Pub Date : 2024-09-07DOI: 10.1007/s10008-024-06055-6
De-xin Liu, Teng-yue Ma, Jin-ling An, Jin-rong Liu, Wei-yan He
Sodium-ion batteries are gaining broad application prospects in the field of new energy due to their high energy density, low cost, and good safety. However, the irreversible phase transformation of layered oxides during charge and discharge cycles limits their long-term cycling performance and practicality. This article utilizes the sol–gel method to prepare a stable Na0.7MnO2 (NMO) crystal phase and explores the effects of double doping with Fe and Co on the microstructure and electrochemical properties of Na0.7MnO2. The XRD pattern indicates that Fe and Co ions were successfully incorporated into the lattice of the Na-Mn–O system, stabilizing the P2 crystal phase and increasing the sodium layer spacing. Na0.7Co0.1Fe0.1Mn0.8O2(NCFMO) can deliver an initial capacity of 109.78 mAh/g, with an average operating voltage of 3 V, and retains a capacity retention rate of 96.31% after 100 cycles. Moreover, at a current density of 0.2 C and a voltage range of 1.5–4.5 V, the cycle charge–discharge specific capacity reaches 226.08 and 159.3 mAh/g, respectively, demonstrating excellent cycle and rate performance.
Graphical abstract
The cycle performance of the material Na0.7Co0.1Fe0.1Mn0.8O2 in different voltage ranges is tested in the figure, and it shows excellent performance in the voltage range of 1.5–4.5 V.
钠离子电池由于能量密度高、成本低、安全性好,在新能源领域有着广阔的应用前景。然而,层状氧化物在充放电循环过程中的不可逆相变限制了其长期循环性能和实用性。本文利用溶胶-凝胶法制备了稳定的 Na0.7MnO2 (NMO) 晶相,并探讨了铁和钴的双重掺杂对 Na0.7MnO2 微观结构和电化学性能的影响。XRD 图谱表明,Fe 和 Co 离子成功地掺入了 Na-Mn-O 体系的晶格中,稳定了 P2 晶相并增加了钠层间距。在平均工作电压为 3 V 时,Na0.7Co0.1Fe0.1Mn0.8O2(NCFMO)的初始容量为 109.78 mAh/g,循环 100 次后的容量保持率为 96.31%。此外,在 0.2 C 的电流密度和 1.5-4.5 V 的电压范围内,循环充放电比容量分别达到 226.08 和 159.3 mAh/g,表现出优异的循环性能和速率性能。图文摘要图中测试了 Na0.7Co0.1Fe0.1Mn0.8O2 材料在不同电压范围内的循环性能,在 1.5-4.5 V 的电压范围内表现出优异的性能。
{"title":"High-performance P2-type Na0.7Co0.1Fe0.1Mn0.8O2 cathode materials for sodium-ion batteries","authors":"De-xin Liu, Teng-yue Ma, Jin-ling An, Jin-rong Liu, Wei-yan He","doi":"10.1007/s10008-024-06055-6","DOIUrl":"10.1007/s10008-024-06055-6","url":null,"abstract":"<div><p>Sodium-ion batteries are gaining broad application prospects in the field of new energy due to their high energy density, low cost, and good safety. However, the irreversible phase transformation of layered oxides during charge and discharge cycles limits their long-term cycling performance and practicality. This article utilizes the sol–gel method to prepare a stable Na<sub>0.7</sub>MnO<sub>2</sub> (NMO) crystal phase and explores the effects of double doping with Fe and Co on the microstructure and electrochemical properties of Na<sub>0.7</sub>MnO<sub>2</sub>. The XRD pattern indicates that Fe and Co ions were successfully incorporated into the lattice of the Na-Mn–O system, stabilizing the P2 crystal phase and increasing the sodium layer spacing. Na<sub>0.7</sub>Co<sub>0.1</sub>Fe<sub>0.1</sub>Mn<sub>0.8</sub>O<sub>2</sub>(NCFMO) can deliver an initial capacity of 109.78 mAh/g, with an average operating voltage of 3 V, and retains a capacity retention rate of 96.31% after 100 cycles. Moreover, at a current density of 0.2 C and a voltage range of 1.5–4.5 V, the cycle charge–discharge specific capacity reaches 226.08 and 159.3 mAh/g, respectively, demonstrating excellent cycle and rate performance.</p><h3>Graphical abstract</h3><p>The cycle performance of the material Na<sub>0.7</sub>Co<sub>0.1</sub>Fe<sub>0.1</sub>Mn<sub>0.8</sub>O<sub>2</sub> in different voltage ranges is tested in the figure, and it shows excellent performance in the voltage range of 1.5–4.5 V.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"323 - 332"},"PeriodicalIF":2.