Pub Date : 2024-10-01Epub Date: 2024-09-05DOI: 10.1007/s13205-024-04063-x
Gamze Eda Yildirim, Erkan Yilmaz
The TrkB receptor, which is highly expressed in various human cancers and considered a pro-oncogene, was targeted to develop neutralizing monoclonal antibodies against its immunoglobulin-like (Ig-like) domains. Recombinant TrkB-IgL peptide, including the Ig-like C2 type 1 (Ig-C2-type 1) and Ig-like C2 type 2 (Ig-C2-type 2) domains, was expressed and purified from E. coli. Mice were immunized with this peptide, and hybridoma clones producing anti-TrkB-IgL antibodies were generated. Among 23 ELISA-positive TrkB-IgL hybridoma clones, four (TrkB-IgL 5.11, 4.11, 4.6, 4.3) showed anti-proliferative effects compared to the control on human breast cancer (MCF-7) and human colon cancer (HCT116) cells, as assessed using the xCELLigence system. Western blot analysis revealed that TrkB-IgL 5.11 and 4.11 significantly suppressed TrkB-mediated signaling pathways compared to the control. Purified TrkB-IgL monoclonal antibodies (mAbs) exhibited anti-proliferative effects compared to both positive and negative controls using the xCELLigence system. The TrkB-IgL 5.11 mAb notably suppressed phosphorylation of TrkB, Akt, and ERK and induced Caspase-3 and Caspase-9 activities in a dose-dependent manner, as determined by Western blotting. Additionally, immunostaining confirmed the localization of these mAbs on the SH-SY5Y cell membrane, which is known for high TrkB expression. In conclusion, the TrkB-IgL 5.11 antibody effectively inhibits cancer cell proliferation and induces apoptosis by suppressing key signaling pathways. These findings demonstrate the potential of this antibody as a therapeutic agent for cancers that overexpress TrkB. Additionally, it is considered a promising candidate for humanization, which would facilitate its application in cancer treatment.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04063-x.
{"title":"Developing a novel neutralizing monoclonal antibody against TrkB.","authors":"Gamze Eda Yildirim, Erkan Yilmaz","doi":"10.1007/s13205-024-04063-x","DOIUrl":"10.1007/s13205-024-04063-x","url":null,"abstract":"<p><p>The TrkB receptor, which is highly expressed in various human cancers and considered a pro-oncogene, was targeted to develop neutralizing monoclonal antibodies against its immunoglobulin-like (Ig-like) domains. Recombinant TrkB-IgL peptide, including the Ig-like C2 type 1 (Ig-C2-type 1) and Ig-like C2 type 2 (Ig-C2-type 2) domains, was expressed and purified from <i>E. coli</i>. Mice were immunized with this peptide, and hybridoma clones producing anti-TrkB-IgL antibodies were generated. Among 23 ELISA-positive TrkB-IgL hybridoma clones, four (TrkB-IgL 5.11, 4.11, 4.6, 4.3) showed anti-proliferative effects compared to the control on human breast cancer (MCF-7) and human colon cancer (HCT116) cells, as assessed using the xCELLigence system. Western blot analysis revealed that TrkB-IgL 5.11 and 4.11 significantly suppressed TrkB-mediated signaling pathways compared to the control. Purified TrkB-IgL monoclonal antibodies (mAbs) exhibited anti-proliferative effects compared to both positive and negative controls using the xCELLigence system. The TrkB-IgL 5.11 mAb notably suppressed phosphorylation of TrkB, Akt, and ERK and induced Caspase-3 and Caspase-9 activities in a dose-dependent manner, as determined by Western blotting. Additionally, immunostaining confirmed the localization of these mAbs on the SH-SY5Y cell membrane, which is known for high TrkB expression. In conclusion, the TrkB-IgL 5.11 antibody effectively inhibits cancer cell proliferation and induces apoptosis by suppressing key signaling pathways. These findings demonstrate the potential of this antibody as a therapeutic agent for cancers that overexpress TrkB. Additionally, it is considered a promising candidate for humanization, which would facilitate its application in cancer treatment.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04063-x.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-06DOI: 10.1007/s13205-024-04062-y
Farzin Banei, Abbas Aliaghaei, Gholam Hossein Meftahi
