comprehensive characterization techniques were employed to analyze the structural, morphological, electrochemical, and photocatalytic properties of the synthesized nanocomposite. X-ray diffraction (XRD) analysis demonstrates that the g-C<sub>3</sub>N<sub>4</sub>, g-C<sub>3</sub>N<sub>4</sub>/ZnS, and g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> nanostructures exhibit excellent crystallinity, as evidenced by the sharp and well-defined peaks in the XRD patterns. Field emission scanning electron microscopy (FESEM) reveals the deposition of spherical ZnS nanoparticles and agglomerated SnO<sub>2</sub> nanoparticles on g-C<sub>3</sub>N<sub>4</sub> nanosheets, forming a ternary nanocomposite structure. The g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> ternary nanocomposite exhibits a high Brunauer–Emmett–Teller (BET) surface area of 118.123 m<sup>2</sup> g<sup>−1</sup> and an optical band gap of 2.88 eV. Electrochemical measurements show that the nanocomposite has enhanced catalytic activity for the HER, with a low Tafel slope of 92 mV dec<sup>−1</sup> and an overpotential of − 0.372 V vs. RHE at 10 mA cm<sup>−2</sup>. Furthermore, the g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> ternary nanocomposite demonstrates excellent photocatalytic performance, exhibiting high degradation efficiency against methylene blue (MB) dye under sunlight exposure. The synergistic effects of the ternary nanocomposite structure, high surface area, and suitable optical properties contribute to the enhanced photocatalytic and electrocatalytic activities. The developed g-C<sub>3</sub>N<sub>4</sub>/ZnS/SnO<sub>2</sub> ternary nanocomposite shows great potential as a cost-effective and highly efficient bi-functional material for sustainable energy applications of hydrogen evaluation and environmental remediation.\u0000</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2","pages":"389 - 400"},"PeriodicalIF":2.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-entropy chemistry enhanced pyrochlore (Y0.2La0.2Ce0.2Nd0.2Ca0.2)2Sn2O7 for high-performance lithium-ion battery anode
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-10-07 DOI: 10.1007/s10008-024-06092-1
Yiming Tan, Luyao Zheng, Yurong Ren, Zhihui Chen

High-Entropy Oxides (HEOs) are emerging as promising anode materials for lithium-ion batteries (LIBs) due to their stable crystal structure and high theoretical capacity. However, the limited understanding of their intrinsic crystal structure and lithium storage mechanism has hindered their further development and application. In this study, (Y0.2La0.2Ce0.2Nd0.2Ca0.2)2Sn2O7 (M2Sn2O7) nanoparticles are successfully synthesized using a hydrothermal method and then applied as an advanced anode material for LIBs. The oxygen vacancies induced by high-entropy chemistry result in the M2Sn2O7 HEO exhibiting excellent cycle stability, achieving high reversible capacities of 574.2 and 430.4 mA h g−1 after 100 cycles at 0.1 A g−1 for half and full-cell lithium-ion batteries, respectively. This research highlights the potential of HEOs with stable structures and excellent performance as promising candidates for LIB anode materials.

{"title":"High-entropy chemistry enhanced pyrochlore (Y0.2La0.2Ce0.2Nd0.2Ca0.2)2Sn2O7 for high-performance lithium-ion battery anode","authors":"Yiming Tan,&nbsp;Luyao Zheng,&nbsp;Yurong Ren,&nbsp;Zhihui Chen","doi":"10.1007/s10008-024-06092-1","DOIUrl":"10.1007/s10008-024-06092-1","url":null,"abstract":"<div><p>High-Entropy Oxides (HEOs) are emerging as promising anode materials for lithium-ion batteries (LIBs) due to their stable crystal structure and high theoretical capacity. However, the limited understanding of their intrinsic crystal structure and lithium storage mechanism has hindered their further development and application. In this study, (Y<sub>0.2</sub>La<sub>0.2</sub>Ce<sub>0.2</sub>Nd<sub>0.2</sub>Ca<sub>0.2</sub>)<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub> (M<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub>) nanoparticles are successfully synthesized using a hydrothermal method and then applied as an advanced anode material for LIBs. The oxygen vacancies induced by high-entropy chemistry result in the M<sub>2</sub>Sn<sub>2</sub>O<sub>7</sub> HEO exhibiting excellent cycle stability, achieving high reversible capacities of 574.2 and 430.4 mA h g<sup>−1</sup> after 100 cycles at 0.1 A g<sup>−1</sup> for half and full-cell lithium-ion batteries, respectively. This research highlights the potential of HEOs with stable structures and excellent performance as promising candidates for LIB anode materials.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2","pages":"731 - 741"},"PeriodicalIF":2.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modification study of Mg/W-doped LiNi0.9Mn0.1O2 layered oxide cathode materials for lithium-ion batteries
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-10-07 DOI: 10.1007/s10008-024-06097-w
Yanjiang Chen, Guanghui Guo, Yan Yang, Rui Zhu, Tian Zhou, Man Gao

