首页 > 最新文献

2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)最新文献

英文 中文
Nanopin - A MEMS Based Sensor for the Analysis of Single Cell Mechanical Properties 用于单细胞力学性能分析的MEMS传感器
Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056113
M. Kumemura, L. Kudo, Zhongcai Ma, S. Karsten
We developed a MEMS based sensor, Nanopin, for mechanical characterization of individual adherent cells. Nanopin consists of sensing tip that forms a contact with a cell, a displacement sensor, and an actuator. The feasibility of sensing was evaluated using various concentrations of agarose gel, and then the stiffness measurements of human carcinoma cells were conducted on different surfaces. After the measurements of cells, we confirmed that cells grow normally in an incubator.
我们开发了一种基于MEMS的传感器,Nanopin,用于单个贴壁细胞的机械表征。纳米粒子由与细胞形成接触的传感尖端、位移传感器和致动器组成。利用不同浓度的琼脂糖凝胶评估了传感的可行性,然后在不同的表面上对人癌细胞进行了刚度测量。在对细胞进行测量后,我们确认细胞在培养箱中正常生长。
{"title":"Nanopin - A MEMS Based Sensor for the Analysis of Single Cell Mechanical Properties","authors":"M. Kumemura, L. Kudo, Zhongcai Ma, S. Karsten","doi":"10.1109/MEMS46641.2020.9056113","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056113","url":null,"abstract":"We developed a MEMS based sensor, Nanopin, for mechanical characterization of individual adherent cells. Nanopin consists of sensing tip that forms a contact with a cell, a displacement sensor, and an actuator. The feasibility of sensing was evaluated using various concentrations of agarose gel, and then the stiffness measurements of human carcinoma cells were conducted on different surfaces. After the measurements of cells, we confirmed that cells grow normally in an incubator.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"1 1","pages":"311-314"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75455890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Compact Microcontroller-Based MEMS Rate Integrating Gyroscope Module with Automatic Asymmetry Calibration 一种基于微控制器的MEMS速率积分陀螺仪自动非对称校正模块
Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056317
R. Gando, D. Ono, S. Kaji, H. Ota, T. Itakura, Y. Tomizawa
This paper presents the first microcontroller-based module-level MEMS rate integrating gyroscope (RIG) for direct angle measurement after automatic asymmetry calibration. The 5-cm prototype module integrates a vacuum-sealed donut-mass gyroscope device on analog and digital PCBs. In automatic calibration mode, the initial frequency and decay-time asymmetries are electrically tuned and reduced by >40 and >18 times, respectively. The sensing mode is enabled by built-in digital controls of vibration energy and frequency. Continuous angle measurement is confirmed with an angular random walk (ARW) of 0.6 deg/rt-h and a bias instability (BI) of 4.3 deg/h, proving comparable performances with previous FPGA-based large RIG systems. This module paves the way for RIG commercialization studies.
本文提出了首个基于微控制器的模块级MEMS速率积分陀螺仪(RIG),用于自动非对称校正后的直接角度测量。5厘米的原型模块在模拟和数字pcb上集成了真空密封的甜甜圈质量陀螺仪设备。在自动校准模式下,初始频率和衰减时间的不对称性分别被电调谐并降低了>40倍和>18倍。感应模式是由内置的振动能量和频率的数字控制启用。连续角度测量的角度随机漫步(ARW)为0.6°/rt-h,偏置不稳定性(BI)为4.3°/h,证明了与以前基于fpga的大型RIG系统相当的性能。该模块为RIG商业化研究铺平了道路。
{"title":"A Compact Microcontroller-Based MEMS Rate Integrating Gyroscope Module with Automatic Asymmetry Calibration","authors":"R. Gando, D. Ono, S. Kaji, H. Ota, T. Itakura, Y. Tomizawa","doi":"10.1109/MEMS46641.2020.9056317","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056317","url":null,"abstract":"This paper presents the first microcontroller-based module-level MEMS rate integrating gyroscope (RIG) for direct angle measurement after automatic asymmetry calibration. The 5-cm prototype module integrates a vacuum-sealed donut-mass gyroscope device on analog and digital PCBs. In automatic calibration mode, the initial frequency and decay-time asymmetries are electrically tuned and reduced by >40 and >18 times, respectively. The sensing mode is enabled by built-in digital controls of vibration energy and frequency. Continuous angle measurement is confirmed with an angular random walk (ARW) of 0.6 deg/rt-h and a bias instability (BI) of 4.3 deg/h, proving comparable performances with previous FPGA-based large RIG systems. This module paves the way for RIG commercialization studies.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"10 1","pages":"1296-1299"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72602014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