Oxycodone is widely used for pain management and acts via binding to mu- and kappa opioid receptors. It was shown that extended oxycodone usage can result from the demyelination and degeneration of neurons through the stress response, which triggers apoptotic signaling pathways. The striatum and cerebellum are recognized as significant contributors to addiction; however, there is no report on the effect of oxycodone on the cerebellum and striatum and motor coordination. We treated rats daily with oxycodone at 15 mg/kg doses for thirty days. Motor performance and electromyography activity were then evaluated. Stereological methods were performed to assess the number of neurons in the cerebellum and striatum as well as immunohistochemistry for microgliosis and astrogliosis. Furthermore, the Sholl analysis method was utilized to evaluate the cellular structure of both microglia and astrocytes. Results of the rotarod test for motor coordination show no significant (P < 0.05) difference between the oxycodone subjects and those in the control group. In addition, open-field assessments indicated that the application of oxycodone did not alter the amount of distance covered (as an indicator of locomotion) or time spent in the central area (as an indicator of anxiety) (P < 0.001). The electromyography (EMG) test result showed that oxycodone caused a delay in the reaction of the muscular nerves (P < 0.001). Data and results from our experiment revealed that administering oxycodone did not affect astrogliosis and the number of neurons in the cerebellum and striatum (P < 0.05). In contrast, it altered neuromuscular function. In addition, oxycodone administration activated microglia in the cerebellum and striatum. In conclusion, we encourage more research on the adverse effects of oxycodone on the brain.
羟考酮被广泛用于止痛,通过与μ-和卡巴阿片受体结合发挥作用。研究表明,长期使用羟考酮可通过应激反应导致神经元脱髓鞘和变性,从而引发信号通路凋亡。纹状体和小脑被认为是导致成瘾的重要因素,但目前还没有关于羟考酮对小脑和纹状体以及运动协调性影响的报告。我们每天以 15 毫克/千克的剂量对大鼠进行为期 30 天的羟考酮治疗。然后对大鼠的运动表现和肌电图活动进行评估。我们用立体学方法评估了小脑和纹状体中神经元的数量,并用免疫组化方法检测了小神经胶质细胞和星形胶质细胞。此外,还利用 Sholl 分析法评估了小胶质细胞和星形胶质细胞的细胞结构。运动协调性的转体测试结果显示,小胶质细胞和星形胶质细胞没有明显(P P P P P
{"title":"The effect of chronic administration of oxycodone on the behavioral functions and histopathology in the cerebellum and striatum of adult male rats.","authors":"Farzin Banei, Abbas Aliaghaei, Gholam Hossein Meftahi","doi":"10.1007/s13205-024-04062-y","DOIUrl":"10.1007/s13205-024-04062-y","url":null,"abstract":"<p><p>Oxycodone is widely used for pain management and acts via binding to mu- and kappa opioid receptors. It was shown that extended oxycodone usage can result from the demyelination and degeneration of neurons through the stress response, which triggers apoptotic signaling pathways. The striatum and cerebellum are recognized as significant contributors to addiction; however, there is no report on the effect of oxycodone on the cerebellum and striatum and motor coordination. We treated rats daily with oxycodone at 15 mg/kg doses for thirty days. Motor performance and electromyography activity were then evaluated. Stereological methods were performed to assess the number of neurons in the cerebellum and striatum as well as immunohistochemistry for microgliosis and astrogliosis. Furthermore, the Sholl analysis method was utilized to evaluate the cellular structure of both microglia and astrocytes. Results of the rotarod test for motor coordination show no significant (<i>P</i> < 0.05) difference between the oxycodone subjects and those in the control group. In addition, open-field assessments indicated that the application of oxycodone did not alter the amount of distance covered (as an indicator of locomotion) or time spent in the central area (as an indicator of anxiety) (<i>P</i> < 0.001). The electromyography (EMG) test result showed that oxycodone caused a delay in the reaction of the muscular nerves (<i>P</i> < 0.001). Data and results from our experiment revealed that administering oxycodone did not affect astrogliosis and the number of neurons in the cerebellum and striatum (<i>P</i> < 0.05). In contrast, it altered neuromuscular function. In addition, oxycodone administration activated microglia in the cerebellum and striatum. In conclusion, we encourage more research on the adverse effects of oxycodone on the brain.