Owing to the supply bottlenecks and high-cost cobalt, high-nickel, cobalt-free layered cathodes is regarded as the most affordable and representative option for lithium-ion batteries (LIBs). However, the commercialization of low-cost LiNi0.9Mn0.1O2 cathodes has been hindered by their poor chemo-mechanical stability and limited cycling performance. In this study, Mg/W co-doping was employed to improve lithium batteries cycling stability by changing the lattice size. The capacity retention of the Mg/W co-doping LiNi0.9Mn0.1O2 samples (Mg&W-LNMO) was 96.51% at a discharge rate of 0.5 C and a voltage interval of 2.8–4.3 V after 100 cycles electrochemical cycle tests, which was 16.7% higher than that of the LiNi0.9Mn0.1O2 samples (LNMO) cathode, while maintaining intact particle morphology. The combined effect of Mg and W effectively prevented Ni/Li mixing and segregation, suppressed the leaching of transition metal ions, inhibited the phase transformation from a layered structure to a spinel configuration, and improved the structural stability of the material. These results offered an uncomplicated, productive, and scalable approach for designing cobalt-free, nickel-rich cathodes in the development of cost-effective lithium-ion batteries.

{"title":"Modification study of Mg/W-doped LiNi0.9Mn0.1O2 layered oxide cathode materials for lithium-ion batteries","authors":"Yanjiang Chen,&nbsp;Guanghui Guo,&nbsp;Yan Yang,&nbsp;Rui Zhu,&nbsp;Tian Zhou,&nbsp;Man Gao","doi":"10.1007/s10008-024-06097-w","DOIUrl":"10.1007/s10008-024-06097-w","url":null,"abstract":"<div><p>Owing to the supply bottlenecks and high-cost cobalt, high-nickel, cobalt-free layered cathodes is regarded as the most affordable and representative option for lithium-ion batteries (LIBs). However, the commercialization of low-cost LiNi<sub>0.9</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathodes has been hindered by their poor chemo-mechanical stability and limited cycling performance. In this study, Mg/W co-doping was employed to improve lithium batteries cycling stability by changing the lattice size. The capacity retention of the Mg/W co-doping LiNi<sub>0.9</sub>Mn<sub>0.1</sub>O<sub>2</sub> samples (Mg&amp;W-LNMO) was 96.51% at a discharge rate of 0.5 C and a voltage interval of 2.8–4.3 V after 100 cycles electrochemical cycle tests, which was 16.7% higher than that of the LiNi<sub>0.9</sub>Mn<sub>0.1</sub>O<sub>2</sub> samples (LNMO) cathode, while maintaining intact particle morphology. The combined effect of Mg and W effectively prevented Ni/Li mixing and segregation, suppressed the leaching of transition metal ions, inhibited the phase transformation from a layered structure to a spinel configuration, and improved the structural stability of the material. These results offered an uncomplicated, productive, and scalable approach for designing cobalt-free, nickel-rich cathodes in the development of cost-effective lithium-ion batteries.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2","pages":"717 - 729"},"PeriodicalIF":2.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocatalytic reduction and sensing of hazardous Cr(VI) in water samples using in situ functionalized vanillin-catechol derivative/MWCNT-modified electrode 利用原位功能化香兰素-儿茶酚衍生物/ mwcnt修饰电极电催化还原和检测水样中有害Cr(VI)
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-10-06 DOI: 10.1007/s10008-024-06096-x
V. Lavanya, K. Santhakumar, Annamalai Senthil Kumar

