Pub Date : 2024-07-22DOI: 10.1007/s13233-024-00298-y
E. Abdeltwab, A. Atta, Nuha Al-Harbi, M. M. Abdelhamied
In this project, the oxidative chemical polymerization method is used to prepare polymer composite that consisting of polypyrrole polymer (PPy) and iron oxide nanoparticles (Fe2O3NPs). Then deposited this blend (PPy/Fe2O3) onto the PET substrate to creating flexible nanocomposite PET/(PPy/Fe2O3). Analyzing the samples using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) proves that the composite was effectively formed. With varying Fe2O3 ratios, the dielectric parameters of PET polymer and PET/(PPy/Fe2O3) composite have been documented at frequencies of 40–5.6 MHz. The surface properties were significantly enhanced by irradiation. The surface free energy increases from 41.36 mJ/m2 to 66.23 mJ/m2 and water contact angle reduces from 58.36° for PET to 39.25°. The results demonstrated that the composite surface characteristics were enhanced as the concentration of Fe2O3 changed. The obtained data showed that the fabricated samples have better properties than the PET films that can be utilized in many applications as capacitors and storage devices.
Graphical abstract
a SEM of PET, b SEM of PPy/Fe2O3, c SEM of PET/(PPy/Fe2O3, d contact angle with ratios of Fe2O3 and e surface free energy with ratios of Fe2O3
本项目采用氧化化学聚合法制备由聚吡咯聚合物(PPy)和氧化铁纳米颗粒(Fe2O3NPs)组成的聚合物复合材料。然后将这种混合物(PPy/Fe2O3)沉积到 PET 基质上,制成柔性纳米复合 PET/(PPy/Fe2O3)。利用 X 射线衍射 (XRD) 和傅立叶变换红外光谱 (FTIR) 分析样品,证明复合材料已有效形成。随着 Fe2O3 比例的变化,记录了 PET 聚合物和 PET/(PPy/Fe2O3)复合材料在 40-5.6 MHz 频率下的介电参数。辐照显著增强了表面特性。表面自由能从 41.36 mJ/m2 增加到 66.23 mJ/m2,水接触角从 PET 的 58.36° 减小到 39.25°。结果表明,随着 Fe2O3 浓度的变化,复合材料的表面特性得到了增强。所获得的数据表明,制备的样品比 PET 薄膜具有更好的性能,可以作为电容器和存储设备广泛应用。
{"title":"Synthesis, characterization and dielectric properties of polymer nanocomposites for energy storage applications","authors":"E. Abdeltwab, A. Atta, Nuha Al-Harbi, M. M. Abdelhamied","doi":"10.1007/s13233-024-00298-y","DOIUrl":"https://doi.org/10.1007/s13233-024-00298-y","url":null,"abstract":"<p>In this project, the oxidative chemical polymerization method is used to prepare polymer composite that consisting of polypyrrole polymer (PPy) and iron oxide nanoparticles (Fe<sub>2</sub>O<sub>3</sub>NPs). Then deposited this blend (PPy/Fe<sub>2</sub>O<sub>3</sub>) onto the PET substrate to creating flexible nanocomposite PET/(PPy/Fe<sub>2</sub>O<sub>3</sub>). Analyzing the samples using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) proves that the composite was effectively formed. With varying Fe<sub>2</sub>O<sub>3</sub> ratios, the dielectric parameters of PET polymer and PET/(PPy/Fe<sub>2</sub>O<sub>3</sub>) composite have been documented at frequencies of 40–5.6 MHz. The surface properties were significantly enhanced by irradiation. The surface free energy increases from 41.36 mJ/m<sup>2</sup> to 66.23 mJ/m<sup>2</sup> and water contact angle reduces from 58.36° for PET to 39.25°. The results demonstrated that the composite surface characteristics were enhanced as the concentration of Fe<sub>2</sub>O<sub>3</sub> changed. The obtained data showed that the fabricated samples have better properties than the PET films that can be utilized in many applications as capacitors and storage devices.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><p><b>a</b> SEM of PET, <b>b</b> SEM of PPy/Fe<sub>2</sub>O<sub>3</sub>, <b>c</b> SEM of PET/(PPy/Fe<sub>2</sub>O<sub>3</sub>, <b>d</b> contact angle with ratios\u0000of Fe<sub>2</sub>O<sub>3</sub> and <b>e</b> surface free energy with ratios of Fe<sub>2</sub>O<sub>3</sub></p>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"12 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141777398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.1007/s13233-024-00296-0
Young Sil Lee, Ju Hwan An, Kwan Han Yoon
The purpose of this study is to identify factors affecting the dispersion and printing properties of pastes that are required to form fine line width electrodes by controlling the rheological properties of pastes applied in various fields. In particular, to solve the problem of high cost and low efficiency of silver used in the front electrode of silicon solar cells, it is necessary to print uniform fine lines with high aspect ratio to achieve higher efficiency while reducing raw material consumption. In this study, ethyl cellulose (EC), a conventional general-purpose binder, and xanthan gum (XG), which is widely used as a thickener in the food industry and has excellent temperature stability and the advantage of having a high viscosity even with a small content, used as binders. An organic solution was prepared by completely dissolving the binder in a solvent, and then inorganic particles and glass flecks were added to prepare the final paste. The rheological properties of the paste were measured, and the aspect ratio and the electrical conductivity of the electrodes were assessed after screen printing and firing. The results indicated that the paste prepared with XG binder exhibited a higher overall viscosity compared to the paste with EC binder and demonstrated a superior shear-thinning behavior. The pastes with optimal printing properties were found to contain 12 wt% EC and 7 wt% XG, respectively. In the frequency sweep test, XG had higher G' and G'' than EC, showing relatively good sedimentation stability and high aspect ratio. Viscosity recovery through hysteresis test was also better for XG than EC. For the final electrical conductivity, both EC and XG showed a value of 103 Ω⋅m order. However, if the electrodes were formed from a paste made of XG, the final solar cell efficiency is expected to be higher due to the larger area receiving sunlight due to the high aspect ratio.