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cold-sprayed Al-based coatings are widely used in corrosion protection fields, but they are poor in pitting resistance. In order to enhance the pitting resistance of Al-based coatings, dendritic Ni and irregular Cr powders are co-doped into Al powders to prepare Al-Ni–Cr composite coatings by cold spraying. Their structure, composition, and corrosion behavior are characterized by optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), dynamic potential polarization, and electrochemical impedance spectroscopy. The results show that the Al-Ni-30Cr coating exhibits the best corrosion resistance with high Epit, small icorr and ipass, large Rct, and superior self-healing ability. The protective corrosion products rapidly form in the early stage of corrosion, which can effectively fill corrosion pits and intrinsic pores in coatings, preventing further penetration of corrosive media and the continuation of auto-catalytic corrosion reaction of Cl− in the pits. The excellent anti-corrosion performance and long service life of the Al-Ni-30Cr coating are attributed to the self-healing ability and the synergistic shielding effect of nickel and chromium.
{"title":"Enhanced pitting resistance of Al-based coating by synergistic passivation effect from different shapes of Ni/Cr powders","authors":"Binkai Yuan, Liuyan Zhang, Zhaokang Han, Luliang Mo, Yiying Zhang, Gengzhe Shen, Qian Lin, Guibin Tan","doi":"10.1007/s10008-024-06058-3","DOIUrl":"10.1007/s10008-024-06058-3","url":null,"abstract":"<p>Cold-sprayed Al-based coatings are widely used in corrosion protection fields, but they are poor in pitting resistance. In order to enhance the pitting resistance of Al-based coatings, dendritic Ni and irregular Cr powders are co-doped into Al powders to prepare Al-Ni–Cr composite coatings by cold spraying. Their structure, composition, and corrosion behavior are characterized by optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), dynamic potential polarization, and electrochemical impedance spectroscopy. The results show that the Al-Ni-30Cr coating exhibits the best corrosion resistance with high <i>E</i><sub>pit</sub>, small <i>i</i><sub>corr</sub> and <i>i</i><sub>pass</sub>, large <i>R</i><sub>ct</sub>, and superior self-healing ability. The protective corrosion products rapidly form in the early stage of corrosion, which can effectively fill corrosion pits and intrinsic pores in coatings, preventing further penetration of corrosive media and the continuation of auto-catalytic corrosion reaction of Cl<sup>−</sup> in the pits. The excellent anti-corrosion performance and long service life of the Al-Ni-30Cr coating are attributed to the self-healing ability and the synergistic shielding effect of nickel and chromium.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"275 - 288"},"PeriodicalIF":2.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1007/s10008-024-06057-4
Xiangshan Hou, Jinxue Song, Shijun Xu, Yi He, Yang Bai, Yi Sun, Han Liu, Qing Yuan, Quangang Chen, Kaijun Wei
In this work, pulsed electrodeposition was utilized to successfully create Ni–B/ZrPP composite coatings on N80 steel plates. Investigations were conducted into how zirconium phenylphosphonate (ZrPP) nanosheets affected the mechanical characteristics, corrosion resistance, and surface morphology of Ni–B metal coatings. The results show that the surface of Ni–B/ZrPP nanocomposite coating is dense, and the defects of the original Ni–B coating are improved by ZrPP. In particular, with a flatter wear trajectory and a smaller wear volume, the composite coating containing 1.0 g/L of ZrPP had the maximum microhardness (1043 Hv) and an average COF of 0.350. At this point in time, the composite coating had the biggest total impedance (64,500 Ω⋅cm2), the lowest corrosion rate (0.0256 mm/year), the highest corrosion potential (− 0.332 V), the lowest corrosion current density (2.18 µA/cm2), and the best corrosion resistance.
