Pub Date : 2024-09-17DOI: 10.1007/s10008-024-06070-7
Isaac A. Rodrigues, Darla de Vargas, Chádia Schissler, Allan de Moraes Lisbôa, Vladimir Lavayen, Jacqueline Arguello Da Silva
Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV) were employed to investigate the electrochemical behavior of acetaminophen (APAP) at a screen-printed carbon electrode (SPCE) modified with silver nanoparticles (AgNPs) synthesized via an eco-friendly process. Hibiscus rosa-sinensis flower extract acts as a stabilizing and reducing agent to produce AgNPs. UV–Vis spectroscopy, dynamic light scattering (DLS), and X-ray diffraction (XRD) analyses confirmed the formation of the AgNPs. The modified electrode, SPCE/AgNPs, demonstrated an excellent electrochemical response for APAP detection within a linear range of 0.5–100 µmol L−1 with correlation coefficients of 0.995 and 0.993 for DPV and SWV methods, respectively. The limit of detection (LOD) and limit of quantification (LOQ) were 0.14 and 0.28 µmol L−1 for the DPV method and 0.051 and 0.10 µmol L−1 for the SWV method, respectively. The RSD for ten measurements was 0.54% and 0.35% for DPV and SWV, respectively. The proposed sensor was successfully applied to quantify APAP in pharmaceutical samples. Furthermore, it proved selective in determining APAP in the presence of common interfering compounds such as ascorbic acid and caffeine.
{"title":"Screen-printed carbon electrode modified with AgNPs obtained via green synthesis for acetaminophen determination","authors":"Isaac A. Rodrigues, Darla de Vargas, Chádia Schissler, Allan de Moraes Lisbôa, Vladimir Lavayen, Jacqueline Arguello Da Silva","doi":"10.1007/s10008-024-06070-7","DOIUrl":"https://doi.org/10.1007/s10008-024-06070-7","url":null,"abstract":"<p>Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV) were employed to investigate the electrochemical behavior of acetaminophen (APAP) at a screen-printed carbon electrode (SPCE) modified with silver nanoparticles (AgNPs) synthesized via an eco-friendly process. <i>Hibiscus rosa-sinensis</i> flower extract acts as a stabilizing and reducing agent to produce AgNPs<i>.</i> UV–Vis spectroscopy, dynamic light scattering (DLS), and X-ray diffraction (XRD) analyses confirmed the formation of the AgNPs. The modified electrode, SPCE/AgNPs, demonstrated an excellent electrochemical response for APAP detection within a linear range of 0.5–100 µmol L<sup>−1</sup> with correlation coefficients of 0.995 and 0.993 for DPV and SWV methods, respectively. The limit of detection (LOD) and limit of quantification (LOQ) were 0.14 and 0.28 µmol L<sup>−1</sup> for the DPV method and 0.051 and 0.10 µmol L<sup>−1</sup> for the SWV method, respectively. The RSD for ten measurements was 0.54% and 0.35% for DPV and SWV, respectively. The proposed sensor was successfully applied to quantify APAP in pharmaceutical samples. Furthermore, it proved selective in determining APAP in the presence of common interfering compounds such as ascorbic acid and caffeine.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"9 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zinc-nickel (ZN) coatings were deposited on N80 steel substrates using pulsed electrodeposition. The current density of the two-step electrodeposition process was adjusted to promote the formation of micro/nanostructures on the coating surface. Superhydrophobic coatings were obtained by using appropriate current parameters and subsequent modification of the coatings with hexadecyltrimethoxysilane. The results showed that the coating achieved a water contact angle of 157 ± 1° and a sliding angle of 6 ± 1°, indicating that the superhydrophobicity was successfully constructed. In addition, electrochemical tests confirmed the coating’s excellent corrosion resistance. Compared with other samples, the corrosion current density of the coating in 3.5 wt% NaCl solution was significantly reduced, the corrosion inhibition rate reached 94.41%, and the impedance modulus in the low-frequency region of the Bode plot was improved by one order of magnitude compared with that of the blank sample. In conclusion, the prepared superhydrophobic coating has good hydrophobicity and corrosion resistance and has a broad industrial application prospect.
