Pub Date : 2024-05-14DOI: 10.1007/s13233-024-00268-4
Junfei Liang
Unconjugated polymer poly(vinylcarbazole) (PVK) was incorporated into poly[{2,5-di(3′,7′-dimethyloctyloxy)-1,4-phenylene-vinylene}-co-{3-(4′-(3″,7″-dimethyloctyloxy)phenyl)-1,4-phenylenevinylene}-co-{3-(3′-(3′,7′-dimethyloctyloxy) phenyl)-1,4-phenylenevinylene}](SY-PPV) as the emissive layer of PLEDs. The unconjugated backbone of PVK effectively restrains the hole transport property of SY-PPV, which is advantaged to realize better charge-transport balance. Subsequently, the blue-lighting polymer poly[(9,9-dioctyl-2,7-fluorene)-co-(dibenzothiophene -S,S-dioxide)](SO10), which has a deep highest occupied molecular orbital, was employed as the hole-blocking layer to further balance the charge transportation of the emissive device. The SO10 can effectively restrict the hole carrier entering into cathode interface, which is instrumental in avoiding exction quenching on the cathode interface. Through optimizing device structure, a maximum luminous efficiency of 13.52 cd A−1 was realized, which is achieved 120% improvement of that of the pristine SY-PPV as emissive layer. These results indicate that incorporating unconjugated polymer and hole-blocking layer is an efficient method to adjust charge-transport balance of hole-type emissive materials.
{"title":"Effect of adjusting charge transport on optoelectronic performances of polymer light-emitting diodes based on SY-PPV","authors":"Junfei Liang","doi":"10.1007/s13233-024-00268-4","DOIUrl":"10.1007/s13233-024-00268-4","url":null,"abstract":"<div><p>Unconjugated polymer poly(vinylcarbazole) (PVK) was incorporated into poly[{2,5-di(3′,7′-dimethyloctyloxy)-1,4-phenylene-vinylene}-co-{3-(4′-(3″,7″-dimethyloctyloxy)phenyl)-1,4-phenylenevinylene}-co-{3-(3′-(3′,7′-dimethyloctyloxy) phenyl)-1,4-phenylenevinylene}](SY-PPV) as the emissive layer of PLEDs. The unconjugated backbone of PVK effectively restrains the hole transport property of SY-PPV, which is advantaged to realize better charge-transport balance. Subsequently, the blue-lighting polymer poly[(9,9-dioctyl-2,7-fluorene)-co-(dibenzothiophene -S,S-dioxide)](SO10), which has a deep highest occupied molecular orbital, was employed as the hole-blocking layer to further balance the charge transportation of the emissive device. The SO10 can effectively restrict the hole carrier entering into cathode interface, which is instrumental in avoiding exction quenching on the cathode interface. Through optimizing device structure, a maximum luminous efficiency of 13.52 cd A<sup>−1</sup> was realized, which is achieved 120% improvement of that of the pristine SY-PPV as emissive layer. These results indicate that incorporating unconjugated polymer and hole-blocking layer is an efficient method to adjust charge-transport balance of hole-type emissive materials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"32 9","pages":"853 - 860"},"PeriodicalIF":2.8,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1007/s13233-024-00266-6
Najihah Rameli, Bee-Yee Lim, Pei-Yee Leong, Choon-Choo Lim, Shiow-Fern Ng
Wound infection causes wound chronicity as the presence of pathogens prolong wound healing time. Endotoxins lipopolysaccharides (LPS) are released from Gram-negative bacteria when they are lysed by host phagocytic cells during an immune response. These endotoxins in wounds are shown to be one of the causes of delayed wound healing. The porous activated carbon (AC) can act as an important absorptive material for the elimination of bacterial toxins, which makes it an attractive biomaterial for infected wounds. NCC is also reported to facilitate cell adhesion, proliferation, and migrations. Previously, our laboratory has shown that chitosan (CS) reinforced with Kenaf nanocrystalline celluloses (NCC) possesses vastly improved mechanical properties. This study explores the potential of incorporating AC into NCC-CS hydrogel (AC/NCC), with the aim of eliminating bacteria toxins in wounds as well as the acceleration of wound healing. The AC/NCC hydrogel was characterized in terms of rheological properties, swelling behaviour, fourier transform infrared spectroscopy as well as zeta potential. Then the AC/NCC hydrogel dressings were evaluated in vitro using a cytotoxicity study and toxin removal assay. The results showed that hydrogels exhibit desirable rheological properties with homogenous activated carbon particles. The hydrogels exhibit low cytotoxicity towards the human fibroblast and keratinocytes cells. The hydrogel can remove up to 85% of endotoxins when treated with 0.1 EU/mL of LPS. In summary, this study has shown that AC/NCC hydrogel has a vast potential as an antitoxin dressing for infected chronic wounds.