{"title":"Zirconium phenylphosphonate reinforced Ni–B composite coatings: comprehensive analysis of enhanced mechanical properties and corrosion resistance","authors":"Xiangshan Hou, Jinxue Song, Shijun Xu, Yi He, Yang Bai, Yi Sun, Han Liu, Qing Yuan, Quangang Chen, Kaijun Wei","doi":"10.1007/s10008-024-06057-4","DOIUrl":"10.1007/s10008-024-06057-4","url":null,"abstract":"<div><p>In this work, pulsed electrodeposition was utilized to successfully create Ni–B/ZrPP composite coatings on N80 steel plates. Investigations were conducted into how zirconium phenylphosphonate (ZrPP) nanosheets affected the mechanical characteristics, corrosion resistance, and surface morphology of Ni–B metal coatings. The results show that the surface of Ni–B/ZrPP nanocomposite coating is dense, and the defects of the original Ni–B coating are improved by ZrPP. In particular, with a flatter wear trajectory and a smaller wear volume, the composite coating containing 1.0 g/L of ZrPP had the maximum microhardness (1043 Hv) and an average COF of 0.350. At this point in time, the composite coating had the biggest total impedance (64,500 Ω⋅cm<sup>2</sup>), the lowest corrosion rate (0.0256 mm/year), the highest corrosion potential (− 0.332 V), the lowest corrosion current density (2.18 µA/cm<sup>2</sup>), and the best corrosion resistance.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"289 - 306"},"PeriodicalIF":2.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1007/s10008-024-06052-9
Maria de Almeida Silva, Daniela Martins Fernandes de Oliveira, César Ricardo Teixeira Tarley, Mariana Gava Segatelli
This paper demonstrated the feasibility of phenyl-rich oxycarbide (SiCO) ceramics as electrode materials in voltammetric measures of carbendazim using cyclic voltammetry. Ceramics were prepared from pyrolysis of poly(dimethylsiloxane-co-diphenyl-siloxane) divinyl terminated, crosslinked with divinylbenzene, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, and in the absence of crosslinking agent, using argon atmosphere up to 1500 °C during 1, 3, and 5 h. Silicon carbide (SiC) crystallites and graphitic carbon domains were produced in the non-crystalline matrices and the phase crystallization was improved as the annealing time increased, mainly in the presence of organic crosslinker. SiCO-based electrode materials were used as a paste (ceramic and mineral oil in 80:20 wt.% proportion), and carbendazim’s voltammetric behavior was compared to commercial glassy carbon electrode (GCE). The electrochemical performance of ceramic electrodes showed a dependence on both polymer chemistry and annealing time, in which organic crosslinker-derived SiCO at 3h annealing displayed the best voltammetric response for carbendazim when compared to other ceramics and commercial GCE. Larger semiconductive SiC crystallites, better graphitization of residual carbon phase, lower charge transfer resistance and higher porosity developed into ceramics derived from organic crosslinker played a crucial role on electrochemical performance of SiCO materials. Apart from the improved performance for carbendazim detection, the unmodified produced ceramics, and their direct use as electrode materials, bring substantial advantages for the preparation of sensors avoiding time-consuming and skills to properly prepare, as usually observed in the modified electrodes.
