首页 > 最新文献

Journal of Solid State Electrochemistry最新文献

英文 中文
3D carbonaceous substrates synthesized from melamine sponges for energy storage: Influence of pyrolysis temperature in physicochemical and electrochemical properties 由三聚氰胺海绵合成的三维碳质基底用于能量存储:热解温度对物理化学和电化学性质的影响
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-07-23 DOI: 10.1007/s10008-024-05971-x
Natalia Patricia Páez-Sánchez, E. Córdoba-Tuta, J. Vazquez-Samperio, P. Acevedo-Peña, E. Reguera

High-energy global requirements have caused a renewed interest in studying and developing new and improved energy storage devices and, precisely, the electrode materials that compose them, which play a fundamental role in determining the device’s performance. Carbon materials are first-class candidates due to their high electrical conductivity, chemical stability, and surface area. Although several carbon materials and their precursors have been studied, melamine sponges stand out for their nitrogen content, allowing them to act as a template and precursor for N-doped, ultralight carbon materials with good mechanical properties and a controlled pore size distribution. This work reports a simple and quick methodology to form ultralight and flexible carbon foam, along with the influence of the pyrolysis temperature on the physicochemical and electrochemical properties of 3D carbonaceous substrates used for energy storage and synthesized from melamine sponges. The substrates exhibit higher 3D porous structure than previously reported materials, with an average pore diameter of 80–90 µm. This morphology, added to the N content, promotes the remarkable electrochemical behavior (MS–950 °C) and cycling stability (MS–1000 °C) of almost 100% of capacitance retention after 10,000 cycles (≈ 60 F/g @1 A/g).

全球对高能量的需求再次激发了人们对研究和开发新型、改良型储能设备的兴趣,确切地说,是对设备性能起决定性作用的电极材料的兴趣。碳材料因其高导电性、化学稳定性和表面积而成为一流的候选材料。虽然已经对多种碳材料及其前驱体进行了研究,但三聚氰胺海绵因其含氮量高而脱颖而出,可作为掺氮超轻碳材料的模板和前驱体,具有良好的机械性能和可控的孔径分布。这项研究报告了一种形成超轻柔性泡沫碳材料的简单快速方法,以及热解温度对三聚氰胺海绵合成的用于储能的三维碳质基底的物理化学和电化学性质的影响。与之前报道的材料相比,这些基底呈现出更高的三维多孔结构,平均孔径为 80-90 微米。这种形态加上氮含量,促进了显著的电化学行为(MS-950 °C)和循环稳定性(MS-1000 °C),10000 次循环后电容保持率几乎达到 100%(≈ 60 F/g @1 A/g)。
{"title":"3D carbonaceous substrates synthesized from melamine sponges for energy storage: Influence of pyrolysis temperature in physicochemical and electrochemical properties","authors":"Natalia Patricia Páez-Sánchez,&nbsp;E. Córdoba-Tuta,&nbsp;J. Vazquez-Samperio,&nbsp;P. Acevedo-Peña,&nbsp;E. Reguera","doi":"10.1007/s10008-024-05971-x","DOIUrl":"10.1007/s10008-024-05971-x","url":null,"abstract":"<div><p>High-energy global requirements have caused a renewed interest in studying and developing new and improved energy storage devices and, precisely, the electrode materials that compose them, which play a fundamental role in determining the device’s performance. Carbon materials are first-class candidates due to their high electrical conductivity, chemical stability, and surface area. Although several carbon materials and their precursors have been studied, melamine sponges stand out for their nitrogen content, allowing them to act as a template and precursor for N-doped, ultralight carbon materials with good mechanical properties and a controlled pore size distribution. This work reports a simple and quick methodology to form ultralight and flexible carbon foam, along with the influence of the pyrolysis temperature on the physicochemical and electrochemical properties of 3D carbonaceous substrates used for energy storage and synthesized from melamine sponges. The substrates exhibit higher 3D porous structure than previously reported materials, with an average pore diameter of 80–90 µm. This morphology, added to the N content, promotes the remarkable electrochemical behavior (MS–950 °C) and cycling stability (MS–1000 °C) of almost 100% of capacitance retention after 10,000 cycles (≈ 60 F/g @1 A/g).</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"28 11","pages":"4155 - 4167"},"PeriodicalIF":2.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10008-024-05971-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling solid-state reaction processes: application for the archaeometric study of potteries from Venus Fisica Temple in Pompeii (Italy) 固态反应过程建模:应用于庞贝(意大利)维纳斯菲西卡神庙陶器的考古研究
IF 2.5 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-07-22 DOI: 10.1007/s10008-024-06011-4
Francesca Di Turo, Caterina De Vito, Fulvio Coletti, Antonio Doménech-Carbó