Vanillin (VAn), 4-hydroxy-3-methoxybenzaldehyde, is a natural organic compound classified as a phenolic aldehyde. It is the primary component responsible for the distinctive vanilla flavor and aroma found in vanilla beans. Beyond its culinary applications, VAn is utilized in the fragrance and cosmetic industries due to its pleasant scent. In this study, VAn was employed as a precursor for the in situ functionalization of redox-active catechol on multi-walled carbon nanotubes (MWCNTs)–modified electrode surface, designated as GCE/MWCNT@VAn-Redox, where VAn-Redox represents the redox-active product of VAn. This modified electrode functions as a surface-confined redox-active molecular species capable of efficiently electrocatalytically reducing hazardous Cr(VI) species in aqueous solutions. The chemically modified electrode (CME) exhibited a well-defined redox peak at a standard electrode potential, E° = 0.6 V vs Ag/AgCl, with a surface-excess value (Γ) of 14.2 × 10−9 mol·cm−2 in a pH 2 HCl + KCl environment. Characterization of the modified electrode was performed using various techniques, including FE-SEM, UV–Vis, Raman, FT-IR, HRMS (organic extract), and control electrochemical experiments. Amperometric i-t and batch injection analyses (BIA) were employed to evaluate the electrocatalytic reduction, transforming the screen-printed CME into a sensitive electrochemical sensor for toxic Cr(VI) species. Notably, this innovative electrode demonstrates no interference with dissolved oxygen or various biochemicals, such as mercury, calcium, zinc, sulfate, chloride, iodide, H2O2, cysteine, glucose, and urea.

香兰素(VAn), 4-羟基-3-甲氧基苯甲醛,是一种天然有机化合物,属酚醛类。它是造成香草豆中独特的香草风味和香气的主要成分。除了烹饪应用之外,由于其令人愉悦的气味,VAn还用于香水和化妆品行业。在本研究中,VAn被用作多壁碳纳米管(MWCNTs)修饰电极表面上氧化还原活性儿茶酚的原位功能化前驱体,标记为GCE/MWCNT@VAn-Redox,其中VAn- redox代表VAn的氧化还原活性产物。这种修饰电极的功能是作为一种表面受限的氧化还原活性分子,能够有效地电催化还原水溶液中的有害Cr(VI)物质。化学修饰电极(CME)在标准电极电位E°= 0.6 V vs Ag/AgCl下表现出明确的氧化还原峰,在pH 2 HCl + KCl环境下,其表面过量值(Γ)为14.2 × 10−9 mol·cm−2。利用FE-SEM、UV-Vis、Raman、FT-IR、HRMS(有机萃取物)和对照电化学实验等技术对修饰电极进行了表征。采用电流i-t和间歇注射分析(BIA)来评价电催化还原,将丝网印刷CME转化为有毒Cr(VI)物质的敏感电化学传感器。值得注意的是,这种创新的电极显示不干扰溶解氧或各种生化物质,如汞、钙、锌、硫酸盐、氯化物、碘化物、H2O2、半胱氨酸、葡萄糖和尿素。
{"title":"Electrocatalytic reduction and sensing of hazardous Cr(VI) in water samples using in situ functionalized vanillin-catechol derivative/MWCNT-modified electrode","authors":"V. Lavanya,&nbsp;K. Santhakumar,&nbsp;Annamalai Senthil Kumar","doi":"10.1007/s10008-024-06096-x","DOIUrl":"10.1007/s10008-024-06096-x","url":null,"abstract":"<div><p>Vanillin (VAn), 4-hydroxy-3-methoxybenzaldehyde, is a natural organic compound classified as a phenolic aldehyde. It is the primary component responsible for the distinctive vanilla flavor and aroma found in vanilla beans. Beyond its culinary applications, VAn is utilized in the fragrance and cosmetic industries due to its pleasant scent. In this study, VAn was employed as a precursor for the in situ functionalization of redox-active catechol on multi-walled carbon nanotubes (MWCNTs)–modified electrode surface, designated as GCE/MWCNT@VAn-Redox, where VAn-Redox represents the redox-active product of VAn. This modified electrode functions as a surface-confined redox-active molecular species capable of efficiently electrocatalytically reducing hazardous Cr(VI) species in aqueous solutions. The chemically modified electrode (CME) exhibited a well-defined redox peak at a standard electrode potential, <i>E</i>° = 0.6 V vs Ag/AgCl, with a surface-excess value (<i>Γ</i>) of 14.2 × 10<sup>−9</sup> mol·cm<sup>−2</sup> in a pH 2 HCl + KCl environment. Characterization of the modified electrode was performed using various techniques, including FE-SEM, UV–Vis, Raman, FT-IR, HRMS (organic extract), and control electrochemical experiments. Amperometric <i>i-t</i> and batch injection analyses (BIA) were employed to evaluate the electrocatalytic reduction, transforming the screen-printed CME into a sensitive electrochemical sensor for toxic Cr(VI) species. Notably, this innovative electrode demonstrates no interference with dissolved oxygen or various biochemicals, such as mercury, calcium, zinc, sulfate, chloride, iodide, H<sub>2</sub>O<sub>2</sub>, cysteine, glucose, and urea.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"81 - 94"},"PeriodicalIF":2.6,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing energy holding parameters of supercapacitor electrode configured using titanium oxide/silicon oxide nanospheres with polypyrrole intercalations
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-10-04 DOI: 10.1007/s10008-024-06101-3
Meena Yadav, Rajat Arora, Monika Dhanda, Simran Ahlawat, Priti Pahuja, Geeta Singh, Suman Lata

