Pub Date : 2020-01-01DOI: 10.1109/MEMS46641.2020.9056141
Wan Zhou, Guanglei Fu, Xiujun Li
A new type of microfluidic platforms, photothermal bar-chart chip (PT-Chip), has been developed using the on-chip nanomaterial-mediated photothermal effect as the novel tunable microfluidic driving force to drive ink bar charts in a visual quantitative readout fashion. This is the first time to exploit the nanomaterial-mediated photothermal effect for microfluidic pumping and also serves as the first report of the photothermal bar-chart microfluidic platform with wide microfluidic applications, especially for visual quantitative point-of-care detection.
{"title":"On-Demand Photothermal Bar-Chart Microfluidic Platform Using On-Chip Nanomaterial-Mediated Photothermal Effect as the Microfluidic Driving Force","authors":"Wan Zhou, Guanglei Fu, Xiujun Li","doi":"10.1109/MEMS46641.2020.9056141","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056141","url":null,"abstract":"A new type of microfluidic platforms, photothermal bar-chart chip (PT-Chip), has been developed using the on-chip nanomaterial-mediated photothermal effect as the novel tunable microfluidic driving force to drive ink bar charts in a visual quantitative readout fashion. This is the first time to exploit the nanomaterial-mediated photothermal effect for microfluidic pumping and also serves as the first report of the photothermal bar-chart microfluidic platform with wide microfluidic applications, especially for visual quantitative point-of-care detection.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"1 1","pages":"125-128"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83682472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1109/MEMS46641.2020.9056216
S. Schwartz, O. Brand, L. Beardslee
We present a novel micromachined chemical multisensor that simultaneously detects mass and dielectric property changes in the same polymeric sensing film. The multisensor is comprised of a cantilever-type, mass-sensitive resonant sensor with a semicircular annulus and an embedded on-resonator interdigitated electrode structure for capacitive sensing. The resonant chemical sensor utilizes a high-Q in-plane resonance mode enabling sub-parts per million limits of detection for volatile organic compounds. The embedded capacitive sensor enables the discrimination between toluene and methanol by evaluating the ratio between the mass-sensitive and capacitive sensor signal.
{"title":"Micromachined Mass-Sensitive and Capacitive Chemical Multisensor Using Single Polymeric Sensing Film","authors":"S. Schwartz, O. Brand, L. Beardslee","doi":"10.1109/MEMS46641.2020.9056216","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056216","url":null,"abstract":"We present a novel micromachined chemical multisensor that simultaneously detects mass and dielectric property changes in the same polymeric sensing film. The multisensor is comprised of a cantilever-type, mass-sensitive resonant sensor with a semicircular annulus and an embedded on-resonator interdigitated electrode structure for capacitive sensing. The resonant chemical sensor utilizes a high-Q in-plane resonance mode enabling sub-parts per million limits of detection for volatile organic compounds. The embedded capacitive sensor enables the discrimination between toluene and methanol by evaluating the ratio between the mass-sensitive and capacitive sensor signal.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"53 1","pages":"721-724"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84497667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1109/MEMS46641.2020.9056324
Yao Yu, M. Rinaldi
In this paper, a micro-acoustic RF circulator with novel “quad” configuration is reported. Four micro-acoustic filters are periodically modulated by RF switches to break the reciprocity. The use of high-Q micro-acoustic filters significantly reduces the modulation frequency (14 MHz) compared to previous demonstrations based on transmission lines (e.g., 333 MHz in [1]). The low modulation frequency translates to an ultra-low power consumption (202 uW, 3600 times smaller than [1]) and one of the highest linearity ($mathrm{P}1mathrm{dB}=31 mathrm{dBm}$) reported for magnet-free circulators. Furthermore, compared to the more conventional differential configuration, this quad configuration shows advantages in terms of intermodulation products (IMPs) suppression for all the in-band IMPs, guaranteeing a pseudo-linear-time-invariant (pseudo-LTI) operation. Furthermore, the isolation of the circulator is further improved by an additional cancellation circuit, achieving more than 50 dB of isolation in a 10MHz bandwidth (BW). This high level of isolation enables the use of this magnet-free circulator in full-duplex radio, which requires large level of self-interference suppression between the transmitter and the receiver nodes.