This research employs the voltammetry of immobilized microparticles (VIMP) methodology to analyze a collection of ceramic samples from the temple of Venus Fisica in the archaeological site of Pompeii. The primary objective is to discern their origins and manufacturing processes by the solid-state analysis of the electroactive properties of iron minerals, particularly hematite, extensively investigated for its electrochemical and catalytic characteristics. In our study, we propose a model to elucidate the electrochemical processes involved, building upon prior logistic and nucleation formulations. In this model, we consider the possibility of two superimposed pathways. This approach provides a nuanced understanding of composition changes and mineral crystallinity, factors that can induce significant variations in the voltammetric signal. Consequently, it becomes an effective means to discriminate between different provenances and manufacturing techniques of different potteries. The outcomes of this research contribute valuable insights into the intricate realm of ancient ceramic materials, casting light on their origins and production processes within the historical context of Pompeii.

这项研究采用固定微粒伏安法(VIMP)分析庞贝考古遗址维纳斯菲西卡神庙中的陶瓷样品。主要目的是通过对铁矿物,特别是赤铁矿(因其电化学和催化特性而被广泛研究)的电活性特性进行固态分析,来确定它们的来源和制造工艺。在我们的研究中,我们在先前的逻辑和成核公式的基础上,提出了一个模型来阐明所涉及的电化学过程。在该模型中,我们考虑了两种叠加途径的可能性。通过这种方法,我们可以对成分变化和矿物结晶度有一个细致入微的了解,因为这些因素会导致伏安信号的显著变化。因此,它成为区分不同产地和不同陶器制造技术的有效手段。这项研究成果有助于深入了解古代陶瓷材料的复杂领域,揭示其在庞贝历史背景下的起源和生产工艺。
{"title":"Modeling solid-state reaction processes: application for the archaeometric study of potteries from Venus Fisica Temple in Pompeii (Italy)","authors":"Francesca Di Turo, Caterina De Vito, Fulvio Coletti, Antonio Doménech-Carbó","doi":"10.1007/s10008-024-06011-4","DOIUrl":"https://doi.org/10.1007/s10008-024-06011-4","url":null,"abstract":"<p>This research employs the voltammetry of immobilized microparticles (VIMP) methodology to analyze a collection of ceramic samples from the temple of <i>Venus Fisica</i> in the archaeological site of Pompeii. The primary objective is to discern their origins and manufacturing processes by the solid-state analysis of the electroactive properties of iron minerals, particularly hematite, extensively investigated for its electrochemical and catalytic characteristics. In our study, we propose a model to elucidate the electrochemical processes involved, building upon prior logistic and nucleation formulations. In this model, we consider the possibility of two superimposed pathways. This approach provides a nuanced understanding of composition changes and mineral crystallinity, factors that can induce significant variations in the voltammetric signal. Consequently, it becomes an effective means to discriminate between different provenances and manufacturing techniques of different potteries. The outcomes of this research contribute valuable insights into the intricate realm of ancient ceramic materials, casting light on their origins and production processes within the historical context of Pompeii.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"76 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensing reaching the stars: mild condition ZnO defect development for vitamin detection 感知星空:用于维生素检测的温和条件氧化锌缺陷开发
IF 2.5 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-07-22 DOI: 10.1007/s10008-024-06020-3
Anton Abramyan, Mikhail Golovin, Valeriya Zakharchenkova, Andrey Lalov, Dalibor Stanković, Oleg Bol’shakov

Here, we present the preparation and electrochemical evaluation of a vitamin B2-riboflavin (RF) sensor based on hierarchically structured zinc oxide (ZnO) of the wurtzite type. The highly crystalline ZnO obtained under hydrothermal conditions from a zinc peroxocomplex has the appearance of “micro-stars,” with an average size of 10 μm. Development of unusual morphology was accompanied by significant lattice defect introduction. Zinc oxide as an electroactive additive for carbon paste electrode was studied with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV), which revealed excellent charge mobility and low resistivity. Electrochemical properties of the semiconductor allowed for development of riboflavin (RF) electrochemical sensor with an improved linearity range and a low limit of detection. The repeatability and stability of the sensor were at a satisfactory level for real-time measurements.

Graphical abstract

Conventional hydrothermal treatment of zinc peroxocomplex provided star-shaped zinc oxide microparticles with metal-deficient lattice. Increased defect concentration facilitated charge mobility, which helped in developing of sensor for relevant vitamin.