Graphical Abstract
This study investigates the rheological properties of pastes formulated with ethyl cellulose and xanthan gum for screen-printed electrodes in silicon solar cell fabrication. Xanthan gum-based pastes exhibit higher viscosity and better shear thinning behavior compared to ethyl cellulose-based pastes, with optimal printing properties observed at 7 wt% xanthan gum content. The findings suggest that utilizing xanthan gum-based pastes could lead to higher efficiency in silicon solar cells due to the potential for achieving larger aspect ratio electrodes
{"title":"Screen printing and electrical properties of silver paste using a robust biopolymer binder for fine line electrode in energy devices","authors":"Young Sil Lee, Ju Hwan An, Kwan Han Yoon","doi":"10.1007/s13233-024-00296-0","DOIUrl":"https://doi.org/10.1007/s13233-024-00296-0","url":null,"abstract":"<p>The purpose of this study is to identify factors affecting the dispersion and printing properties of pastes that are required to form fine line width electrodes by controlling the rheological properties of pastes applied in various fields. In particular, to solve the problem of high cost and low efficiency of silver used in the front electrode of silicon solar cells, it is necessary to print uniform fine lines with high aspect ratio to achieve higher efficiency while reducing raw material consumption. In this study, ethyl cellulose (EC), a conventional general-purpose binder, and xanthan gum (XG), which is widely used as a thickener in the food industry and has excellent temperature stability and the advantage of having a high viscosity even with a small content, used as binders. An organic solution was prepared by completely dissolving the binder in a solvent, and then inorganic particles and glass flecks were added to prepare the final paste. The rheological properties of the paste were measured, and the aspect ratio and the electrical conductivity of the electrodes were assessed after screen printing and firing. The results indicated that the paste prepared with XG binder exhibited a higher overall viscosity compared to the paste with EC binder and demonstrated a superior shear-thinning behavior. The pastes with optimal printing properties were found to contain 12 wt% EC and 7 wt% XG, respectively. In the frequency sweep test, XG had higher G' and G'' than EC, showing relatively good sedimentation stability and high aspect ratio. Viscosity recovery through hysteresis test was also better for XG than EC. For the final electrical conductivity, both EC and XG showed a value of 10<sup>3</sup> Ω⋅m order. However, if the electrodes were formed from a paste made of XG, the final solar cell efficiency is expected to be higher due to the larger area receiving sunlight due to the high aspect ratio.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>This study investigates the rheological properties of pastes formulated with ethyl cellulose and xanthan gum for screen-printed electrodes in silicon solar cell fabrication. Xanthan gum-based pastes exhibit higher viscosity and better shear thinning behavior compared to ethyl cellulose-based pastes, with optimal printing properties observed at 7 wt% xanthan gum content. The findings suggest that utilizing xanthan gum-based pastes could lead to higher efficiency in silicon solar cells due to the potential for achieving larger aspect ratio electrodes\u0000</p>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"47 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141547765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-04DOI: 10.1007/s13233-024-00289-z
Hye Ji Kim, Hyun Mee Lee
This study aims to develop contact lenses with improved drug-release duration time by layer-by-layer (LBL) coating with natural polymers on contact lenses containing the drug gatifloxacin. LBL coating was performed in single and double layers on contact lenses containing gatifloxaxin using natural polymers carrageenan and polylysine. The performance of contact lenses was evaluated based on various physical properties and antibacterial properties. As a result, contact lenses containing gatifloxacin have reduced physical properties compared to lenses without gatifloxacin. As the concentration of gatifloxacin increased, oxygen permeability and wettability decreased, and antibacterial properties increased. LBL coating improved the wettability and antibacterial properties of contact lenses and increased the drug-release duration. Double-layers coated lenses increased the duration of drug release more than single-coated lenses.
Graphic Abstract
Double layer-coating with poly-L-lysine and carrageenan on contact lenses