Afresh synthesis of PPy/TiO2/SiO2 (PTS) nanocomposites via in situ chemical oxidation polymerization of pyrrole and by altering the weight ratio of TiO2/SiO2 nanosphere (TS Ns) is executed in this work. After a significant structural and morphological analysis, the nanocomposites were investigated for electrochemical behavior in 1 M H2SO4 adopting CV, GCD, and EIS measurements using three as well as two-electrode system setups. Results disclose that different feeding ratios of TS Ns, corresponding variation in PPy as well in synthesized nanocomposites play an important role in the enhancement of electrochemical properties. After a comparative study, it is observed that the PTS2 that is PPy:TS (w/w) as 50:50 sample at 10 mV/s scanning rate shows the highest specific capacitance, 499 F/g, and the value accords well with that of obtained through GCD findings (413 F/g) and the areal capacitance of the optimized electrode as 838.3 mF/cm2. PTS2 provided the energy density as 28.2 Wh/kg which is approximately 19 times more than that of neat PPy. The power density for PPy and PTS2 at 0.5 A/g current density was found to be 64.8 W/kg and 219 W/kg, respectively. Herein, the supercapacitor application gets strengthened with ideal capacitive behavior due to the high value (0.85) of “n” obtained through EIS findings and interpretation. It retained 92.23% of its initial current response even after covering ten thousand (10,000) charge–discharge rounds. Further, a device was assembled to show practical use of the best one configured electrode and charged for 5 min that could promptly illuminate the blue light emitting diode (LED) for 10 min.

Graphical abstract

Schematical synthesis of PPy/TiO2/SiO2 NCs, electrode modification, and their electrochemical study for energy storage application