{"title":"Investigation on the performance of phenyl-rich silicon oxycarbide (SiCO) ceramics as electrode material for voltammetric detection of carbendazim","authors":"Maria de Almeida Silva, Daniela Martins Fernandes de Oliveira, César Ricardo Teixeira Tarley, Mariana Gava Segatelli","doi":"10.1007/s10008-024-06052-9","DOIUrl":"https://doi.org/10.1007/s10008-024-06052-9","url":null,"abstract":"<p>This paper demonstrated the feasibility of phenyl-rich oxycarbide (SiCO) ceramics as electrode materials in voltammetric measures of carbendazim using cyclic voltammetry. Ceramics were prepared from pyrolysis of poly(dimethylsiloxane-co-diphenyl-siloxane) divinyl terminated, crosslinked with divinylbenzene, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, and in the absence of crosslinking agent, using argon atmosphere up to 1500 °C during 1, 3, and 5 h. Silicon carbide (SiC) crystallites and graphitic carbon domains were produced in the non-crystalline matrices and the phase crystallization was improved as the annealing time increased, mainly in the presence of organic crosslinker. SiCO-based electrode materials were used as a paste (ceramic and mineral oil in 80:20 wt.% proportion), and carbendazim’s voltammetric behavior was compared to commercial glassy carbon electrode (GCE). The electrochemical performance of ceramic electrodes showed a dependence on both polymer chemistry and annealing time, in which organic crosslinker-derived SiCO at 3h annealing displayed the best voltammetric response for carbendazim when compared to other ceramics and commercial GCE. Larger semiconductive SiC crystallites, better graphitization of residual carbon phase, lower charge transfer resistance and higher porosity developed into ceramics derived from organic crosslinker played a crucial role on electrochemical performance of SiCO materials. Apart from the improved performance for carbendazim detection, the unmodified produced ceramics, and their direct use as electrode materials, bring substantial advantages for the preparation of sensors avoiding time-consuming and skills to properly prepare, as usually observed in the modified electrodes.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"17 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-05DOI: 10.1007/s10008-024-06063-6
Ah-yeong Lee, Rin Jung, JeongEun Yoo, Kiyoung Lee
TiO2 nanotubes have been numerously utilized in photoelectrochemical field due to its intrinsic and structural advantages. However, TiO2 nanotubes anodized in organic electrolyte endemically involve carbon-rich layers inside of nanotubes, frequently interrupting charge transfers and photocatalytic reactions. In this study, we investigated some different treatments of TiO2 nanotubes to eliminate carbon-rich layers from anodic TiO2 nanotubes. Firstly, photoelectrochemical properties of TiO2 with various thickness were addressed, and the TiO2 nanotubes with 3.65 µm were selected for the further treatments. Subsequently, the morphological properties of TiO2 were optimized to be utilized as a photoanode through the different treatment methods. In conclusion, the optimal TiO2 nanotubes treated by mechanical grinding and chemical etching process behaved as an efficient photoanode with enhanced photocurrent of 0.2 mA/cm2, IPCE of 59% at 350 nm and lowered charge transfer resistance of 983 Ω.
{"title":"Facile treatment to eliminate carbon-rich layer in TiO2 nanotube photoanodes","authors":"Ah-yeong Lee, Rin Jung, JeongEun Yoo, Kiyoung Lee","doi":"10.1007/s10008-024-06063-6","DOIUrl":"10.1007/s10008-024-06063-6","url":null,"abstract":"<div><p>TiO<sub>2</sub> nanotubes have been numerously utilized in photoelectrochemical field due to its intrinsic and structural advantages. However, TiO<sub>2</sub> nanotubes anodized in organic electrolyte endemically involve carbon-rich layers inside of nanotubes, frequently interrupting charge transfers and photocatalytic reactions. In this study, we investigated some different treatments of TiO<sub>2</sub> nanotubes to eliminate carbon-rich layers from anodic TiO<sub>2</sub> nanotubes. Firstly, photoelectrochemical properties of TiO<sub>2</sub> with various thickness were addressed, and the TiO<sub>2</sub> nanotubes with 3.65 µm were selected for the further treatments. Subsequently, the morphological properties of TiO<sub>2</sub> were optimized to be utilized as a photoanode through the different treatment methods. In conclusion, the optimal TiO<sub>2</sub> nanotubes treated by mechanical grinding and chemical etching process behaved as an efficient photoanode with enhanced photocurrent of 0.2 mA/cm<sup>2</sup>, IPCE of 59% at 350 nm and lowered charge transfer resistance of 983 Ω.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 4","pages":"1491 - 1498"},"PeriodicalIF":2.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon-based materials have been widely used in anodes for sodium metal batteries (SMBs). Surface modification of carbon-based materials is an effective method to improve the de-embedding behavior of sodium metal, which can increase the battery life, whereas SMBs need simpler and more efficient modification methods for practical-grade application. In this paper, novel disintegrated carbon nanofibers (D-CNFs) with rough surfaces were obtained by plasma treatment. D-CNFs exhibited highly reversible sodium deposition characteristics and were able to operate at a low polarization potential of 0.023 V for 800 h. The coulombic efficiency of the D-CNFs was stabilized above 97% after the third cycle. This excellent electrochemical performance is attributed to the disintegration of CNFs as a result of the plasma treatment. The CNFs expose richer vacancies, providing more active sites for sodium metal deposition. This implies that the prepared D-CNFs have better sodium storage properties. Meanwhile, this surface modification facilitates the further application of carbon-based materials in SMBs.