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maize kernel protein is deficient in sulfur-containing essential amino acid such as methionine. The dzs18 gene encodes methionine-rich 18-kDa δ-zein in maize kernels. In this study, we sequenced full-length of dzs18 gene (820 bp) among 10 maize inbreds, revealing 43 SNPs and 22 InDels (average length-7.58 bp). Three InDels (4 bp at 113th, 15 bp at 463rd and 3 bp at 615th position) distinguished the wild-type (functional) from the mutant (non-functional) allele of dzs18. The 4 bp (TTAT) insertion caused a frameshift mutation, resulting in truncated DZS18 protein. The 15 bp insertion (ATG-TCT-TCG-ATG-ATA) added methionine-serine-serine-methionine-isoleucine, while the 3 bp deletion (CAA) led to loss of a glutamine residue in the mutant allele. Three gene-based PCR markers were developed for diversity analysis of dzs18 gene among 48 inbreds, which had an average methionine content of 0.136 %. (range: 0.031-0.340 %). Eight haplotypes were identified with methionine content varying from 0.066 % (Hap7) to 0.262 % (Hap3). Haplotypes with 4 bp deletion accumulated more methionine (0.174 %) than haplotypes with 4 bp insertion (0.082 %). The average methionine in 15 bp deletion and insertion haplotypes was 0.106 % and 0.150 %, respectively. The 3 bp insertion had 0.140 % methionine, while the deletion possessed 0.117 % methionine. Protein-protein association analysis predicted that DZS18 protein interacts with 19-kDa α-zein, 27- and 16-kDa γ-zeins, WAXY and O2 protein. A paralogue of dzs18 gene with 74 % sequence identity was identified. The functional markers reported here could facilitate the development of high methionine maize cultivars, which holds great significance to combat malnutrition, especially in developing countries.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04088-2.
{"title":"Molecular characterization, haplotype analysis and development of markers specific to <i>dzs18</i> gene regulating methionine accumulation in kernels of subtropical maize.","authors":"Hriipulou Duo, Rashmi Chhabra, Vignesh Muthusamy, Subhra J Mishra, Ikkurti Gopinath, Gaurav Sharma, Jayanthi Madhavan, Chirravuri N Neeraja, Rajkumar U Zunjare, Firoz Hossain","doi":"10.1007/s13205-024-04088-2","DOIUrl":"10.1007/s13205-024-04088-2","url":null,"abstract":"<p><p>Maize kernel protein is deficient in sulfur-containing essential amino acid such as methionine. The <i>dzs18</i> gene encodes methionine-rich 18-kDa δ-zein in maize kernels. In this study, we sequenced full-length of <i>dzs18</i> gene (820 bp) among 10 maize inbreds, revealing 43 SNPs and 22 <i>InDels</i> (average length-7.58 bp). Three <i>InDel</i>s (4 bp at 113th, 15 bp at 463rd and 3 bp at 615th position) distinguished the wild-type (functional) from the mutant (non-functional) allele of <i>dzs18</i>. The 4 bp (TTAT) insertion caused a frameshift mutation, resulting in truncated DZS18 protein. The 15 bp insertion (ATG-TCT-TCG-ATG-ATA) added methionine-serine-serine-methionine-isoleucine, while the 3 bp deletion (CAA) led to loss of a glutamine residue in the mutant allele. Three gene-based PCR markers were developed for diversity analysis of <i>dzs18</i> gene among 48 inbreds, which had an average methionine content of 0.136 %. (range: 0.031-0.340 %). Eight haplotypes were identified with methionine content varying from 0.066 % (Hap7) to 0.262 % (Hap3). Haplotypes with 4 bp deletion accumulated more methionine (0.174 %) than haplotypes with 4 bp insertion (0.082 %). The average methionine in 15 bp deletion and insertion haplotypes was 0.106 % and 0.150 %, respectively. The 3 bp insertion had 0.140 % methionine, while the deletion possessed 0.117 % methionine. Protein-protein association analysis predicted that DZS18 protein interacts with 19-kDa α-zein, 27- and 16-kDa γ-zeins, WAXY and O2 protein. A paralogue of <i>dzs18</i> gene with 74 % sequence identity was identified. The functional markers reported here could facilitate the development of high methionine maize cultivars, which holds great significance to combat malnutrition, especially in developing countries.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04088-2.