在此,我们介绍了一种基于层状结构沃特兹型氧化锌(ZnO)的维生素 B2-核黄素(RF)传感器的制备和电化学评估。在水热条件下从锌过氧化物复合物中获得的高结晶氧化锌具有 "微星 "外观,平均尺寸为 10 μm。异常形态的形成伴随着晶格缺陷的显著引入。利用电化学阻抗谱(EIS)、循环伏安法(CV)和微分脉冲伏安法(DPV)研究了氧化锌作为碳浆电极电活性添加剂的情况,结果表明其具有出色的电荷迁移率和低电阻率。半导体的电化学特性使得核黄素(RF)电化学传感器的线性范围更宽,检测限更低。该传感器的重复性和稳定性达到了令人满意的实时测量水平。缺陷浓度的增加促进了电荷的迁移,有助于开发相关维生素的传感器。
{"title":"Sensing reaching the stars: mild condition ZnO defect development for vitamin detection","authors":"Anton Abramyan, Mikhail Golovin, Valeriya Zakharchenkova, Andrey Lalov, Dalibor Stanković, Oleg Bol’shakov","doi":"10.1007/s10008-024-06020-3","DOIUrl":"https://doi.org/10.1007/s10008-024-06020-3","url":null,"abstract":"<p>Here, we present the preparation and electrochemical evaluation of a vitamin B2-riboflavin (RF) sensor based on hierarchically structured zinc oxide (ZnO) of the wurtzite type. The highly crystalline ZnO obtained under hydrothermal conditions from a zinc peroxocomplex has the appearance of “micro-stars,” with an average size of 10 μm. Development of unusual morphology was accompanied by significant lattice defect introduction. Zinc oxide as an electroactive additive for carbon paste electrode was studied with electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV), which revealed excellent charge mobility and low resistivity. Electrochemical properties of the semiconductor allowed for development of riboflavin (RF) electrochemical sensor with an improved linearity range and a low limit of detection. The repeatability and stability of the sensor were at a satisfactory level for real-time measurements.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><p>Conventional hydrothermal treatment of zinc peroxocomplex provided star-shaped zinc oxide microparticles with metal-deficient lattice. Increased defect concentration facilitated charge mobility, which helped in developing of sensor for relevant vitamin.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"19 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-cost and stable Li1.5Al0.3Ti1.7Si0.2P2.8O12 glass–ceramics for lithium extraction from seawater 用于从海水中提取锂的低成本、稳定的 Li1.5Al0.3Ti1.7Si0.2P2.8O12 玻璃陶瓷
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-07-22 DOI: 10.1007/s10008-024-06015-0
Bo Chang, Yigang Wang, Yue Dai, Mingjie Du, Haoshen Zhou, Ping He

Rapid development of electronic and grid storage technologies based on lithium-ion batteries are leading to tight supply of lithium resources in the future. Extracting lithium from seawater can completely solve the problem of lithium resource shortage. An electro-deposition method based on a lithium superionic conductive solid-state electrolyte, Li1.5Al0.5Ge1.5(PO4)3 (LAGP), has been reported to obtain metallic lithium from seawater. However, expensive LAGP increases the cost of lithium extraction, while Li1.3Al0.3Ti1.7(PO4)3 (LATP) with relatively lower prices cannot meet the stable requirements. Herein, a low-cost, stable glass–ceramics, Li1.5Al0.3Ti1.7Si0.2P2.8O12 (LATSP), has been prepared for lithium extraction from seawater. The LATSP glass–ceramics show good selectivity towards Li+ and exhibit a high ionic conductivity of 3.98 × 10−4 S cm−1 at 22 °C. After soaking in simulated seawater, LATSP showed much better stability than LATP, comparable to LAGP. The resultant LATSP glass–ceramics was successfully employed in a seawater lithium extraction device, with a high lithium extraction Coulombic efficiency of 94.0%. Moreover, the LATSP exhibits an ionic conductivity of 2.80 × 10−4 S cm−1 and maintains a complete structure after 45 h of lithium extraction. This work presents an effective and practical Li-ion conducting membrane for lithium extraction from seawater.