{"title":"Disintegrated carbon nanofibers derived from plasma treatment for highly stable sodium metal batteries","authors":"Qiaorui Jiang, Jianxiang Luo, Tongshuo Zhang, Chengkai Liang, Yuwen Zhao, Tingting Liu, Zilong Li, Jun Wang, Yong Zheng, Zhijia Zhang","doi":"10.1007/s10008-024-06059-2","DOIUrl":"10.1007/s10008-024-06059-2","url":null,"abstract":"<div><p>Carbon-based materials have been widely used in anodes for sodium metal batteries (SMBs). Surface modification of carbon-based materials is an effective method to improve the de-embedding behavior of sodium metal, which can increase the battery life, whereas SMBs need simpler and more efficient modification methods for practical-grade application. In this paper, novel disintegrated carbon nanofibers (D-CNFs) with rough surfaces were obtained by plasma treatment. D-CNFs exhibited highly reversible sodium deposition characteristics and were able to operate at a low polarization potential of 0.023 V for 800 h. The coulombic efficiency of the D-CNFs was stabilized above 97% after the third cycle. This excellent electrochemical performance is attributed to the disintegration of CNFs as a result of the plasma treatment. The CNFs expose richer vacancies, providing more active sites for sodium metal deposition. This implies that the prepared D-CNFs have better sodium storage properties. Meanwhile, this surface modification facilitates the further application of carbon-based materials in SMBs.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"377 - 384"},"PeriodicalIF":2.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-02DOI: 10.1007/s10008-024-06060-9
Omar Ait Layachi, Abderrazzak Boudouma, Hala Hrir, Sara Azmi, Yousra Fariat, Imane Battiwa, Asmaa Moujib, El Mati Khoumri
In this study, we successfully synthesized semiconductor thin films of Cu2FeSnS4 (CFTS) using the electrodeposition method. We delved into the mechanisms of electrochemical nucleation and growth, shedding light on these processes. Utilizing potentiostatic current-density-time transient measurements and in situ electrochemical impedance spectroscopy (EIS), we explored the nucleation and growth mechanisms of Cu2FeSnS4 (CFTS) thin films, deposited from an aqueous solution under various applied potentials. Cyclic voltammetry was employed to investigate the electrochemical behaviors of Cu-Fe-Sn-S precursors in a trisodium citrate medium. Chronoamperometry and EIS analysis were conducted to delve deeply into the deposition mechanism and surface electrode-electrolyte phenomena. Furthermore, the study explored the impact of Fe2+ concentration on structural morphology and optical properties. X-ray diffraction and Raman analysis unveiled the stannite structure within the obtained Cu2FeSnS4 thin film, alongside the presence of secondary phases in the CFTS elaborated at both lower and higher concentrations of Fe2+. SEM images reveal that the sulfurized CFTS C2 (0.01 M of Fe2+) sample has a surface morphology with irregular particles. EDS mapping and EDX analysis confirm that the elemental concentrations of Cu, Fe, Sn, and S in the CFTS C2 thin films closely match the desired stoichiometry for Cu2FeSnS4. UV-visible spectroscopy revealed a suitable bandgap energy within the range of 1.5 eV for the film deposited with a Fe2+ concentration of 0.01 M.