{"title":"Study of superhydrophobicity and corrosion resistance of electrodeposited Zn-Ni-HDTMS coating","authors":"Kaijun Wei, Shihong Zhang, Yi He, Hongjie Li, Huilian Zhou, Zhiyuan Li, Shijun Xu, Quangang Chen, Xingtao Cheng","doi":"10.1007/s10008-024-06064-5","DOIUrl":"10.1007/s10008-024-06064-5","url":null,"abstract":"<div><p>Zinc-nickel (ZN) coatings were deposited on N80 steel substrates using pulsed electrodeposition. The current density of the two-step electrodeposition process was adjusted to promote the formation of micro/nanostructures on the coating surface. Superhydrophobic coatings were obtained by using appropriate current parameters and subsequent modification of the coatings with hexadecyltrimethoxysilane. The results showed that the coating achieved a water contact angle of 157 ± 1° and a sliding angle of 6 ± 1°, indicating that the superhydrophobicity was successfully constructed. In addition, electrochemical tests confirmed the coating’s excellent corrosion resistance. Compared with other samples, the corrosion current density of the coating in 3.5 wt% NaCl solution was significantly reduced, the corrosion inhibition rate reached 94.41%, and the impedance modulus in the low-frequency region of the Bode plot was improved by one order of magnitude compared with that of the blank sample. In conclusion, the prepared superhydrophobic coating has good hydrophobicity and corrosion resistance and has a broad industrial application prospect.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"361 - 376"},"PeriodicalIF":2.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1007/s10008-024-06081-4
G. A. Ragoisha, A. S. Bakavets, Y. M. Aniskevich, E. A. Streltsov
A layer-by-layer approach in the assembly of nanomaterials from the atomic layers electrochemically generated by underpotential deposition was reinforced by the development of the method of multiparametric monitoring of surface-restricted electrochemical reactions based on frequency response analysis under nonstationary conditions. The upd in a wide meaning of this term is not restricted to deposition of a monolayer of one metal onto an electrode of different metal but involves also nonmetals, such as Se and Te, their compounds (CdSe, CdTe, CdS, PbTe, PbSe, Bi2Te3, etc.) and superlattices, such as (Bi2)m(Bi2Te3)n. The experience acquired in the electrochemistry of the underpotential deposition and multilayer assembly can be also helpful in other fields of materials science, such as supercapacitor research, where the frequency response examination of the surface-restricted reactions enables the discrimination between capacitive and noncapacitive currents under conditions preventing from the use of classical impedance spectroscopy and evaluation of energy dissipation in the charge–discharge processes.