Graphical Abstract

以锂离子电池为基础的电子和电网存储技术的快速发展导致未来锂资源供应紧张。从海水中提取锂可以彻底解决锂资源短缺的问题。据报道,一种基于锂超离子导电固态电解质 Li1.5Al0.5Ge1.5(PO4)3 (LAGP) 的电沉积方法可从海水中提取金属锂。然而,昂贵的 LAGP 增加了锂提取的成本,而价格相对较低的 Li1.3Al0.3Ti1.7(PO4)3 (LATP) 则无法满足稳定的要求。本文制备了一种低成本、稳定的玻璃陶瓷 Li1.5Al0.3Ti1.7Si0.2P2.8O12 (LATSP),用于从海水中提取锂。LATSP 玻璃陶瓷对 Li+ 具有良好的选择性,在 22 °C 时离子电导率高达 3.98 × 10-4 S cm-1。在模拟海水中浸泡后,LATSP 显示出比 LATP 更好的稳定性,可与 LAGP 相媲美。制备出的 LATSP 玻璃陶瓷被成功应用于海水锂萃取装置,锂萃取库仑效率高达 94.0%。此外,LATSP 的离子电导率为 2.80 × 10-4 S cm-1,并且在锂萃取 45 小时后仍能保持完整的结构。这项研究为从海水中提取锂提供了一种有效而实用的锂离子传导膜。
{"title":"Low-cost and stable Li1.5Al0.3Ti1.7Si0.2P2.8O12 glass–ceramics for lithium extraction from seawater","authors":"Bo Chang,&nbsp;Yigang Wang,&nbsp;Yue Dai,&nbsp;Mingjie Du,&nbsp;Haoshen Zhou,&nbsp;Ping He","doi":"10.1007/s10008-024-06015-0","DOIUrl":"10.1007/s10008-024-06015-0","url":null,"abstract":"<div><p>Rapid development of electronic and grid storage technologies based on lithium-ion batteries are leading to tight supply of lithium resources in the future. Extracting lithium from seawater can completely solve the problem of lithium resource shortage. An electro-deposition method based on a lithium superionic conductive solid-state electrolyte, Li<sub>1.5</sub>Al<sub>0.5</sub>Ge<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> (LAGP), has been reported to obtain metallic lithium from seawater. However, expensive LAGP increases the cost of lithium extraction, while Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> (LATP) with relatively lower prices cannot meet the stable requirements. Herein, a low-cost, stable glass–ceramics, Li<sub>1.5</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>Si<sub>0.2</sub>P<sub>2.8</sub>O<sub>12</sub> (LATSP), has been prepared for lithium extraction from seawater. The LATSP glass–ceramics show good selectivity towards Li<sup>+</sup> and exhibit a high ionic conductivity of 3.98 × 10<sup>−4</sup> S cm<sup>−1</sup> at 22 °C. After soaking in simulated seawater, LATSP showed much better stability than LATP, comparable to LAGP. The resultant LATSP glass–ceramics was successfully employed in a seawater lithium extraction device, with a high lithium extraction Coulombic efficiency of 94.0%. Moreover, the LATSP exhibits an ionic conductivity of 2.80 × 10<sup>−4</sup> S cm<sup>−1</sup> and maintains a complete structure after 45 h of lithium extraction. This work presents an effective and practical Li-ion conducting membrane for lithium extraction from seawater.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"28 11","pages":"4131 - 4139"},"PeriodicalIF":2.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical properties of polythiophene/iron dust composites synthesized using chemical oxidative polymerization 利用化学氧化聚合法合成的聚噻吩/铁粉复合材料的电化学特性
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-07-19 DOI: 10.1007/s10008-024-06008-z
Rizwan Ullah, Misbah Ullah, Nadia Khan, Maheen Rahim

The supercapacitive properties of the polythiophene (PTh) and its composites with iron dust synthesized by chemical oxidative polymerization are investigated. The UV–Vis, FTIR, TGA, XRD, SEM, and EDX were used to characterize the composites. Iron (Fe) dust is inserted into PTh matrix as confirmed by FTIR, UV–Vis, EDX, and XRD analysis. The TGA shows that composites have higher thermal stability than pure PTh. The SEM reveals highly porous and packed morphology of the composites as compared to pure PTh. Cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) show that a 1:1 ratio by mass of PTh and Fe composite displayed greater specific capacitance than pure PTh. The high specific capacitance of the composite material (428.46 F/g at 1 A/g) suggested that the material is suitable for supercapacitor electrode. Cyclic stability is also tested for 1000 cycles at a current density of 1 A/g with excellent retention of 88.89%.