{"title":"Micro-Acoustic Quad Circulator with Self-Interference Cancellation","authors":"Yao Yu, M. Rinaldi","doi":"10.1109/MEMS46641.2020.9056324","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056324","url":null,"abstract":"In this paper, a micro-acoustic RF circulator with novel “quad” configuration is reported. Four micro-acoustic filters are periodically modulated by RF switches to break the reciprocity. The use of high-Q micro-acoustic filters significantly reduces the modulation frequency (14 MHz) compared to previous demonstrations based on transmission lines (e.g., 333 MHz in [1]). The low modulation frequency translates to an ultra-low power consumption (202 uW, 3600 times smaller than [1]) and one of the highest linearity ($mathrm{P}1mathrm{dB}=31 mathrm{dBm}$) reported for magnet-free circulators. Furthermore, compared to the more conventional differential configuration, this quad configuration shows advantages in terms of intermodulation products (IMPs) suppression for all the in-band IMPs, guaranteeing a pseudo-linear-time-invariant (pseudo-LTI) operation. Furthermore, the isolation of the circulator is further improved by an additional cancellation circuit, achieving more than 50 dB of isolation in a 10MHz bandwidth (BW). This high level of isolation enables the use of this magnet-free circulator in full-duplex radio, which requires large level of self-interference suppression between the transmitter and the receiver nodes.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"69 1","pages":"1270-1273"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83193307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1109/MEMS46641.2020.9056198
Chenchen Zhang, H. Mao, Meng Shi, J. Xiong, Kewen Long, Dapeng Chen
In this work, a fiber-Si3N4 composite nanoforest with high absorption in 7.6 to $11.6 mu mathrm{m}$ wavelength range is presented. Especially, when thickness of a Si3N4 coating reaches 300 nm, the nanoforest can achieve an average absorption as high as 88.12%. Such a composite nanoforest is fabricated based on an extremely simple process, including spin-coating and plasma treating of a polyimide layer, followed by deposition of a Si3N4 film. The process is fully compatible with conventional micromachining, thus the nanoforest can be integrated onto MEMS infrared (IR) sensors as an additional absorber. Furthermore, with such a composite nanoforest-based absorber, the IR sensors are expected to achieve higher performance, especially for human IR sensing.
在这项工作中,提出了一种在7.6 ~ 11.6 mu mathm {m}$波长范围内具有高吸收的光纤-氮化硅复合纳米森林。特别是当Si3N4涂层厚度达到300 nm时,纳米森林的平均吸收率高达88.12%。这种复合纳米森林是基于一个极其简单的过程制造的,包括自旋涂层和等离子体处理聚酰亚胺层,然后沉积一层氮化硅薄膜。该工艺与传统的微加工完全兼容,因此纳米森林可以集成到MEMS红外(IR)传感器上,作为额外的吸收器。此外,利用这种基于纳米森林的复合吸收剂,红外传感器有望实现更高的性能,特别是用于人体红外传感。
{"title":"A Fiber-Si3N4 Composite Nanoforest with High 7.6 to $11.6 mumathrm{m}$ Absorption for MEMS Infrared Sensors","authors":"Chenchen Zhang, H. Mao, Meng Shi, J. Xiong, Kewen Long, Dapeng Chen","doi":"10.1109/MEMS46641.2020.9056198","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056198","url":null,"abstract":"In this work, a fiber-Si3N4 composite nanoforest with high absorption in 7.6 to $11.6 mu mathrm{m}$ wavelength range is presented. Especially, when thickness of a Si3N4 coating reaches 300 nm, the nanoforest can achieve an average absorption as high as 88.12%. Such a composite nanoforest is fabricated based on an extremely simple process, including spin-coating and plasma treating of a polyimide layer, followed by deposition of a Si3N4 film. The process is fully compatible with conventional micromachining, thus the nanoforest can be integrated onto MEMS infrared (IR) sensors as an additional absorber. Furthermore, with such a composite nanoforest-based absorber, the IR sensors are expected to achieve higher performance, especially for human IR sensing.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"10 1","pages":"949-952"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74473396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1109/MEMS46641.2020.9056434
Xianming He, Quan Wen, Z. Wen, X. Mu
This paper reports a novel MEMS piezoelectric vibration energy harvester based on trapezoidal cantilever beam array (TCBA-PVEH), which mainly composed of a piezoelectric array beam and a mass block. The open-circuit voltage ($V_{oc}$), the optimized load voltage ($V_{opt}$) and the optimized load output power ($P_{opt}$) of the TCBA-PVEH at 0.5g acceleration can reach 10.36 V, 6.68 V and $12.51 mu mathrm{W}$, respectively. The experimental results show that the TCBA-PVEH has smaller bending stiffness and larger piezoelectric strain energy per unit area than the rectangular cantilever beam array based PVEH (RCBA-PVEH), thus having lower resonance frequency and better electrical output. We also establish and analytically solve the electromechanical coupling dynamic model of PVEHs with variable cross-section cantilever beam. The proposed model lays an important theoretical foundation for structural optimization design, performance improvement and output prediction.