Graphical Abstract
在这项研究中,我们采用电沉积法成功合成了 Cu2FeSnS4(CFTS)半导体薄膜。我们深入研究了电化学成核和生长机制,揭示了这些过程。利用恒电位电流密度-时间瞬态测量和原位电化学阻抗谱(EIS),我们探索了在不同应用电位下从水溶液中沉积的 Cu2FeSnS4 (CFTS) 薄膜的成核和生长机制。我们采用循环伏安法研究了 Cu-Fe-Sn-S 前驱体在柠檬酸三钠介质中的电化学行为。为了深入研究沉积机理和表面电极-电解质现象,还进行了时变测量和 EIS 分析。此外,研究还探讨了 Fe2+ 浓度对结构形态和光学特性的影响。X 射线衍射和拉曼分析揭示了所获得的 Cu2FeSnS4 薄膜中的锡石结构,以及在较低和较高的 Fe2+ 浓度下制备的 CFTS 中存在的次生相。SEM 图像显示,硫化 CFTS C2(0.01 M Fe2+)样品的表面形态为不规则颗粒。EDS 图谱和 EDX 分析证实,CFTS C2 薄膜中的铜、铁、锡和 S 元素浓度非常符合 Cu2FeSnS4 的理想化学计量。紫外可见光谱显示,在 Fe2+ 浓度为 0.01 M 时沉积的薄膜具有 1.5 eV 范围内的合适带隙能。
{"title":"Electrodeposition of Cu2FeSnS4 thin films for solar cell applications: mechanism of deposition and influence of Fe2+ concentration","authors":"Omar Ait Layachi, Abderrazzak Boudouma, Hala Hrir, Sara Azmi, Yousra Fariat, Imane Battiwa, Asmaa Moujib, El Mati Khoumri","doi":"10.1007/s10008-024-06060-9","DOIUrl":"10.1007/s10008-024-06060-9","url":null,"abstract":"<div><p>In this study, we successfully synthesized semiconductor thin films of Cu<sub>2</sub>FeSnS<sub>4</sub> (CFTS) using the electrodeposition method. We delved into the mechanisms of electrochemical nucleation and growth, shedding light on these processes. Utilizing potentiostatic current-density-time transient measurements and in situ electrochemical impedance spectroscopy (EIS), we explored the nucleation and growth mechanisms of Cu<sub>2</sub>FeSnS<sub>4</sub> (CFTS) thin films, deposited from an aqueous solution under various applied potentials. Cyclic voltammetry was employed to investigate the electrochemical behaviors of Cu-Fe-Sn-S precursors in a trisodium citrate medium. Chronoamperometry and EIS analysis were conducted to delve deeply into the deposition mechanism and surface electrode-electrolyte phenomena. Furthermore, the study explored the impact of Fe<sup>2+</sup> concentration on structural morphology and optical properties. X-ray diffraction and Raman analysis unveiled the stannite structure within the obtained Cu<sub>2</sub>FeSnS<sub>4</sub> thin film, alongside the presence of secondary phases in the CFTS elaborated at both lower and higher concentrations of Fe<sup>2+</sup>. SEM images reveal that the sulfurized CFTS C2 (0.01 M of Fe<sup>2+</sup>) sample has a surface morphology with irregular particles. EDS mapping and EDX analysis confirm that the elemental concentrations of Cu, Fe, Sn, and S in the CFTS C2 thin films closely match the desired stoichiometry for Cu<sub>2</sub>FeSnS<sub>4</sub>. UV-visible spectroscopy revealed a suitable bandgap energy within the range of 1.5 eV for the film deposited with a Fe<sup>2+</sup> concentration of 0.01 M.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"263 - 274"},"PeriodicalIF":2.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1007/s10008-024-06046-7
Jeovana C. Pacheco, Scarllett L. Lima, Liying Liu, Alan S. de Menezes, Marco A. S. Garcia, Flávio S. Damos, Rita C. S. Luz
2,4,5-Trihydroxybenzoic acid (THBA) is a synthetic antioxidant used in the food industry that has attracted attention due to the potential risks it may pose to human health; thus, ensuring compliance with legal standards is essential. In this regard, the present study describes the development of an electrochemical platform based on a carbon-printed electrode (SPE) modified with titanium (Ti)-based nanowires (NWs) for THBA detection. However, the synthesis of Ti-based NWs involved varying copper (Cu) quantities, resulting in few morphological changes compared to the unmodified counterpart. Interestingly, the syntheses were carried out without organic stabilizers, resulting in the preparation of cleaner nanostructures; such an approach was planned to enhance the electrochemical sensing performance, reduce costs, and promote environmental friendliness. Moreover, it improves charge transfer efficiency, making the synthesis process ideal for sustainable nanomaterial production. XRD analyses indicate that the addition of the metal affected the structure of the Ti-based NWs. Also, SEM images revealed that the unmodified SPE exhibited a smooth surface, whereas the Cu-modified Ti-based NWs/SPE showed a dense network of such material. In addition, the electrochemical studies have shown an enhancing of the electrocatalytic properties after the introduction of copper. Under optimized conditions, it was found that THBA can be determined over a wide working range from 500 pmol L−1 to 5000 µmol L−1. The applicability of the sensor was verified by detecting THBA in soybean oil and sunflower oil samples, showing excellent recovery values between 96.30 and 101.87%, suggesting that the proposed sensor demonstrates good accuracy and can be successfully applied to edible oil samples.