Graphical Abstract

研究了通过化学氧化聚合法合成的聚噻吩(PTH)及其与铁粉的复合材料的超级电容特性。复合材料的表征采用了紫外可见光、傅立叶变换红外光谱、热重分析、X射线衍射、扫描电镜和电离辐射显微镜。傅立叶变换红外光谱(FTIR)、紫外可见光光谱(UV-Vis)、电离辐射 X 射线衍射(EDX)和 X 射线衍射(XRD)分析证实,铁(Fe)粉尘被加入到 PTh 基体中。热重分析表明,与纯 PTh 相比,复合材料具有更高的热稳定性。扫描电子显微镜(SEM)显示,与纯 PTh 相比,复合材料具有高多孔性和填充形态。循环伏安法(CV)、电静态充放电法(GCD)和电化学阻抗光谱法(EIS)显示,按质量比为 1:1 的 PTh 和铁复合材料比纯 PTh 显示出更大的比电容。复合材料的高比电容(1 A/g 时为 428.46 F/g)表明该材料适用于超级电容器电极。此外,在电流密度为 1 A/g 的条件下,还进行了 1000 次循环稳定性测试,结果表明其保持率达到 88.89%。
{"title":"Electrochemical properties of polythiophene/iron dust composites synthesized using chemical oxidative polymerization","authors":"Rizwan Ullah,&nbsp;Misbah Ullah,&nbsp;Nadia Khan,&nbsp;Maheen Rahim","doi":"10.1007/s10008-024-06008-z","DOIUrl":"10.1007/s10008-024-06008-z","url":null,"abstract":"<div><p>The supercapacitive properties of the polythiophene (PTh) and its composites with iron dust synthesized by chemical oxidative polymerization are investigated. The UV–Vis, FTIR, TGA, XRD, SEM, and EDX were used to characterize the composites. Iron (Fe) dust is inserted into PTh matrix as confirmed by FTIR, UV–Vis, EDX, and XRD analysis. The TGA shows that composites have higher thermal stability than pure PTh. The SEM reveals highly porous and packed morphology of the composites as compared to pure PTh. Cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) show that a 1:1 ratio by mass of PTh and Fe composite displayed greater specific capacitance than pure PTh. The high specific capacitance of the composite material (428.46 F/g at 1 A/g) suggested that the material is suitable for supercapacitor electrode. Cyclic stability is also tested for 1000 cycles at a current density of 1 A/g with excellent retention of 88.89%.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"28 11","pages":"4119 - 4129"},"PeriodicalIF":2.6,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical conductivity of pectin-based biopolymer electrolytes: search for a theoretical framework 果胶基生物聚合物电解质的导电性:寻找理论框架
IF 2.5 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-07-19 DOI: 10.1007/s10008-024-06018-x
Kailash Kumar, Ikhwan Syafiq Mohd Noor, Shri Prakash Pandey, Bhaskar Bhattacharya, Amit Saxena

This paper reports the successful fabrications of polymer electrolytes using biopolymer pectin in conjunction with ammonium azide (NaN3) salt by solution casting method. The ionic conductivity of these electrolytes was evaluated using EIS at room temperature. Among the compositions tested, the highest conductivity of 2.3 × 10−3 S cm−1 was observed to sample of 5 wt.% of NaN3. The charge carriers' concentration (n) and mobility (µ) were calculated to understand the conductivity behavior attributed to dispersoids. For the calculation of n and μ, two theoretical models were used, namely the Trukhan and the S&G Model. The correlations between conductivity, n and μ are discussed.

本文报告了利用生物聚合物果胶和叠氮化铵(NaN3)盐通过溶液浇铸法成功制备聚合物电解质的情况。这些电解质的离子电导率在室温下通过 EIS 进行了评估。在测试的成分中,NaN3 含量为 5 wt.% 的样品电导率最高,达到 2.3 × 10-3 S cm-1。通过计算电荷载流子浓度(n)和迁移率(μ),可以了解分散体的导电行为。在计算 n 和 μ 时,使用了两种理论模型,即 Trukhan 模型和 S&G 模型。讨论了电导率、n 和 μ 之间的相关性。
{"title":"Electrical conductivity of pectin-based biopolymer electrolytes: search for a theoretical framework","authors":"Kailash Kumar, Ikhwan Syafiq Mohd Noor, Shri Prakash Pandey, Bhaskar Bhattacharya, Amit Saxena","doi":"10.1007/s10008-024-06018-x","DOIUrl":"https://doi.org/10.1007/s10008-024-06018-x","url":null,"abstract":"<p>This paper reports the successful fabrications of polymer electrolytes using biopolymer pectin in conjunction with ammonium azide (NaN<sub>3</sub>) salt by solution casting method. The ionic conductivity of these electrolytes was evaluated using EIS at room temperature. Among the compositions tested, the highest conductivity of 2.3 × 10<sup>−3</sup> S cm<sup>−1</sup> was observed to sample of 5 wt.% of NaN<sub>3</sub>. The charge carriers' concentration (<i>n</i>) and mobility (<i>µ</i>) were calculated to understand the conductivity behavior attributed to dispersoids. For the calculation of <i>n</i> and <i>μ</i>, two theoretical models were used, namely the Trukhan and the S&amp;G Model. The correlations between conductivity, <i>n</i> and <i>μ</i> are discussed.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"7 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141738586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of coprecipitation and heating temperature on structural evolution and electrochemical performance of iron-based prussian blue analogs 共沉淀和加热温度对铁基普鲁士蓝类似物结构演变和电化学性能的影响
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-07-17 DOI: 10.1007/s10008-024-06005-2
Yuqing Liu, Wencheng Chu, Yaozu Xu, Zijian Yuan, Jiarui Liu, Haitao Zhao, Quan Liu, Wu Zhang