通过开发基于非稳态条件下频率响应分析的表面受限电化学反应多参数监测方法,加强了通过欠电位沉积产生的电化学原子层组装纳米材料的逐层方法。这一术语的广义更新并不局限于在不同金属的电极上沉积单层金属,还涉及非金属,如 Se 和 Te、它们的化合物(CdSe、CdTe、CdS、PbTe、PbSe、Bi2Te3 等)和超晶格,如 (Bi2)m(Bi2Te3)n。在欠电位沉积和多层组装的电化学方面获得的经验也有助于材料科学的其他领域,如超级电容器研究,通过对表面受限反应的频率响应检查,可以在无法使用经典阻抗光谱和评估充放电过程中能量耗散的条件下,区分电容性电流和非电容性电流。
{"title":"Electrochemically generated atomic layers as building blocks of nanomaterials","authors":"G. A. Ragoisha, A. S. Bakavets, Y. M. Aniskevich, E. A. Streltsov","doi":"10.1007/s10008-024-06081-4","DOIUrl":"https://doi.org/10.1007/s10008-024-06081-4","url":null,"abstract":"<p>A layer-by-layer approach in the assembly of nanomaterials from the atomic layers electrochemically generated by underpotential deposition was reinforced by the development of the method of multiparametric monitoring of surface-restricted electrochemical reactions based on frequency response analysis under nonstationary conditions. The upd in a wide meaning of this term is not restricted to deposition of a monolayer of one metal onto an electrode of different metal but involves also nonmetals, such as Se and Te, their compounds (CdSe, CdTe, CdS, PbTe, PbSe, Bi<sub>2</sub>Te<sub>3</sub>, etc.) and superlattices, such as (Bi<sub>2</sub>)<sub>m</sub>(Bi<sub>2</sub>Te<sub>3</sub>)<sub>n</sub>. The experience acquired in the electrochemistry of the underpotential deposition and multilayer assembly can be also helpful in other fields of materials science, such as supercapacitor research, where the frequency response examination of the surface-restricted reactions enables the discrimination between capacitive and noncapacitive currents under conditions preventing from the use of classical impedance spectroscopy and evaluation of energy dissipation in the charge–discharge processes.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"6 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1007/s10008-024-06073-4
K. Thejasree, M. L. Aparna, Tapan Kumar Ghosh, Vineet Mishra, K. T. Ramakrishna Reddy, G. Ranga Rao
Ternary selenides are an attractive choice for supercapacitor electrode materials owing to their multiple oxidation states, higher electronic conductivity, and better electro activity. However, to attain improved charge storage performance, the electrode materials must be strategically tailored as nanostructured hybrid composites. Herein, we experimentally explore the electrochemical charge storage characteristics of MoO3@NiCo2Se4 nanostructure. MoO3@NiCo2Se4 is synthesized via hydrothermal route coupled with ball milling, varying the milling duration from 0 to 4 h. The MoO3@NiCo2Se4 composite obtained by 4 h ball milling process produced well mixed polymeric molybdates and NiCo2Se4 nanostructures with highest surface area of 5.9 m2 g−1. The specific capacities obtained from 3-electrode electrochemical measurements are 147 C g−1, 267 C g−1, 286 C g−1, and 366 C g−1, respectively, for MoO3, NiCo2Se4, MoO3@NiCo2Se4-0 h, and MoO3@NiCo2Se4-4 h nanostructures at 2 A g−1. An asymmetric Swagelok device is fabricated for MoO3@NiCo2Se4-4 h//AC electrode material delivering a maximum energy density of 30.4 Wh kg−1 and power density of 1499 W kg−1. This study highlights the significance of MoO3 in tuning the functional characteristics of NiCo2Se4 nanostructures for charge storage applications. The newly developed material shows significant promise as electrode material for further exploration and real-world implementation within the energy storage sector.