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11416445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the post-antibiotic era, antivirulence therapies are becoming refractory to the clinical application of existing antimicrobial regimens. Moreover, in an attempt to explore alternate intervention strategies, drug repurposing is gaining attention over development of novel drugs/antimicrobials. With the prevalence of multidrug resistance and high medical burden associated with Pseudomonas aeruginosa, there is an urgent need to devise novel therapeutics to combat this bacterial pathogen. In this context, the present study was undertaken to scrutinize the anti-quorum sensing (QS) and antivirulence potential of commonly consumed drugs such as fexofenadine (FeX), ivermectin (IvM), nitrofurantoin (NiT), levocetrizine (LvC), atorvastatin (AtS), and aceclofenac (AcF), against P. aeruginosa. The methodology involved assessment of antibacterial activity against P. aeruginosa PAO1 and quorum quenching (QQ) potential using Agrobacterium tumefaciens NTL4 biosensor strain. The antivirulence prospects were investigated by estimating the production of hallmark virulence factors in P. aeruginosa accompanied by molecular docking to predict drug associations with the QS receptors. Interestingly, all the drugs harbored antibacterial, anti-QS, and antivirulence potential in vitro, which consequently disrupted QS circuits and attenuated pseudomonal virulence phenotypically by significantly lowering the production of pyocyanin, hemolysin, pyochelin, and total bacterial protease in vitro. Moreover, the findings were validated by computational studies that predicted strong molecular interactions between the test drugs and QS receptors of P. aeruginosa. Hence, this study is the first to suggest the prospect of repurposing FeX, IvM, NiT, LvC, AtS, and AcF against P. aeruginosa.
{"title":"Revitalizing common drugs for antibacterial, quorum quenching, and antivirulence potential against <i>Pseudomonas aeruginosa</i>: in vitro and in silico insights.","authors":"Jatin Chadha, Umang Mudgil, Lavanya Khullar, Prerna Ahuja, Kusum Harjai","doi":"10.1007/s13205-024-04070-y","DOIUrl":"10.1007/s13205-024-04070-y","url":null,"abstract":"<p><p>In the post-antibiotic era, antivirulence therapies are becoming refractory to the clinical application of existing antimicrobial regimens. Moreover, in an attempt to explore alternate intervention strategies, drug repurposing is gaining attention over development of novel drugs/antimicrobials. With the prevalence of multidrug resistance and high medical burden associated with <i>Pseudomonas aeruginosa</i>, there is an urgent need to devise novel therapeutics to combat this bacterial pathogen. In this context, the present study was undertaken to scrutinize the anti-quorum sensing (QS) and antivirulence potential of commonly consumed drugs such as fexofenadine (FeX), ivermectin (IvM), nitrofurantoin (NiT), levocetrizine (LvC), atorvastatin (AtS), and aceclofenac (AcF), against <i>P. aeruginosa</i>. The methodology involved assessment of antibacterial activity against <i>P. aeruginosa</i> PAO1 and quorum quenching (QQ) potential using <i>Agrobacterium tumefaciens</i> NTL4 biosensor strain. The antivirulence prospects were investigated by estimating the production of hallmark virulence factors in <i>P. aeruginosa</i> accompanied by molecular docking to predict drug associations with the QS receptors. Interestingly, all the drugs harbored antibacterial, anti-QS, and antivirulence potential in vitro, which consequently disrupted QS circuits and attenuated pseudomonal virulence phenotypically by significantly lowering the production of pyocyanin, hemolysin, pyochelin, and total bacterial protease in vitro. Moreover, the findings were validated by computational studies that predicted strong molecular interactions between the test drugs and QS receptors of <i>P. aeruginosa</i>. Hence, this study is the first to suggest the prospect of repurposing FeX, IvM, NiT, LvC, AtS, and AcF against <i>P. aeruginosa</i>.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phytohormones are signaling substances that control essential elements of growth, development, and reactions to environmental stress. Drought, salt, heat, cold, and floods are a few examples of abiotic factors that have a significant impact on plant development and survival. Complex sensing, signaling, and stress response systems are needed for adaptation and tolerance to such pressures. Abscisic acid (ABA) is a key phytohormone that regulates stress responses. It interacts with the jasmonic acid (JA) and salicylic acid (SA) signaling pathways to direct resources toward reducing the impacts of abiotic stressors rather than fighting against pathogens. Under exposure to nanoparticles, the plant growth hormones also function as molecules that regulate stress and are known to be involved in a variety of signaling cascades. Reactive oxygen species (ROS) are detected in excess while under stress, and