{"title":"Optimizing energy holding parameters of supercapacitor electrode configured using titanium oxide/silicon oxide nanospheres with polypyrrole intercalations","authors":"Meena Yadav,&nbsp;Rajat Arora,&nbsp;Monika Dhanda,&nbsp;Simran Ahlawat,&nbsp;Priti Pahuja,&nbsp;Geeta Singh,&nbsp;Suman Lata","doi":"10.1007/s10008-024-06101-3","DOIUrl":"10.1007/s10008-024-06101-3","url":null,"abstract":"<div><p>Afresh synthesis of PPy/TiO<sub>2</sub>/SiO<sub>2</sub> (PTS) nanocomposites via in situ chemical oxidation polymerization of pyrrole and by altering the weight ratio of TiO<sub>2</sub>/SiO<sub>2</sub> nanosphere (TS Ns) is executed in this work. After a significant structural and morphological analysis, the nanocomposites were investigated for electrochemical behavior in 1 M H<sub>2</sub>SO<sub>4</sub> adopting CV, GCD, and EIS measurements using three as well as two-electrode system setups. Results disclose that different feeding ratios of TS Ns, corresponding variation in PPy as well in synthesized nanocomposites play an important role in the enhancement of electrochemical properties. After a comparative study, it is observed that the PTS2 that is PPy:TS (w/w) as 50:50 sample at 10 mV/s scanning rate shows the highest specific capacitance, 499 F/g, and the value accords well with that of obtained through GCD findings (413 F/g) and the areal capacitance of the optimized electrode as 838.3 mF/cm<sup>2</sup>. PTS2 provided the energy density as 28.2 Wh/kg which is approximately 19 times more than that of neat PPy. The power density for PPy and PTS2 at 0.5 A/g current density was found to be 64.8 W/kg and 219 W/kg, respectively. Herein, the supercapacitor application gets strengthened with ideal capacitive behavior due to the high value (0.85) of “<i>n</i>” obtained through EIS findings and interpretation. It retained 92.23% of its initial current response even after covering ten thousand (10,000) charge–discharge rounds. Further, a device was assembled to show practical use of the best one configured electrode and charged for 5 min that could promptly illuminate the blue light emitting diode (LED) for 10 min.</p><h3>Graphical abstract</h3><p>Schematical synthesis of PPy/TiO<sub>2</sub>/SiO<sub>2</sub> NCs, electrode modification, and their electrochemical study for energy storage application</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2","pages":"681 - 700"},"PeriodicalIF":2.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10008-024-06101-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contribution of Ti insertion on nano-crystalline rich oxygen vacancy V2O5’s performance for supercapacitor electrodes
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-10-04 DOI: 10.1007/s10008-024-06084-1
Khaled Faisal Qasim, Samar Abdel-Hamied, M. M. El-Desoky

The sol–gel film method was employed to produce pure and Ti-doped V2O5 in varying concentrations (1, 2, 3, and 4 mol%). The resulting materials were characterized using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS) to assess their crystal structure, morphology, surface characteristics, and elemental composition. XRD results indicated that all samples, whether pure or doped, crystallized in the orthorhombic phase with a preferred orientation along the (101) plane. The introduction of doping reduced the crystallite size, which fell below 10 nm. SEM analysis revealed that the V2O5 appeared as nanosheets. The impact of doping on electrochemical performance was evaluated using galvanostatic charge/discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) in a 1 M LiNO3 electrolyte. The electrochemical tests demonstrated surface redox pseudocapacitive behavior with reversible charge/discharge capabilities, and specific capacitance values ranged from 254.6 to 352.3 F/g, depending on the sample composition, as determined by CV. The presence of dopants enhanced the electrochemical performance due to the multiple oxidation states of V and Ti, as well as the presence of oxygen vacancies (VO··). Specifically, the 4% Ti-doped V2O5 exhibited a specific capacitance (Csp) of 352.3 F/g, energy density (Ed) of 43.3 Wh/kg, power density (Pd) of 554.2 W/kg, and maintained 69.1% cycling stability over 10,000 cycles at 1 A/g.