三元硒化物具有多种氧化态、更高的电子传导性和更好的电活性,是超级电容器电极材料的理想选择。然而,要获得更好的电荷存储性能,必须对电极材料进行战略性定制,使其成为纳米结构的混合复合材料。在此,我们通过实验探索了 MoO3@NiCo2Se4 纳米结构的电化学电荷存储特性。通过水热法和球磨法合成了 MoO3@NiCo2Se4,球磨时间从 0 小时到 4 小时不等。经 4 小时球磨得到的 MoO3@NiCo2Se4 复合材料产生了混合良好的聚合钼酸盐和 NiCo2Se4 纳米结构,具有最高的比表面积 5.9 m2 g-1。在 2 A g-1 的条件下,通过三电极电化学测量,MoO3、NiCo2Se4、MoO3@NiCo2Se4-0 h 和 MoO3@NiCo2Se4-4 h 纳米结构的比容量分别为 147 C g-1、267 C g-1、286 C g-1 和 366 C g-1。利用 MoO3@NiCo2Se4-4 h//AC 电极材料制造的非对称世伟洛克装置的最大能量密度为 30.4 Wh kg-1,功率密度为 1499 W kg-1。这项研究强调了 MoO3 在调整 NiCo2Se4 纳米结构的功能特性以实现电荷存储应用方面的重要意义。新开发的材料显示出作为电极材料的巨大前景,可在储能领域进一步探索和实际应用。
{"title":"Ball-milled MoO3@NiCo2Se4 composite for supercapacitor electrode","authors":"K. Thejasree, M. L. Aparna, Tapan Kumar Ghosh, Vineet Mishra, K. T. Ramakrishna Reddy, G. Ranga Rao","doi":"10.1007/s10008-024-06073-4","DOIUrl":"10.1007/s10008-024-06073-4","url":null,"abstract":"<div><p>Ternary selenides are an attractive choice for supercapacitor electrode materials owing to their multiple oxidation states, higher electronic conductivity, and better electro activity. However, to attain improved charge storage performance, the electrode materials must be strategically tailored as nanostructured hybrid composites. Herein, we experimentally explore the electrochemical charge storage characteristics of MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub> nanostructure. MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub> is synthesized via hydrothermal route coupled with ball milling, varying the milling duration from 0 to 4 h. The MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub> composite obtained by 4 h ball milling process produced well mixed polymeric molybdates and NiCo<sub>2</sub>Se<sub>4</sub> nanostructures with highest surface area of 5.9 m<sup>2</sup> g<sup>−1</sup>. The specific capacities obtained from 3-electrode electrochemical measurements are 147 C g<sup>−1</sup>, 267 C g<sup>−1</sup>, 286 C g<sup>−1</sup>, and 366 C g<sup>−1</sup>, respectively, for MoO<sub>3</sub>, NiCo<sub>2</sub>Se<sub>4</sub>, MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub>-0 h, and MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub>-4 h nanostructures at 2 A g<sup>−1</sup>. An asymmetric Swagelok device is fabricated for MoO<sub>3</sub>@NiCo<sub>2</sub>Se<sub>4</sub>-4 h//AC electrode material delivering a maximum energy density of 30.4 Wh kg<sup>−1</sup> and power density of 1499 W kg<sup>−1</sup>. This study highlights the significance of MoO<sub>3</sub> in tuning the functional characteristics of NiCo<sub>2</sub>Se<sub>4</sub> nanostructures for charge storage applications. The newly developed material shows significant promise as electrode material for further exploration and real-world implementation within the energy storage sector.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"95 - 106"},"PeriodicalIF":2.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1007/s10008-024-06054-7
Roger Gonçalves, Ernesto Chaves Pereira
Abstract
Once the efficiency of solar energy-converting devices depends on the population of the electron–hole pairs (excitons), one way of increasing the conversion efficiency of photoactive materials is using electron-accepting materials, which acts on the separation efficiency of these pairs by collecting the electrons. In such a way, carbon nitride (C3N4) has been studied as an electron acceptor. With simple synthesis and easy tailoring properties, this material becomes a promising candidate in organic photovoltaic cells. Thus, the objective was to evaluate the photocurrent as a function of exciton properties. Then, P3HT was obtained by redox polymerization and C3N4 by urea pyrolysis. Photoelectrochemical and spectroscopic measurements were performed to characterize the electrodes. In addition, theoretical calculations were carried out using TD-DFT. It was observed that a photocurrent 3-fold increased in relation to the pure P3HT film (from 12.1 up to 33.2 µA cm-2), attributed to the increase in the hole-electron separation efficiency, with an increase in their lifetime (from 0.18 to 0.42 ms). The electron transport was also boosted (an increase of 2.1(times )10-3 cm2 V-1 s-1). The theoretical calculations suggest that the structural modification of C3N4 affects the photocurrent due to the charge delocalization induced by the torsion of the triazine units. Besides, the photocurrent values achieved in this work were not expressive; the results pointed out that the association P3HT+C3N4 is promissory. The further optimization of these systems by heat treatment, type of solvent, and deposition method could lead to better results. Additionally, the theoretical results demonstrated that minor system modifications could improve the photocurrent values.