{"title":"Stabilizer-free preparation of titanium-based nanowires combined with copper for sensitive detection of 2,4,5-trihydroxybenzoic acid: application in edible oil samples","authors":"Jeovana C. Pacheco, Scarllett L. Lima, Liying Liu, Alan S. de Menezes, Marco A. S. Garcia, Flávio S. Damos, Rita C. S. Luz","doi":"10.1007/s10008-024-06046-7","DOIUrl":"10.1007/s10008-024-06046-7","url":null,"abstract":"<div><p>2,4,5-Trihydroxybenzoic acid (THBA) is a synthetic antioxidant used in the food industry that has attracted attention due to the potential risks it may pose to human health; thus, ensuring compliance with legal standards is essential. In this regard, the present study describes the development of an electrochemical platform based on a carbon-printed electrode (SPE) modified with titanium (Ti)-based nanowires (NWs) for THBA detection. However, the synthesis of Ti-based NWs involved varying copper (Cu) quantities, resulting in few morphological changes compared to the unmodified counterpart. Interestingly, the syntheses were carried out without organic stabilizers, resulting in the preparation of cleaner nanostructures; such an approach was planned to enhance the electrochemical sensing performance, reduce costs, and promote environmental friendliness. Moreover, it improves charge transfer efficiency, making the synthesis process ideal for sustainable nanomaterial production. XRD analyses indicate that the addition of the metal affected the structure of the Ti-based NWs. Also, SEM images revealed that the unmodified SPE exhibited a smooth surface, whereas the Cu-modified Ti-based NWs/SPE showed a dense network of such material. In addition, the electrochemical studies have shown an enhancing of the electrocatalytic properties after the introduction of copper. Under optimized conditions, it was found that THBA can be determined over a wide working range from 500 pmol L<sup>−1</sup> to 5000 µmol L<sup>−1</sup>. The applicability of the sensor was verified by detecting THBA in soybean oil and sunflower oil samples, showing excellent recovery values between 96.30 and 101.87%, suggesting that the proposed sensor demonstrates good accuracy and can be successfully applied to edible oil samples.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"249 - 262"},"PeriodicalIF":2.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1007/s10008-024-06049-4
Shubhangi Shukla, Sachin Kadian, Roger J. Narayan
The conversion of byproduct fly ash into beneficial materials has garnered significant attention over the years. Due to its unique properties, fly ash is widely utilized to modify the surface of carbon materials, enhancing porosity, conductivity, surface area, lithium storage capacity, cycling stability, and providing additional redox activity. It is also employed in electrocatalytic reactions (e.g., HER and ORR), galvanization, electrocoagulation of heavy metal pollutants, and as a composite cement filler. Recent findings suggest fly ash-integrated materials and surfaces significantly improve early-age mechanical strength and delay deformation. However, there are only a few reports explaining this aspect. This review discusses the electrochemical and physicochemical properties of fly ash and its role as a surface-modifying substance on an industrial scale.