An Origami-Structured Flexible Electronic Substrate with Faces Parallel to Target-of-Attachment Surfaces 一种面与附着目标面平行的折纸结构柔性电子基板
Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056110
H. Yasuga, Atsushi Eda, K. Suto, T. Tachi, E. Iwase
We propose a flexible electronic substrate structured by Origami folding of non-stretchable film with faces parallel to target-of-attachment surfaces. A folding (“Origami”) or cutting (“Kirigami”) of a thin film have opened up the application of non-stretchable materials to flexible electronic devices attached to a curved surface. In this paper, we propose origami-structured flexible electronic substrates which have faces parallel to the target-of-attachment surface. The parallel faces have engineering importance and usefulness for taking direct contact with target-of-attachment surfaces and mounting electronic elements, e.g. sensors or light emitters. These characteristics are expected to allow for the realization of flexible devices capable of sensing shear force or flow velocity parallel to object's surfaces.
我们提出了一种柔性电子衬底,采用折纸折叠的非可拉伸薄膜,其面平行于附着目标表面。薄膜的折叠(Origami)或切割(Kirigami)开辟了将不可拉伸材料应用于附着在曲面上的柔性电子设备的应用。在本文中,我们提出了折纸结构的柔性电子衬底,其表面平行于附着目标表面。平行面对于直接接触附着目标表面和安装电子元件(如传感器或光源)具有工程重要性和实用性。预计这些特性将允许实现能够感知平行于物体表面的剪切力或流速的柔性装置。
{"title":"An Origami-Structured Flexible Electronic Substrate with Faces Parallel to Target-of-Attachment Surfaces","authors":"H. Yasuga, Atsushi Eda, K. Suto, T. Tachi, E. Iwase","doi":"10.1109/MEMS46641.2020.9056110","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056110","url":null,"abstract":"We propose a flexible electronic substrate structured by Origami folding of non-stretchable film with faces parallel to target-of-attachment surfaces. A folding (“Origami”) or cutting (“Kirigami”) of a thin film have opened up the application of non-stretchable materials to flexible electronic devices attached to a curved surface. In this paper, we propose origami-structured flexible electronic substrates which have faces parallel to the target-of-attachment surface. The parallel faces have engineering importance and usefulness for taking direct contact with target-of-attachment surfaces and mounting electronic elements, e.g. sensors or light emitters. These characteristics are expected to allow for the realization of flexible devices capable of sensing shear force or flow velocity parallel to object's surfaces.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"38 44","pages":"909-912"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91514377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
$0.0062 {}^{circ}/sqrt{hr}$ Angle Random Walk and $0.027 {}^{circ}/hr$ Bias Instability from a Micro-Shell Resonator Gyroscope with Surface Electrodes $0.0062 {}^{circ}/sqrt{hr}$角度随机游走和$0.027 {}^{circ}/hr$偏置不稳定性
Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056391
Sajal Singh, J. Woo, G. He, J. Cho, K. Najafi
This paper reports measured results for a fused-silica precision shell integrating (PSI) micro gyroscope employing out-of-plane drive/sense transduction mechanism. The PSI gyroscope is made with a 5 mm radius shell resonator operating in $n=2$ wine-glass mode at a frequency ($f_{n=2}$) of 5.803 kHz with as-fabricated frequency split ($Delta f$) of 2.1 Hz. Large and reasonably uniform capacitance (∼0.25 pF) is achieved with flat surface electrodes. The gyroscope is operated in the force-rebalance mode by interfacing with an ultra-low-noise transimpedance amplifier (TIA). Near-navigation grade angle random walk (ARW) of $0.0062 deg/sqrt{mathrm{h}}mathrm{r}$, in-run bias instability (BI) of 0.027 deg/hr and scale factor of 158 mV/deg/s without any temperature compensation are achieved.