Iron-based Prussian blue analogs (PBAs) are synthesized using a modified coprecipitation approach at different temperatures to study the effect of coprecipitation reaction temperature on structural and electrochemical performance. The experimental results showed that the iron-based PBAs transferred from the cubic structure to the monoclinic phase as the temperature increased from 5 °C to 60 °C, with the former exhibiting rich-in-boundary morphology and the latter showing a well-defined cubic shape. The electrochemical performance of the samples is closely related to the structure: the PBAs with monoclinic structures exhibit a higher charge/discharge specific capacity than those of PBAs with cubic structures. In addition, the samples are further treated at 270 °C, new phases are probed, and the charge/discharge specific capacity for the HT-PB-60 sample is significantly improved by more than 36.15%.

采用改良共沉淀方法,在不同温度下合成了铁基普鲁士蓝类似物(PBAs),以研究共沉淀反应温度对结构和电化学性能的影响。实验结果表明,随着温度从 5 ℃升高到 60 ℃,铁基 PBA 从立方结构转变为单斜相,前者表现出丰富的边界形貌,后者则呈现出清晰的立方体形状。样品的电化学性能与结构密切相关:单斜结构的 PBA 比立方结构的 PBA 具有更高的充放电比容量。此外,样品在 270 ℃ 下进一步处理后,探究出了新的相,HT-PB-60 样品的充放电比容量显著提高了 36.15% 以上。
{"title":"The effect of coprecipitation and heating temperature on structural evolution and electrochemical performance of iron-based prussian blue analogs","authors":"Yuqing Liu,&nbsp;Wencheng Chu,&nbsp;Yaozu Xu,&nbsp;Zijian Yuan,&nbsp;Jiarui Liu,&nbsp;Haitao Zhao,&nbsp;Quan Liu,&nbsp;Wu Zhang","doi":"10.1007/s10008-024-06005-2","DOIUrl":"10.1007/s10008-024-06005-2","url":null,"abstract":"<div><p>Iron-based Prussian blue analogs (PBAs) are synthesized using a modified coprecipitation approach at different temperatures to study the effect of coprecipitation reaction temperature on structural and electrochemical performance. The experimental results showed that the iron-based PBAs transferred from the cubic structure to the monoclinic phase as the temperature increased from 5 °C to 60 °C, with the former exhibiting rich-in-boundary morphology and the latter showing a well-defined cubic shape. The electrochemical performance of the samples is closely related to the structure: the PBAs with monoclinic structures exhibit a higher charge/discharge specific capacity than those of PBAs with cubic structures. In addition, the samples are further treated at 270 °C, new phases are probed, and the charge/discharge specific capacity for the HT-PB-60 sample is significantly improved by more than 36.15%.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"28 11","pages":"4105 - 4118"},"PeriodicalIF":2.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141719245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Passivity breakdown of high-strength 7068 aluminum alloy in borate buffer solutions containing chlorides 高强度 7068 铝合金在含氯化物的硼酸盐缓冲溶液中的钝性破坏
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-07-17 DOI: 10.1007/s10008-024-06010-5
Ankur Kumar, Gajanan P. Chaudhari

Passivity breakdown mechanism of high-strength 7068 alloy is studied. Breakdown potential varied linearly with log aCl, pH, and square root of scan rate in potentiodynamic polarization tests. Mott-Schottky analysis showed that the dominant defect is cation vacancy. Passive layer characteristics like cation vacancy density and defect annihilation rate are determined. Critical cation vacancy density for pitting obtained from point defect model and the theoretical values are somewhat compatible. Chloride concentration of 0.01 M is too dilute to cause severe localized corrosion, whereas beyond 0.5 M, saturation is achieved in terms of breakdown potential and the cation vacancy density.