{"title":"A MEMS Piezoelectric Vibration Energy Harvester Based on Trapezoidal Cantilever Beam Array","authors":"Xianming He, Quan Wen, Z. Wen, X. Mu","doi":"10.1109/MEMS46641.2020.9056434","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056434","url":null,"abstract":"This paper reports a novel MEMS piezoelectric vibration energy harvester based on trapezoidal cantilever beam array (TCBA-PVEH), which mainly composed of a piezoelectric array beam and a mass block. The open-circuit voltage ($V_{oc}$), the optimized load voltage ($V_{opt}$) and the optimized load output power ($P_{opt}$) of the TCBA-PVEH at 0.5g acceleration can reach 10.36 V, 6.68 V and $12.51 mu mathrm{W}$, respectively. The experimental results show that the TCBA-PVEH has smaller bending stiffness and larger piezoelectric strain energy per unit area than the rectangular cantilever beam array based PVEH (RCBA-PVEH), thus having lower resonance frequency and better electrical output. We also establish and analytically solve the electromechanical coupling dynamic model of PVEHs with variable cross-section cantilever beam. The proposed model lays an important theoretical foundation for structural optimization design, performance improvement and output prediction.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"55 1","pages":"532-535"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78383377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study designs and realizes an improved piezoelectric MEMS microphone with four triangular-cantilevers (Fig. 1) on a commercial 8-inch wafer. As compared with the reference design [1], this study exhibits two merits: (1) special boundary and structure design of the triangular-cantilever for sensitivity enhancement (Fig. 1a); (2) two-stage etching to successively define PZT/electrode and device-Si layers to enable the fabrication of small gaps between triangular-cantilevers for low frequency acoustic sensing enhancement (Fig. 1b). Moreover, the bottom of MEMS microphone chip is bonded (surface mount) on LGA (land-grid-array) for better acoustic performance (Fig. 1c). Preliminary FEM evaluations show the enhancement of proposed type as compare with a reference type (Fig. 2). Measurements indicate the packaged microphone of $1080 mumathrm{m}$ cavity size: acoustic sensitivity is - 37.54dBV/Pa at 1kHz; ±3dB bandwidth ranges 150Hz to 9.5kHz; noise floor of 20Hz∼20kHz bandwidth and A-weighting is −86.4dBV(A); SNR is 48.9dB(A); measured capacitance of sensing electrode is 410pF at 1kHz; dielectric constant is 250; and loss tangent of PZT is 0.015.
本研究在商用8英寸晶圆上设计并实现了一种带有四个三角形悬臂的改进压电MEMS麦克风(图1)。与参考设计[1]相比,本研究有两个优点:(1)为了增强灵敏度,三角形悬臂梁的特殊边界和结构设计(图1a);(2)两阶段蚀刻,连续定义PZT/电极层和器件硅层,以便在三角形悬臂梁之间制造小间隙,用于低频声传感增强(图1b)。此外,MEMS麦克风芯片的底部被粘接(表面贴装)在LGA(陆网阵列)上,以获得更好的声学性能(图1c)。初步的有限元评估表明,与参考型相比,所提出的型号有所增强(图2)。测量表明,封装麦克风的腔尺寸为$1080 mu mathm {m}$:在1kHz时声灵敏度为- 37.54dBV/Pa;±3dB带宽范围150Hz至9.5kHz;20Hz ~ 20kHz带宽和A加权的本底噪声为−86.4dBV(A);信噪比为48.9dB(A);在1kHz时测得的感应电极电容为410pF;介电常数为250;PZT的损耗正切为0.015。
{"title":"Implementation of Piezoelectric MEMS Microphone for Sensitivity and Sensing Range Enhancement","authors":"Shih-Hsiung Tseng, Sung-Cheng Lo, Yu-Chen Chen, Ya-Chu Lee, Mingching Wu, W. Fang","doi":"10.1109/MEMS46641.2020.9056150","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056150","url":null,"abstract":"This study designs and realizes an improved piezoelectric MEMS microphone with four triangular-cantilevers (Fig. 1) on a commercial 8-inch wafer. As compared with the reference design [1], this study exhibits two merits: (1) special boundary and structure design of the triangular-cantilever for sensitivity enhancement (Fig. 1a); (2) two-stage etching to successively define PZT/electrode and device-Si layers to