{"title":"Contribution of Ti insertion on nano-crystalline rich oxygen vacancy V2O5’s performance for supercapacitor electrodes","authors":"Khaled Faisal Qasim,&nbsp;Samar Abdel-Hamied,&nbsp;M. M. El-Desoky","doi":"10.1007/s10008-024-06084-1","DOIUrl":"10.1007/s10008-024-06084-1","url":null,"abstract":"<div><p>The sol–gel film method was employed to produce pure and Ti-doped V<sub>2</sub>O<sub>5</sub> in varying concentrations (1, 2, 3, and 4 mol%). The resulting materials were characterized using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS) to assess their crystal structure, morphology, surface characteristics, and elemental composition. XRD results indicated that all samples, whether pure or doped, crystallized in the orthorhombic phase with a preferred orientation along the (101) plane. The introduction of doping reduced the crystallite size, which fell below 10 nm. SEM analysis revealed that the V<sub>2</sub>O<sub>5</sub> appeared as nanosheets. The impact of doping on electrochemical performance was evaluated using galvanostatic charge/discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) in a 1 M LiNO<sub>3</sub> electrolyte. The electrochemical tests demonstrated surface redox pseudocapacitive behavior with reversible charge/discharge capabilities, and specific capacitance values ranged from 254.6 to 352.3 F/g, depending on the sample composition, as determined by CV. The presence of dopants enhanced the electrochemical performance due to the multiple oxidation states of V and Ti, as well as the presence of oxygen vacancies (V<sub>O</sub><sup>··</sup>). Specifically, the 4% Ti-doped V<sub>2</sub>O<sub>5</sub> exhibited a specific capacitance (C<sub>sp</sub>) of 352.3 F/g, energy density (E<sub>d</sub>) of 43.3 Wh/kg, power density (P<sub>d</sub>) of 554.2 W/kg, and maintained 69.1% cycling stability over 10,000 cycles at 1 A/g.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2","pages":"701 - 715"},"PeriodicalIF":2.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical detection of non-small cell lung cancer (NSCLC) mir-223 biomarker employing gold/MWCNT nanocomposite–based sandwich platform
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-10-03 DOI: 10.1007/s10008-024-06094-z
Sangya Bhattacharjee, Melvin George, Bernaurdshaw Neppolian, Jayabrata Das

Recently, microRNA-223 (miR-223) has emerged as a new prognostic and diagnostic biomarker for detecting non-small cell lung cancer (NSCLC); thus, sensitive and selective detection of miR-223 is important in the early phase of cancer management. Herein, a simple miR-223 biosensor is developed using a biotin-tagged double-stranded DNA-RNA hybrid structure sandwiched between a recognition probe and a bioconjugate as a signaling unit. The recognition probe (MWCNT/AuNPs/DNA-1//GCE) is fabricated by immobilizing thiol-modified capturer DNA (DNA-1) onto a predesigned multiwall carbon nanotubes/gold nanoparticle–modified glassy carbon electrode (MWCNT/AuNPs//GCE) via Au–S interaction. However, 6-(Ferrocenyl)hexanethiol (Fc-SH) coupled streptavidin/AuNPs bioconjugate (Sv/AuNPs/Fc-SH) can selectively bind to biotinylated dsDNA-RNA hybrid via biotin − streptavidin conjugation and generates electrooxidation signal directly under applied potential. The proposed sensor demonstrates linear dynamic response as a function of log concentration of miR-223 (log CmiR-223) ranging from 1 pM to 10 nM with a relatively low detection limit of 0.73 pM (3σ/sensitivity, n = 3) and is capable of discriminating miR-223 from its homologous sequences, hence can be considered for the diagnosis of clinical samples.