多年来,将副产品粉煤灰转化为有益材料的研究一直备受关注。粉煤灰具有独特的性质,因此被广泛用于改性碳材料的表面,从而提高孔隙率、导电性、表面积、锂存储容量、循环稳定性,并提供额外的氧化还原活性。粉煤灰还可用于电催化反应(如 HER 和 ORR)、电镀、重金属污染物电凝,以及用作复合水泥填料。最新研究结果表明,粉煤灰集成材料和表面可显著提高早期机械强度并延缓变形。然而,只有少数报告对这方面进行了解释。本综述讨论了粉煤灰的电化学和物理化学特性,以及粉煤灰在工业规模上作为表面改性物质的作用。
{"title":"Electrochemical applications of fly ash as surface modifier: sustainable mitigation of industrial residue","authors":"Shubhangi Shukla, Sachin Kadian, Roger J. Narayan","doi":"10.1007/s10008-024-06049-4","DOIUrl":"https://doi.org/10.1007/s10008-024-06049-4","url":null,"abstract":"<p>The conversion of byproduct fly ash into beneficial materials has garnered significant attention over the years. Due to its unique properties, fly ash is widely utilized to modify the surface of carbon materials, enhancing porosity, conductivity, surface area, lithium storage capacity, cycling stability, and providing additional redox activity. It is also employed in electrocatalytic reactions (e.g., HER and ORR), galvanization, electrocoagulation of heavy metal pollutants, and as a composite cement filler. Recent findings suggest fly ash-integrated materials and surfaces significantly improve early-age mechanical strength and delay deformation. However, there are only a few reports explaining this aspect. This review discusses the electrochemical and physicochemical properties of fly ash and its role as a surface-modifying substance on an industrial scale.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"57 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The designing cathode materials of aqueous zinc-ion batteries (AZIBs) with high performance is significant challenges in the development of AZIBs. Metal–organic frameworks (MOFs) are considered prime candidates for cathode modification and high-performance cathode materials. Herein, a two-step hydrothermal method was employed to fabricate a bimetallic metal–organic framework MnCo-MOF on carbon cloth. The resulting precursor was calcined to produce a cathode composite MnCo2O4. As a cathode for AZIBs, MnCo2O4/CC exhibited an average specific capacity of 280.6 mAh/g. Upon completion of the cycle at a current density of 0.2 A/g, the specific capacity measured 275.1 mAh/g (retaining 98% of its initial capacity), while maintaining a coulombic efficiency of approximately 98.5%. The excellent cycling performance, superior specific capacity, and superb coulombic efficiency are ascribed to the concerted influence of the polymetallic ions. The micro and nano scale interconnected block structure of MnCo2O4 facilitates interaction between electrode substance and the electrolyte. This research broadens the selection of cathode material and offers valuable guidance for designing high-performance cathode materials for AZIBs.
{"title":"Bimetallic MOF-derived manganese-cobalt composite oxide as high-performance zinc-ion batteries cathode","authors":"Bingzhe Ma, Youfeng Zhang, Yaping Feng, Sikai Wang, Yinling Wang, Wenzhu Zhang","doi":"10.1007/s10008-024-06050-x","DOIUrl":"10.1007/s10008-024-06050-x","url":null,"abstract":"<div><p>The designing cathode materials of aqueous zinc-ion batteries (AZIBs) with high performance is significant challenges in the development of AZIBs. Metal–organic frameworks (MOFs) are considered prime candidates for cathode modification and high-performance cathode materials. Herein, a two-step hydrothermal method was employed to fabricate a bimetallic metal–organic framework MnCo-MOF on carbon cloth. The resulting precursor was calcined to produce a cathode composite MnCo<sub>2</sub>O<sub>4</sub>. As a cathode for AZIBs, MnCo<sub>2</sub>O<sub>4</sub>/CC exhibited an average specific capacity of 280.6 mAh/g. Upon completion of the cycle at a current density of 0.2 A/g, the specific capacity measured 275.1 mAh/g (retaining 98% of its initial capacity), while maintaining a coulombic efficiency of approximately 98.5%. The excellent cycling performance, superior specific capacity, and superb coulombic efficiency are ascribed to the concerted influence of the polymetallic ions. The micro and nano scale interconnected block structure of MnCo<sub>2</sub>O<sub>4</sub> facilitates interaction between electrode substance and the electrolyte. This research broadens the selection of cathode material and offers valuable guidance for designing high-performance cathode materials for AZIBs.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 1","pages":"239 - 248"},"PeriodicalIF":2.6,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}