本文报道了一种采用面外驱动/传感转导机构的熔融硅精密壳积分(PSI)微陀螺仪的测量结果。PSI陀螺仪由一个半径为5毫米的壳谐振器制成,工作在$n=2$酒杯模式下,频率($f_{n=2}$)为5.803 kHz,制造频率分裂($Delta f$)为2.1 Hz。大而合理均匀的电容(~ 0.25 pF)是通过平面电极实现的。陀螺仪通过与超低噪声跨阻放大器(TIA)接口以力再平衡模式运行。在不进行温度补偿的情况下,实现了$0.0062 deg/sqrt{mathrm{h}}mathrm{r}$的近导航坡度角随机游走(ARW),运行中偏置不稳定性(BI)为0.027°/hr,比例因子为158 mV/°/s。
{"title":"$0.0062 {}^{circ}/sqrt{hr}$ Angle Random Walk and $0.027 {}^{circ}/hr$ Bias Instability from a Micro-Shell Resonator Gyroscope with Surface Electrodes","authors":"Sajal Singh, J. Woo, G. He, J. Cho, K. Najafi","doi":"10.1109/MEMS46641.2020.9056391","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056391","url":null,"abstract":"This paper reports measured results for a fused-silica precision shell integrating (PSI) micro gyroscope employing out-of-plane drive/sense transduction mechanism. The PSI gyroscope is made with a 5 mm radius shell resonator operating in $n=2$ wine-glass mode at a frequency ($f_{n=2}$) of 5.803 kHz with as-fabricated frequency split ($Delta f$) of 2.1 Hz. Large and reasonably uniform capacitance (∼0.25 pF) is achieved with flat surface electrodes. The gyroscope is operated in the force-rebalance mode by interfacing with an ultra-low-noise transimpedance amplifier (TIA). Near-navigation grade angle random walk (ARW) of $0.0062 deg/sqrt{mathrm{h}}mathrm{r}$, in-run bias instability (BI) of 0.027 deg/hr and scale factor of 158 mV/deg/s without any temperature compensation are achieved.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"12 1","pages":"737-740"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82086317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A MEMS Piezoelectric Vibration Energy Harvester Based on Trapezoidal Cantilever Beam Array 基于梯形悬臂梁阵列的MEMS压电振动能量采集器
Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056434
Xianming He, Quan Wen, Z. Wen, X. Mu
This paper reports a novel MEMS piezoelectric vibration energy harvester based on trapezoidal cantilever beam array (TCBA-PVEH), which mainly composed of a piezoelectric array beam and a mass block. The open-circuit voltage ($V_{oc}$), the optimized load voltage ($V_{opt}$) and the optimized load output power ($P_{opt}$) of the TCBA-PVEH at 0.5g acceleration can reach 10.36 V, 6.68 V and $12.51 mu mathrm{W}$, respectively. The experimental results show that the TCBA-PVEH has smaller bending stiffness and larger piezoelectric strain energy per unit area than the rectangular cantilever beam array based PVEH (RCBA-PVEH), thus having lower resonance frequency and better electrical output. We also establish and analytically solve the electromechanical coupling dynamic model of PVEHs with variable cross-section cantilever beam. The proposed model lays an important theoretical foundation for structural optimization design, performance improvement and output prediction.
