The combination of therapeutic materials and biocompatible scaffolds to create multifunctional scaffolds with therapeutic and restorative functions has been investigated as a new therapeutic modality for bone cancers because the integration of multi-modal therapies into one platform can exhibit significant potential in overcoming the drawbacks of conventional therapy in bone cancers. In this study, we develop an IR780- and epigallocatechin gallate (EGCG)-loaded multifunctional polylactic acid (PLA) (E-PLMH780) composite scaffold for chemo-photothermal combination therapy without cytotoxicity. This bilayered E-PLMH780 scaffold is prepared using a layer of EGCG-loaded PLA monolith and a three-dimensionally printed PLA composite scaffold, followed by coating with IR780-loaded Mg-HA nanoparticles. The monolith layer in the composite scaffold exhibits a three-dimensional porous structure and a uniform morphology featuring small leaf-like units, whereas the three-dimensionally printed layer exhibits a uniform porous structure with a hierarchical architecture. The results of the chemo-photothermal combination therapy and cytotoxicity assays showed that the E-PLMH780 scaffold effectively inhibited bone cancer cell proliferation but did not cause cytotoxicity in normal osteoblastic cells. Therefore, chemo-photothermal combination therapy using IR780- and EGCG-loaded E-PLMH780 scaffolds can potentially provide a new generation of therapeutic modality for the improved treatment of bone cancers and repair of bone defects.