研究了高强度 7068 合金的钝化击穿机理。在电位极化测试中,击穿电位与对数 aCl-、pH 值和扫描速率的平方根呈线性变化。莫特-肖特基分析表明,主要缺陷是阳离子空位。确定了阳离子空位密度和缺陷湮灭率等被动层特征。根据点缺陷模型得出的点蚀临界阳离子空位密度与理论值基本吻合。氯化物浓度为 0.01 M 时,由于过于稀释而导致严重的局部腐蚀,而超过 0.5 M 时,就击穿电位和阳离子空位密度而言,则达到了饱和状态。
{"title":"Passivity breakdown of high-strength 7068 aluminum alloy in borate buffer solutions containing chlorides","authors":"Ankur Kumar,&nbsp;Gajanan P. Chaudhari","doi":"10.1007/s10008-024-06010-5","DOIUrl":"10.1007/s10008-024-06010-5","url":null,"abstract":"<div><p>Passivity breakdown mechanism of high-strength 7068 alloy is studied. Breakdown potential varied linearly with log a<sub>Cl</sub><sup>‒</sup>, pH, and square root of scan rate in potentiodynamic polarization tests. Mott-Schottky analysis showed that the dominant defect is cation vacancy. Passive layer characteristics like cation vacancy density and defect annihilation rate are determined. Critical cation vacancy density for pitting obtained from point defect model and the theoretical values are somewhat compatible. Chloride concentration of 0.01 M is too dilute to cause severe localized corrosion, whereas beyond 0.5 M, saturation is achieved in terms of breakdown potential and the cation vacancy density.\u0000</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"28 11","pages":"4087 - 4103"},"PeriodicalIF":2.6,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141719246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced graphene oxide film modified by tannic acid for high areal performance supercapacitors 单宁酸修饰的还原氧化石墨烯薄膜用于高性能超级电容器
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-07-16 DOI: 10.1007/s10008-024-05946-y
Wei Wang, Qiang Li, Yage Pan, Chuanren R. Ye, Xingnian Li, Yingyu Chen, Qiong Tang, Jun Xu, Yanwu Zhu

When graphene oxide (GO) was reduced, the stacking of reduced graphene oxide (rGO) sheets would lead to far lower of its specific capacitance than the theoretical value of graphene. In order to solve this problem, we use tannic acid (TA) to modify the rGO layered film by vacuum filtration of the mixture of GO and TA in solution, and then mild thermal reduction at 180℃. Due to the rich redox active functional groups of TA, the introduction of TA can not only alleviate the stacking of rGO sheets and promote the reduction process of GO at relatively low temperature, but also provide additional pseudocapacitance. When used for two-electrode symmetrical supercapacitor in 6 M KOH electrolyte, the TrGO-0.5 gives areal capacitance of 525 mF cm−2, and energy density of 72.2 uWh cm−2 at power density of 250.9 uW cm−2. It also has capacitance retention of 91.7% after 10,000 charging/discharging cycles at current density of 4 mA cm−2. The TrGO-0.5 based button cell with 2 M 1-ethyl-3-methylimidazole tetrafluoroborate (EMIMBF4) as electrolyte shows the practical application to light up three LEDs.

当氧化石墨烯(GO)被还原时,还原氧化石墨烯(rGO)薄片的堆叠会导致其比电容远低于石墨烯的理论值。为了解决这个问题,我们使用单宁酸(TA)对 rGO 层膜进行改性,方法是真空过滤溶液中的 GO 和 TA 混合物,然后在 180℃下进行温和的热还原。由于 TA 含有丰富的氧化还原活性官能团,TA 的引入不仅可以缓解 rGO 片层的堆叠,促进 GO 在相对较低温度下的还原过程,还能提供额外的伪电容。在 6 M KOH 电解液中用于双电极对称超级电容器时,TrGO-0.5 的面积电容为 525 mF cm-2,能量密度为 72.2 uWh cm-2,功率密度为 250.9 uW cm-2。在电流密度为 4 mA cm-2 时,经过 10,000 次充电/放电循环后,电容保持率为 91.7%。基于 TrGO-0.5 的纽扣电池以 2 M 1-ethyl-3-methylimidazole tetrafluoroborate (EMIMBF4) 为电解质,显示了点亮三个 LED 的实际应用。
{"title":"Reduced graphene oxide film modified by tannic acid for high areal performance supercapacitors","authors":"Wei Wang,&nbsp;Qiang Li,&nbsp;Yage Pan,&nbsp;Chuanren R. Ye,&nbsp;Xingnian Li,&nbsp;Yingyu Chen,&nbsp;Qiong Tang,&nbsp;Jun Xu,&nbsp;Yanwu Zhu","doi":"10.1007/s10008-024-05946-y","DOIUrl":"10.1007/s10008-024-05946-y","url":null,"abstract":"<div><p>When graphene oxide (GO) was reduced, the stacking of reduced graphene oxide (rGO) sheets would lead to far lower of its specific capacitance than the theoretical value of graphene. In order to solve this problem, we use tannic acid (TA) to modify the rGO layered film by vacuum filtration of the mixture of GO and TA in solution, and then mild thermal reduction at 180℃. Due to the rich redox active functional groups of TA, the introduction of TA can not only alleviate the stacking of rGO sheets and promote the reduction process of GO at relatively low temperature, but also provide additional pseudocapacitance. When used for two-electrode symmetrical supercapacitor in 6 M KOH electrolyte, the TrGO-0.5 gives areal capacitance of 525 mF cm<sup>−2</sup>, and energy density of 72.2 uWh cm<sup>−2</sup> at power density of 250.9 uW cm<sup>−2</sup>. It also has capacitance retention of 91.7% after 10,000 charging/discharging cycles at current density of 4 mA cm<sup>−2</sup>. The TrGO-0.5 based button cell with 2 M 1-ethyl-3-methylimidazole tetrafluoroborate (EMIMBF<sub>4</sub>) as electrolyte shows the practical application to light up three LEDs.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"28 11","pages":"4077 - 4086"},"PeriodicalIF":2.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141641694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile synthesis of integrated electrode-separator-electrolyte hydrogel for solid-state supercapacitor 用于固态超级电容器的集成电极分离器-电解质水凝胶的简易合成
IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Pub Date : 2024-07-16 DOI: 10.1007/s10008-024-06013-2
Yang Cao, Liming Qing, Junru Yao, Yan Wang, Ning Gu, Qiang Fu, Youyi Sun