Graphical Abstract
AC/NCC hydrogel dressing eliminates endotoxin from infected wounds and accelerates wound healing
{"title":"Chitosan-reinforced nanocrystalline cellulose hydrogels containing activated carbon as antitoxin wound dressing","authors":"Najihah Rameli, Bee-Yee Lim, Pei-Yee Leong, Choon-Choo Lim, Shiow-Fern Ng","doi":"10.1007/s13233-024-00266-6","DOIUrl":"10.1007/s13233-024-00266-6","url":null,"abstract":"<div><p>Wound infection causes wound chronicity as the presence of pathogens prolong wound healing time. Endotoxins lipopolysaccharides (LPS) are released from Gram-negative bacteria when they are lysed by host phagocytic cells during an immune response. These endotoxins in wounds are shown to be one of the causes of delayed wound healing. The porous activated carbon (AC) can act as an important absorptive material for the elimination of bacterial toxins, which makes it an attractive biomaterial for infected wounds. NCC is also reported to facilitate cell adhesion, proliferation, and migrations. Previously, our laboratory has shown that chitosan (CS) reinforced with Kenaf nanocrystalline celluloses (NCC) possesses vastly improved mechanical properties. This study explores the potential of incorporating AC into NCC-CS hydrogel (AC/NCC), with the aim of eliminating bacteria toxins in wounds as well as the acceleration of wound healing. The AC/NCC hydrogel was characterized in terms of rheological properties, swelling behaviour, fourier transform infrared spectroscopy as well as zeta potential. Then the AC/NCC hydrogel dressings were evaluated in vitro using a cytotoxicity study and toxin removal assay. The results showed that hydrogels exhibit desirable rheological properties with homogenous activated carbon particles. The hydrogels exhibit low cytotoxicity towards the human fibroblast and keratinocytes cells. The hydrogel can remove up to 85% of endotoxins when treated with 0.1 EU/mL of LPS. In summary, this study has shown that AC/NCC hydrogel has a vast potential as an antitoxin dressing for infected chronic wounds.</p><h3>Graphical Abstract</h3><p>AC/NCC hydrogel dressing eliminates endotoxin from infected wounds and accelerates wound healing</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"32 9","pages":"861 - 872"},"PeriodicalIF":2.8,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1007/s13233-024-00267-5
Long Shen, Yunhee Ahn, Yoon Kim, Suyeon Kim, Sunghee Choi, Tae-Dong Kim, Dongju Lee
Three-armed poly(styrene sulfonate) derivatives (PSS-T) was synthesized by atom transfer radical polymerization (ATRP) and used as dopants for the preparation of star-shaped PEDOT:PSS-T composites. From their loosed packing structure, reduced graphene oxide (rGO) was well doped into the PEDOT:PSS-T composites resulted in improved dispersion properties and enhanced electrical performance. The cyclic stability of supercapacitors using PEDOT:PSS-T/rGO composites showed 95.5% capacitance retention after 10,000 charge/discharge cycles which is superior than its devices using of commercial PEDOT:PSS/rGO composites.