Graphical abstract
The synergetic effect of the composite obtained between poly(3-hexylthiophene) and carbon nitride in the appropriate proportion leads to a 3-fold increase in photocurrent due to the improvement in the properties of the photogenerated excintons.
{"title":"Enhancement of exciton properties in poly(3-hexylthiophene) via carbon nitride composites","authors":"Roger Gonçalves, Ernesto Chaves Pereira","doi":"10.1007/s10008-024-06054-7","DOIUrl":"https://doi.org/10.1007/s10008-024-06054-7","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Once the efficiency of solar energy-converting devices depends on the population of the electron–hole pairs (excitons), one way of increasing the conversion efficiency of photoactive materials is using electron-accepting materials, which acts on the separation efficiency of these pairs by collecting the electrons. In such a way, carbon nitride (C<sub>3</sub>N<sub>4</sub>) has been studied as an electron acceptor. With simple synthesis and easy tailoring properties, this material becomes a promising candidate in organic photovoltaic cells. Thus, the objective was to evaluate the photocurrent as a function of exciton properties. Then, P3HT was obtained by redox polymerization and C<sub>3</sub>N<sub>4</sub> by urea pyrolysis. Photoelectrochemical and spectroscopic measurements were performed to characterize the electrodes. In addition, theoretical calculations were carried out using TD-DFT. It was observed that a photocurrent 3-fold increased in relation to the pure P3HT film (from 12.1 up to 33.2 µA cm<sup>-2</sup>), attributed to the increase in the hole-electron separation efficiency, with an increase in their lifetime (from 0.18 to 0.42 ms). The electron transport was also boosted (an increase of 2.1<span>(times )</span>10<sup>-3</sup> cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>). The theoretical calculations suggest that the structural modification of C<sub>3</sub>N<sub>4</sub> affects the photocurrent due to the charge delocalization induced by the torsion of the triazine units. Besides, the photocurrent values achieved in this work were not expressive; the results pointed out that the association P3HT+C<sub>3</sub>N<sub>4</sub> is promissory. The further optimization of these systems by heat treatment, type of solvent, and deposition method could lead to better results. Additionally, the theoretical results demonstrated that minor system modifications could improve the photocurrent values.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><p>The synergetic effect of the composite obtained between poly(3-hexylthiophene) and carbon nitride in the appropriate proportion leads to a 3-fold increase in photocurrent due to the improvement in the properties of the photogenerated excintons.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"64 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-12DOI: 10.1007/s10008-024-06067-2
Giovana B. Vitorasso, Maria G. Zacarin, Ivani A. Carlos
Ni coatings are widely industrially applied due to their excellent properties like resistance to corrosion and wear, increasing the durability of coated surfaces. Ni electrodeposits on steel were produced from an alternative bath to the traditional Watts type, using aspartic acid as a complexing agent at pH = 5 and 11. Scanning Electron Microscopy micrographs revealed that all deposits obtained from the acid and alkaline baths showed smooth morphology with fine grains and no cracks. The smoothest deposits were obtained at deposition current of − 2.05 mA cm−2 for both baths. The X-ray diffraction patterns of Nickel deposits obtained at pH = 5 and 11 indicated phases of pure Ni with the following reflections Ni(200), Ni (220), Ni (311), and a lower crystallinity for the deposits obtained at pH = 11 compared to that obtained at pH = 5. Adherence tests showed that the Ni coatings produced adhered well to the steel substrate, irrespective of the pH and deposition current density. By open circuit potential and linear polarizations, it was observed that Ni deposits presented a lower corrosion current and more positive corrosion potential than that of steel, indicating protection against corrosion, with those produced with jdep = -2.05 mA cm−2 responsible for the best protection and jdep = -5.00 mA cm−2 (pH = 11) the lowest protection.