本文报道了一种基于梯形悬臂梁阵列(tba - pveh)的新型MEMS压电振动能量采集器,该系统主要由压电阵列梁和质量块组成。在0.5g加速度下,tba - pveh的开路电压($V_{oc}$)、优化负载电压($V_{opt}$)和优化负载输出功率($P_{opt}$)分别达到10.36 V、6.68 V和12.51 mu maththrm {W}$。实验结果表明,与基于矩形悬臂梁阵列的PVEH (rgba -PVEH)相比,tba -PVEH具有更小的弯曲刚度和更大的单位面积压电应变能,从而具有更低的谐振频率和更好的电输出。建立并解析求解了变截面悬臂梁pveh的机电耦合动力学模型。该模型为结构优化设计、性能改进和产量预测奠定了重要的理论基础。
{"title":"A MEMS Piezoelectric Vibration Energy Harvester Based on Trapezoidal Cantilever Beam Array","authors":"Xianming He, Quan Wen, Z. Wen, X. Mu","doi":"10.1109/MEMS46641.2020.9056434","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056434","url":null,"abstract":"This paper reports a novel MEMS piezoelectric vibration energy harvester based on trapezoidal cantilever beam array (TCBA-PVEH), which mainly composed of a piezoelectric array beam and a mass block. The open-circuit voltage ($V_{oc}$), the optimized load voltage ($V_{opt}$) and the optimized load output power ($P_{opt}$) of the TCBA-PVEH at 0.5g acceleration can reach 10.36 V, 6.68 V and $12.51 mu mathrm{W}$, respectively. The experimental results show that the TCBA-PVEH has smaller bending stiffness and larger piezoelectric strain energy per unit area than the rectangular cantilever beam array based PVEH (RCBA-PVEH), thus having lower resonance frequency and better electrical output. We also establish and analytically solve the electromechanical coupling dynamic model of PVEHs with variable cross-section cantilever beam. The proposed model lays an important theoretical foundation for structural optimization design, performance improvement and output prediction.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"55 1","pages":"532-535"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78383377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Implementation of Piezoelectric MEMS Microphone for Sensitivity and Sensing Range Enhancement 提高灵敏度和传感范围的压电式MEMS麦克风的实现
Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056150
Shih-Hsiung Tseng, Sung-Cheng Lo, Yu-Chen Chen, Ya-Chu Lee, Mingching Wu, W. Fang
This study designs and realizes an improved piezoelectric MEMS microphone with four triangular-cantilevers (Fig. 1) on a commercial 8-inch wafer. As compared with the reference design [1], this study exhibits two merits: (1) special boundary and structure design of the triangular-cantilever for sensitivity enhancement (Fig. 1a); (2) two-stage etching to successively define PZT/electrode and device-Si layers to enable the fabrication of small gaps between triangular-cantilevers for low frequency acoustic sensing enhancement (Fig. 1b). Moreover, the bottom of MEMS microphone chip is bonded (surface mount) on LGA (land-grid-array) for better acoustic performance (Fig. 1c). Preliminary FEM evaluations show the enhancement of proposed type as compare with a reference type (Fig. 2). Measurements indicate the packaged microphone of $1080 mumathrm{m}$ cavity size: acoustic sensitivity is - 37.54dBV/Pa at 1kHz; ±3dB bandwidth ranges 150Hz to 9.5kHz; noise floor of 20Hz∼20kHz bandwidth and A-weighting is −86.4dBV(A); SNR is 48.9dB(A); measured capacitance of sensing electrode is 410pF at 1kHz; dielectric constant is 250; and loss tangent of PZT is 0.015.
本研究在商用8英寸晶圆上设计并实现了一种带有四个三角形悬臂的改进压电MEMS麦克风(图1)。与参考设计[1]相比,本研究有两个优点:(1)为了增强灵敏度,三角形悬臂梁的特殊边界和结构设计(图1a);(2)两阶段蚀刻,连续定义PZT/电极层和器件硅层,以便在三角形悬臂梁之间制造小间隙,用于低频声传感增强(图1b)。此外,MEMS麦克风芯片的底部被粘接(表面贴装)在LGA(陆网阵列)上,以获得更好的声学性能(图1c)。初步的有限元评估表明,与参考型相比,所提出的型号有所增强(图2)。测量表明,封装麦克风的腔尺寸为$1080 mu mathm {m}$:在1kHz时声灵敏度为- 37.54dBV/Pa;±3dB带宽范围150Hz至9.5kHz;20Hz ~ 20kHz带宽和A加权的本底噪声为−86.4dBV(A);信噪比为48.9dB(A);在1kHz时测得的感应电极电容为410pF;介电常数为250;PZT的损耗正切为0.015。
{"title":"Implementation of Piezoelectric MEMS Microphone for Sensitivity and Sensing Range Enhancement","authors":"Shih-Hsiung Tseng, Sung-Cheng Lo, Yu-Chen Chen, Ya-Chu Lee, Mingching Wu, W. Fang","doi":"10.1109/MEMS46641.2020.9056150","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056150","url":null,"abstract":"This study designs and realizes an improved piezoelectric MEMS microphone with four triangular-cantilevers (Fig. 1) on a commercial 8-inch wafer. As compared with the reference design [1], this study exhibits two merits: (1) special boundary and structure design of the triangular-cantilever for sensitivity enhancement (Fig. 1a); (2) two-stage etching to successively define PZT/electrode and device-Si