A new integrated electrode-separator-electrolyte hydrogel is designed and prepared, which is composed of organic liquid crystal, polyvinyl alcohol (PVA), polyaniline (PANI), and reduced graphene oxide (rGO). The organic liquid crystal is introduced into PVA hydrogel, effectively improving compatibility between active materials and hydrogel matrix. The PANI active material is in situ polymerized in hydrogel to prepare PANI-double-network hydrogel. It simultaneously acts as electrode, separator, and electrolyte for assembling flexible solid-state supercapacitor. It obtains an area-specific capacitance of 160.2 mF/cm2 and a power density of 101.5 μW/cm2 with an energy density of 21.0 μWh/cm2. This work provides a new method to reduce interfacial resistance of electrode, separator, and electrolyte of flexible solid-state supercapacitor, further improving its electrochemical performance.

设计并制备了一种由有机液晶、聚乙烯醇(PVA)、聚苯胺(PANI)和还原氧化石墨烯(rGO)组成的新型集成电分离器-电解质水凝胶。有机液晶被引入 PVA 水凝胶中,有效提高了活性材料与水凝胶基质的相容性。PANI 活性材料在水凝胶中原位聚合,制备出 PANI 双网水凝胶。它可同时充当电极、隔膜和电解质,用于组装柔性固态超级电容器。它获得了 160.2 mF/cm2 的特定面积电容和 101.5 μW/cm2 的功率密度以及 21.0 μWh/cm2 的能量密度。这项研究为降低柔性固态超级电容器的电极、隔膜和电解液的界面电阻提供了一种新方法,从而进一步提高了其电化学性能。
{"title":"Facile synthesis of integrated electrode-separator-electrolyte hydrogel for solid-state supercapacitor","authors":"Yang Cao,&nbsp;Liming Qing,&nbsp;Junru Yao,&nbsp;Yan Wang,&nbsp;Ning Gu,&nbsp;Qiang Fu,&nbsp;Youyi Sun","doi":"10.1007/s10008-024-06013-2","DOIUrl":"10.1007/s10008-024-06013-2","url":null,"abstract":"<div><p>A new integrated electrode-separator-electrolyte hydrogel is designed and prepared, which is composed of organic liquid crystal, polyvinyl alcohol (PVA), polyaniline (PANI), and reduced graphene oxide (rGO). The organic liquid crystal is introduced into PVA hydrogel, effectively improving compatibility between active materials and hydrogel matrix. The PANI active material is in situ polymerized in hydrogel to prepare PANI-double-network hydrogel. It simultaneously acts as electrode, separator, and electrolyte for assembling flexible solid-state supercapacitor. It obtains an area-specific capacitance of 160.2 mF/cm<sup>2</sup> and a power density of 101.5 μW/cm<sup>2</sup> with an energy density of 21.0 μWh/cm<sup>2</sup>. This work provides a new method to reduce interfacial resistance of electrode, separator, and electrolyte of flexible solid-state supercapacitor, further improving its electrochemical performance.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"28 11","pages":"4067 - 4075"},"PeriodicalIF":2.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Solid State Electrochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1