enable the fabrication of small gaps between triangular-cantilevers for low frequency acoustic sensing enhancement (Fig. 1b). Moreover, the bottom of MEMS microphone chip is bonded (surface mount) on LGA (land-grid-array) for better acoustic performance (Fig. 1c). Preliminary FEM evaluations show the enhancement of proposed type as compare with a reference type (Fig. 2). Measurements indicate the packaged microphone of $1080 mumathrm{m}$ cavity size: acoustic sensitivity is - 37.54dBV/Pa at 1kHz; ±3dB bandwidth ranges 150Hz to 9.5kHz; noise floor of 20Hz∼20kHz bandwidth and A-weighting is −86.4dBV(A); SNR is 48.9dB(A); measured capacitance of sensing electrode is 410pF at 1kHz; dielectric constant is 250; and loss tangent of PZT is 0.015.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"17 1","pages":"845-848"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78466060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1109/MEMS46641.2020.9056380
Yong Wang, R. Tao, Qian Zhang, Dongyang Chen, Lei Yang, Wei Huang, Jin Xie, Yongqing Fu
In this paper, we report acoustofluidics based on zinc oxide (ZnO)/Al plate surface acoustic waves (SAWs) and compare their performances with those of ZnO/Si SAWs with the same electrode configurations. Results show that ZnO/Al (1.5 mm thick) SAWs achieve a lower threshold pumping power and have better pumping performances than those of ZnO/Si SAWs due to their larger Rayleigh angle and higher electromechanical coupling coefficients. Wavelength effects on pumping performances of ZnO/Al plate SAWs are also investigated and a larger wavelength leads to a lower threshold pumping power. Moreover, we also study effects of Al plate thickness on pumping performances and results show that ZnO/Al plate SAWs present better pumping performances than those of ZnO/Al foil SAWs.
{"title":"Acoustofluidics Based on ZnO/Al Plate Surface Acoustic Wave Devices with Enhanced Performances","authors":"Yong Wang, R. Tao, Qian Zhang, Dongyang Chen, Lei Yang, Wei Huang, Jin Xie, Yongqing Fu","doi":"10.1109/MEMS46641.2020.9056380","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056380","url":null,"abstract":"In this paper, we report acoustofluidics based on zinc oxide (ZnO)/Al plate surface acoustic waves (SAWs) and compare their performances with those of ZnO/Si SAWs with the same electrode configurations. Results show that ZnO/Al (1.5 mm thick) SAWs achieve a lower threshold pumping power and have better pumping performances than those of ZnO/Si SAWs due to their larger Rayleigh angle and higher electromechanical coupling coefficients. Wavelength effects on pumping performances of ZnO/Al plate SAWs are also investigated and a larger wavelength leads to a lower threshold pumping power. Moreover, we also study effects of Al plate thickness on pumping performances and results show that ZnO/Al plate SAWs present better pumping performances than those of ZnO/Al foil SAWs.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"2 1","pages":"38-41"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76641231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1109/MEMS46641.2020.9056313
Yongkui Tang, Song Liu, E. S. Kim
We present a novel and easy fabrication method to manufacture Polydimethylsiloxane (PDMS) Fresnel air-cavity acoustic lens for focused ultrasonic transducers with long focal length. The process involves casting PDMS membrane with a silicon mold and bonding the PDMS membrane on a lead zirconate titanate (PZT) sheet with ultraviolet (UV)-curable adhesive. A 2.32-MHz focused ultrasonic transducer fabricated with the new method is capable of ejecting water droplets up to 1 mm in diameter (controlled by driving pulse width), from water surface 25 mm above the transducer.