layers to enable the fabrication of small gaps between triangular-cantilevers for low frequency acoustic sensing enhancement (Fig. 1b). Moreover, the bottom of MEMS microphone chip is bonded (surface mount) on LGA (land-grid-array) for better acoustic performance (Fig. 1c). Preliminary FEM evaluations show the enhancement of proposed type as compare with a reference type (Fig. 2). Measurements indicate the packaged microphone of $1080 mumathrm{m}$ cavity size: acoustic sensitivity is - 37.54dBV/Pa at 1kHz; ±3dB bandwidth ranges 150Hz to 9.5kHz; noise floor of 20Hz∼20kHz bandwidth and A-weighting is −86.4dBV(A); SNR is 48.9dB(A); measured capacitance of sensing electrode is 410pF at 1kHz; dielectric constant is 250; and loss tangent of PZT is 0.015.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"17 1","pages":"845-848"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78466060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Acoustofluidics Based on ZnO/Al Plate Surface Acoustic Wave Devices with Enhanced Performances 基于性能增强的ZnO/Al板表面声波器件的声流学研究
Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056380
Yong Wang, R. Tao, Qian Zhang, Dongyang Chen, Lei Yang, Wei Huang, Jin Xie, Yongqing Fu
In this paper, we report acoustofluidics based on zinc oxide (ZnO)/Al plate surface acoustic waves (SAWs) and compare their performances with those of ZnO/Si SAWs with the same electrode configurations. Results show that ZnO/Al (1.5 mm thick) SAWs achieve a lower threshold pumping power and have better pumping performances than those of ZnO/Si SAWs due to their larger Rayleigh angle and higher electromechanical coupling coefficients. Wavelength effects on pumping performances of ZnO/Al plate SAWs are also investigated and a larger wavelength leads to a lower threshold pumping power. Moreover, we also study effects of Al plate thickness on pumping performances and results show that ZnO/Al plate SAWs present better pumping performances than those of ZnO/Al foil SAWs.
在本文中,我们报道了基于氧化锌/铝板表面声波(saw)的声流体,并将其性能与相同电极结构的氧化锌/硅板表面声波(saw)进行了比较。结果表明,由于ZnO/Al (1.5 mm厚)saw具有更大的瑞利角和更高的机电耦合系数,因此具有较低的泵浦阈值功率,并且比ZnO/Si saw具有更好的泵浦性能。波长对ZnO/Al板saw泵浦性能的影响也得到了研究结果,波长越大,泵浦功率阈值越低。此外,我们还研究了铝板厚度对泵送性能的影响,结果表明ZnO/Al板saw的泵送性能优于ZnO/Al箔saw。
{"title":"Acoustofluidics Based on ZnO/Al Plate Surface Acoustic Wave Devices with Enhanced Performances","authors":"Yong Wang, R. Tao, Qian Zhang, Dongyang Chen, Lei Yang, Wei Huang, Jin Xie, Yongqing Fu","doi":"10.1109/MEMS46641.2020.9056380","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056380","url":null,"abstract":"In this paper, we report acoustofluidics based on zinc oxide (ZnO)/Al plate surface acoustic waves (SAWs) and compare their performances with those of ZnO/Si SAWs with the same electrode configurations. Results show that ZnO/Al (1.5 mm thick) SAWs achieve a lower threshold pumping power and have better pumping performances than those of ZnO/Si SAWs due to their larger Rayleigh angle and higher electromechanical coupling coefficients. Wavelength effects on pumping performances of ZnO/Al plate SAWs are also investigated and a larger wavelength leads to a lower threshold pumping power. Moreover, we also study effects of Al plate thickness on pumping performances and results show that ZnO/Al plate SAWs present better pumping performances than those of ZnO/Al foil SAWs.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"2 1","pages":"38-41"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76641231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
MEMS Focused Ultrasonic Transducer with Air-Cavity Lens Based on Polydimethylsiloxane (PDMS) Membrane 基于聚二甲基硅氧烷(PDMS)膜的气腔透镜MEMS聚焦超声换能器
Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056313
Yongkui Tang, Song Liu, E. S. Kim
We present a novel and easy fabrication method to manufacture Polydimethylsiloxane (PDMS) Fresnel air-cavity acoustic lens for focused ultrasonic transducers with long focal length. The process involves casting PDMS membrane with a silicon mold and bonding the PDMS membrane on a lead zirconate titanate (PZT) sheet with ultraviolet (UV)-curable adhesive. A 2.32-MHz focused ultrasonic transducer fabricated with the new method is capable of ejecting water droplets up to 1 mm in diameter (controlled by driving pulse width), from water surface 25 mm above the transducer.