Graphical Abstract

{"title":"Electrochemical detection of non-small cell lung cancer (NSCLC) mir-223 biomarker employing gold/MWCNT nanocomposite–based sandwich platform","authors":"Sangya Bhattacharjee,&nbsp;Melvin George,&nbsp;Bernaurdshaw Neppolian,&nbsp;Jayabrata Das","doi":"10.1007/s10008-024-06094-z","DOIUrl":"10.1007/s10008-024-06094-z","url":null,"abstract":"<div><p>Recently, microRNA-223 (miR-223) has emerged as a new prognostic and diagnostic biomarker for detecting non-small cell lung cancer (NSCLC); thus, sensitive and selective detection of miR-223 is important in the early phase of cancer management. Herein, a simple miR-223 biosensor is developed using a biotin-tagged double-stranded DNA-RNA hybrid structure sandwiched between a recognition probe and a bioconjugate as a signaling unit. The recognition probe (MWCNT/AuNPs/DNA-1//GCE) is fabricated by immobilizing thiol-modified capturer DNA (DNA-1) onto a predesigned multiwall carbon nanotubes/gold nanoparticle–modified glassy carbon electrode (MWCNT/AuNPs//GCE) via Au–S interaction. However, 6-(Ferrocenyl)hexanethiol (Fc-SH) coupled streptavidin/AuNPs bioconjugate (Sv/AuNPs/Fc-SH) can selectively bind to biotinylated dsDNA-RNA hybrid via biotin − streptavidin conjugation and generates electrooxidation signal directly under applied potential. The proposed sensor demonstrates linear dynamic response as a function of log concentration of miR-223 (log C<sub>miR-223</sub>) ranging from 1 pM to 10 nM with a relatively low detection limit of 0.73 pM (3σ/sensitivity, <i>n</i> = 3) and is capable of discriminating miR-223 from its homologous sequences, hence can be considered for the diagnosis of clinical samples.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2","pages":"669 - 680"},"PeriodicalIF":2.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10008-024-06094-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrosynthesis and characterization of poly(rhodamine B) coatings on 3d printed polylactic acid doped carbon black (PLA-CB) electrodes for promising sensor applications
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-10-03 DOI: 10.1007/s10008-024-06095-y
K. Bahend, M. El Fazdoune, S. Ben Jadi, M. Oubella, A. El-Asri, E. A. Bazzaoui, F. J. Garcia-Garcia, J. I. Martins, M. Bazzaoui

Conductive filament-based polylactic acid doped carbon black (PLA-CB) was used as an alternative to metal-based electrodes. Rhodamine B (RhB) was electrochemically polymerized on PLA-CB. The electrosynthesis of poly(rhodamine B) (PRhB) was achieved by cyclic voltammetry, galvanostatic, and potentiostatic techniques. PRhB coatings were characterized to investigate their morphology, chemical, and optical properties using different microscopic and spectroscopic techniques such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and UV-visible spectrophotometry (UV-vis). The theoretical UV-vis spectrum calculated with the Time-Dependent Density Functional Theory (TD-DFT) method was comparable with experimental UV-vis spectra. The modified electrode was tested for the detection of melatonin, gallic acid, dopamine, and nitrite showing an enhanced performance. The obtained results are promising for developing adherent PRhB coatings and can be used as a sensor in future studies. 3D printed conductive electrodes can be inexpensively manufactured in electrochemical laboratories using PLA-CB and reach properties well comparable to those obtained at conventional carbon or metallic electrodes, hence used for RhB polymerization.

Graphical abstract

{"title":"Electrosynthesis and characterization of poly(rhodamine B) coatings on 3d printed polylactic acid doped carbon black (PLA-CB) electrodes for promising sensor applications","authors":"K. Bahend,&nbsp;M. El Fazdoune,&nbsp;S. Ben Jadi,&nbsp;M. Oubella,&nbsp;A. El-Asri,&nbsp;E. A. Bazzaoui,&nbsp;F. J. Garcia-Garcia,&nbsp;J. I. Martins,&nbsp;M. Bazzaoui","doi":"10.1007/s10008-024-06095-y","DOIUrl":"10.1007/s10008-024-06095-y","url":null,"abstract":"<div><p>Conductive filament-based polylactic acid doped carbon black (PLA-CB) was used as an alternative to metal-based electrodes. Rhodamine B (RhB) was electrochemically polymerized on PLA-CB. The electrosynthesis of poly(rhodamine B) (PRhB) was achieved by cyclic voltammetry, galvanostatic, and potentiostatic techniques. PRhB coatings were characterized to investigate their morphology, chemical, and optical properties using different microscopic and spectroscopic techniques such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and UV-visible spectrophotometry (UV-vis). The theoretical UV-vis spectrum calculated with the Time-Dependent Density Functional Theory (TD-DFT) method was comparable with experimental UV-vis spectra. The modified electrode was tested for the detection of melatonin, gallic acid, dopamine, and nitrite showing an enhanced performance. The obtained results are promising for developing adherent PRhB coatings and can be used as a sensor in future studies. 3D printed conductive electrodes can be inexpensively manufactured in electrochemical laboratories using PLA-CB and reach properties well comparable to those obtained at conventional carbon or metallic electrodes, hence used for RhB polymerization.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2","pages":"651 - 668"},"PeriodicalIF":2.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Solid State Electrochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1