{"title":"MEMS Focused Ultrasonic Transducer with Air-Cavity Lens Based on Polydimethylsiloxane (PDMS) Membrane","authors":"Yongkui Tang, Song Liu, E. S. Kim","doi":"10.1109/MEMS46641.2020.9056313","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056313","url":null,"abstract":"We present a novel and easy fabrication method to manufacture Polydimethylsiloxane (PDMS) Fresnel air-cavity acoustic lens for focused ultrasonic transducers with long focal length. The process involves casting PDMS membrane with a silicon mold and bonding the PDMS membrane on a lead zirconate titanate (PZT) sheet with ultraviolet (UV)-curable adhesive. A 2.32-MHz focused ultrasonic transducer fabricated with the new method is capable of ejecting water droplets up to 1 mm in diameter (controlled by driving pulse width), from water surface 25 mm above the transducer.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"42 1","pages":"58-61"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76803606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1109/MEMS46641.2020.9056451
Takashi Kozaki, Saito Satoshi, Yota Otsuki, R. Matsuda, Yutaka Isoda, Takuma Endo, Fumika Nakamura, T. Araki, Taichi Furukawa, S. Maruo, M. Watanabe, K. Ueno, H. Ota
The study proposes optoelectronics based on liquid metal and photo-switchable ionic liquid with liquid-liquid heterojunction technology. As a proof of concept, a liquid-state light sensor and an optical memory which is switched on and off by UV and blue light exposures were demonstrated. The ionic liquid named 1-butyl-3-(4-phenylazobenzyl)imidazolium bis(trifluoromethanesulfonyl)amide ([Azo][NTf2]) is used to realize functions as a light sensor or an optical memory. This ionic liquid is photoresponsive and can undergo a reversible isomerization controlled by light irradiation of UV or Blue; this property was used to realize the liquid-state optoelectronics in this study. In addition, a liquid-state heterojunction was taken advantage of in interconnects between sensing ionic liquid and liquid metal. The liquid-state heterojunction in the microchannels was critical to preventing intermixing of the two liquid components, especially, when the completed devices underwent mechanical deformation. These two important technologies, the photo-switchable ionic liquid and the heterojunction, achieved liquid-state optoelectronics based on liquid materials.
{"title":"Highly Deformable Optoelectronics Using Liquid Metal","authors":"Takashi Kozaki, Saito Satoshi, Yota Otsuki, R. Matsuda, Yutaka Isoda, Takuma Endo, Fumika Nakamura, T. Araki, Taichi Furukawa, S. Maruo, M. Watanabe, K. Ueno, H. Ota","doi":"10.1109/MEMS46641.2020.9056451","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056451","url":null,"abstract":"The study proposes optoelectronics based on liquid metal and photo-switchable ionic liquid with liquid-liquid heterojunction technology. As a proof of concept, a liquid-state light sensor and an optical memory which is switched on and off by UV and blue light exposures were demonstrated. The ionic liquid named 1-butyl-3-(4-phenylazobenzyl)imidazolium bis(trifluoromethanesulfonyl)amide ([Azo][NTf2]) is used to realize functions as a light sensor or an optical memory. This ionic liquid is photoresponsive and can undergo a reversible isomerization controlled by light irradiation of UV or Blue; this property was used to realize the liquid-state optoelectronics in this study. In addition, a liquid-state heterojunction was taken advantage of in interconnects between sensing ionic liquid and liquid metal. The liquid-state heterojunction in the microchannels was critical to preventing intermixing of the two liquid components, especially, when the completed devices underwent mechanical deformation. These two important technologies, the photo-switchable ionic liquid and the heterojunction, achieved liquid-state optoelectronics based on liquid materials.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"28 1","pages":"1230-1233"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76887663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1109/MEMS46641.2020.9056421
Zihao Song, R. Matsuda, Ken Matsubara, Fumika Nakamura, H. Ota
This paper reports caterpillar-inspired soft robot based on thermal expansion with stretchable bending and flexible temperature sensor. The movement of soft robot was based on thermal expansion with highly volatile liquid. On account of thermodynamic method, this soft robot must have a bending sensor for the movement and a temperature sensor to monitor the soft robot's state at that moment. The primary objective of this research is to resolve the integration between soft sensor and actuator. The actuator bends due to thermal expansion. The system could control the thermal expansion change from the resistance of the calculated bending sensor.
{"title":"A Caterpillar-Inspired Soft Robot Based on Thermal Expansion","authors":"Zihao Song, R. Matsuda, Ken Matsubara, Fumika Nakamura, H. Ota","doi":"10.1109/MEMS46641.2020.9056421","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056421","url":null,"abstract":"This paper reports caterpillar-inspired soft robot based on thermal expansion with stretchable bending and flexible temperature sensor. The movement of soft robot was based on thermal expansion with highly volatile liquid. On account of thermodynamic method, this soft robot must have a bending sensor for the movement and a temperature sensor to monitor the soft robot's state at that moment. The primary objective of this research is to resolve the integration between soft sensor and actuator. The actuator bends due to thermal expansion. The system could control the thermal expansion change from the resistance of the calculated bending sensor.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"43 1","pages":"489-492"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85459875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}