提出了一种新型的、简便的、用于长焦距聚焦超声换能器的聚二甲基硅氧烷(PDMS)菲涅耳空腔声透镜的制备方法。该工艺包括用硅模具铸造PDMS膜,并用紫外线固化粘合剂将PDMS膜粘接在锆钛酸铅(PZT)片上。用新方法制造的2.32 mhz聚焦超声换能器能够从换能器上方25毫米的水面喷出直径达1毫米的水滴(由驱动脉冲宽度控制)。
{"title":"MEMS Focused Ultrasonic Transducer with Air-Cavity Lens Based on Polydimethylsiloxane (PDMS) Membrane","authors":"Yongkui Tang, Song Liu, E. S. Kim","doi":"10.1109/MEMS46641.2020.9056313","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056313","url":null,"abstract":"We present a novel and easy fabrication method to manufacture Polydimethylsiloxane (PDMS) Fresnel air-cavity acoustic lens for focused ultrasonic transducers with long focal length. The process involves casting PDMS membrane with a silicon mold and bonding the PDMS membrane on a lead zirconate titanate (PZT) sheet with ultraviolet (UV)-curable adhesive. A 2.32-MHz focused ultrasonic transducer fabricated with the new method is capable of ejecting water droplets up to 1 mm in diameter (controlled by driving pulse width), from water surface 25 mm above the transducer.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"42 1","pages":"58-61"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76803606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Highly Deformable Optoelectronics Using Liquid Metal 使用液态金属的高度可变形光电子学
Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056451
Takashi Kozaki, Saito Satoshi, Yota Otsuki, R. Matsuda, Yutaka Isoda, Takuma Endo, Fumika Nakamura, T. Araki, Taichi Furukawa, S. Maruo, M. Watanabe, K. Ueno, H. Ota
The study proposes optoelectronics based on liquid metal and photo-switchable ionic liquid with liquid-liquid heterojunction technology. As a proof of concept, a liquid-state light sensor and an optical memory which is switched on and off by UV and blue light exposures were demonstrated. The ionic liquid named 1-butyl-3-(4-phenylazobenzyl)imidazolium bis(trifluoromethanesulfonyl)amide ([Azo][NTf2]) is used to realize functions as a light sensor or an optical memory. This ionic liquid is photoresponsive and can undergo a reversible isomerization controlled by light irradiation of UV or Blue; this property was used to realize the liquid-state optoelectronics in this study. In addition, a liquid-state heterojunction was taken advantage of in interconnects between sensing ionic liquid and liquid metal. The liquid-state heterojunction in the microchannels was critical to preventing intermixing of the two liquid components, especially, when the completed devices underwent mechanical deformation. These two important technologies, the photo-switchable ionic liquid and the heterojunction, achieved liquid-state optoelectronics based on liquid materials.
本研究提出了基于液态金属和光可切换离子液体的液液异质结光电子技术。作为概念验证,演示了一种液态光传感器和一种通过紫外线和蓝光照射开关的光存储器。离子液体命名为1-丁基-3-(4-苯并苄基)咪唑双(三氟甲烷磺酰)酰胺([Azo][NTf2]),用于实现光传感器或光存储器的功能。这种离子液体具有光响应性,可以在紫外线或蓝光照射下进行可逆异构化;本研究利用这一特性实现了液态光电子器件。此外,在传感离子液体和液态金属之间的互连中利用了液态异质结。微通道中的液态异质结对于防止两种液体组分的混合至关重要,特别是当完成的器件经历机械变形时。光可切换离子液体和异质结这两项重要技术实现了基于液体材料的液态光电子学。
{"title":"Highly Deformable Optoelectronics Using Liquid Metal","authors":"Takashi Kozaki, Saito Satoshi, Yota Otsuki, R. Matsuda, Yutaka Isoda, Takuma Endo, Fumika Nakamura, T. Araki, Taichi Furukawa, S. Maruo, M. Watanabe, K. Ueno, H. Ota","doi":"10.1109/MEMS46641.2020.9056451","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056451","url":null,"abstract":"The study proposes optoelectronics based on liquid metal and photo-switchable ionic liquid with liquid-liquid heterojunction technology. As a proof of concept, a liquid-state light sensor and an optical memory which is switched on and off by UV and blue light exposures were demonstrated. The ionic liquid named 1-butyl-3-(4-phenylazobenzyl)imidazolium bis(trifluoromethanesulfonyl)amide ([Azo][NTf2]) is used to realize functions as a light sensor or an optical memory. This ionic liquid is photoresponsive and can undergo a reversible isomerization controlled by light irradiation of UV or Blue; this property was used to realize the liquid-state optoelectronics in this study. In addition, a liquid-state heterojunction was taken advantage of in interconnects between sensing ionic liquid and liquid metal. The liquid-state heterojunction in the microchannels was critical to preventing intermixing of the two liquid components, especially, when the completed devices underwent mechanical deformation. These two important technologies, the photo-switchable ionic liquid and the heterojunction, achieved liquid-state optoelectronics based on liquid materials.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"28 1","pages":"1230-1233"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76887663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Caterpillar-Inspired Soft Robot Based on Thermal Expansion 基于热膨胀的受毛毛虫启发的软体机器人
Pub Date : 2020-01-01 DOI: 10.1109/MEMS46641.2020.9056421
Zihao Song, R. Matsuda, Ken Matsubara, Fumika Nakamura, H. Ota
This paper reports caterpillar-inspired soft robot based on thermal expansion with stretchable bending and flexible temperature sensor. The movement of soft robot was based on thermal expansion with highly volatile liquid. On account of thermodynamic method, this soft robot must have a bending sensor for the movement and a temperature sensor to monitor the soft robot's state at that moment. The primary objective of this research is to resolve the integration between soft sensor and actuator. The actuator bends due to thermal expansion. The system could control the thermal expansion change from the resistance of the calculated bending sensor.
本文报道了一种基于可伸缩弯曲和柔性温度传感器的毛虫式热膨胀软机器人。软机器人的运动基于高挥发性液体的热膨胀。根据热力学方法,该软机器人必须有一个弯曲传感器来进行运动,并有一个温度传感器来监测软机器人在该时刻的状态。本研究的主要目的是解决软传感器与执行器之间的集成问题。执行器因热膨胀而弯曲。该系统可以通过计算出的弯曲传感器的电阻来控制热膨胀的变化。
{"title":"A Caterpillar-Inspired Soft Robot Based on Thermal Expansion","authors":"Zihao Song, R. Matsuda, Ken Matsubara, Fumika Nakamura, H. Ota","doi":"10.1109/MEMS46641.2020.9056421","DOIUrl":"https://doi.org/10.1109/MEMS46641.2020.9056421","url":null,"abstract":"This paper reports caterpillar-inspired soft robot based on thermal expansion with stretchable bending and flexible temperature sensor. The movement of soft robot was based on thermal expansion with highly volatile liquid. On account of thermodynamic method, this soft robot must have a bending sensor for the movement and a temperature sensor to monitor the soft robot's state at that moment. The primary objective of this research is to resolve the integration between soft sensor and actuator. The actuator bends due to thermal expansion. The system could control the thermal expansion change from the resistance of the calculated bending sensor.","PeriodicalId":6776,"journal":{"name":"2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"43 1","pages":"489-492"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85459875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1