nanoparticles can control their formation. Understanding the way these many signaling pathways interact in plants will tremendously help breeders create food crops that can survive in deteriorating environmental circumstances brought on by climate change and that can sustain or even improve crop production. Recent studies have demonstrated that phytohormones, such as the traditional auxins, cytokinins, ethylene, and gibberellins, as well as more recent members like brassinosteroids, jasmonates, and strigolactones, may prove to be significant metabolic engineering targets for creating crop plants that are resistant to abiotic stress. In this review, we address recent developments in current understanding regarding the way various plant hormones regulate plant responses to abiotic stress and highlight instances of hormonal communication between plants during abiotic stress signaling. We also discuss new insights into plant gene and growth regulation mechanisms during stress, phytohormone engineering, nanotechnological crosstalk of phytohormones, and Plant Growth-Promoting Rhizobacteria's Regulatory Powers (PGPR) via the involvement of phytohormones.
{"title":"Unveiling the secrets of abiotic stress tolerance in plants through molecular and hormonal insights.","authors":"Saurabh Gupta, Rasanpreet Kaur, Anshu Upadhyay, Arjun Chauhan, Vishal Tripathi","doi":"10.1007/s13205-024-04083-7","DOIUrl":"10.1007/s13205-024-04083-7","url":null,"abstract":"<p><p>Phytohormones are signaling substances that control essential elements of growth, development, and reactions to environmental stress. Drought, salt, heat, cold, and floods are a few examples of abiotic factors that have a significant impact on plant development and survival. Complex sensing, signaling, and stress response systems are needed for adaptation and tolerance to such pressures. Abscisic acid (ABA) is a key phytohormone that regulates stress responses. It interacts with the jasmonic acid (JA) and salicylic acid (SA) signaling pathways to direct resources toward reducing the impacts of abiotic stressors rather than fighting against pathogens. Under exposure to nanoparticles, the plant growth hormones also function as molecules that regulate stress and are known to be involved in a variety of signaling cascades. Reactive oxygen species (ROS) are detected in excess while under stress, and nanoparticles can control their formation. Understanding the way these many signaling pathways interact in plants will tremendously help breeders create food crops that can survive in deteriorating environmental circumstances brought on by climate change and that can sustain or even improve crop production. Recent studies have demonstrated that phytohormones, such as the traditional auxins, cytokinins, ethylene, and gibberellins, as well as more recent members like brassinosteroids, jasmonates, and strigolactones, may prove to be significant metabolic engineering targets for creating crop plants that are resistant to abiotic stress. In this review, we address recent developments in current understanding regarding the way various plant hormones regulate plant responses to abiotic stress and highlight instances of hormonal communication between plants during abiotic stress signaling. We also discuss new insights into plant gene and growth regulation mechanisms during stress, phytohormone engineering, nanotechnological crosstalk of phytohormones, and Plant Growth-Promoting Rhizobacteria's Regulatory Powers (PGPR) via the involvement of phytohormones.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427653/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Severe incidence of Alternaria spp. was observed in the three solanaceous vegetables viz. tomato, potato and brinjal grown in National Capital Region of Delhi and Haryana. The symptomatic plants exhibited necrotic brown lesions on the leaves initiating from the lower older leaves and extending to stem, affecting the whole plant. Subsequently, black sooty sporulation was observed in fruits of tomato and brinjal crop. During the survey, tomato crop was most susceptible with 98.99% incidence, followed by brinjal with 82.36% and potato with 61.19% incidence. The mean plant disease index varied between 9.98% and 65.99% among the three crops. Isolation and characterization of the causal agent from symptomatic plants revealed association of small-spored Alternaria spp. in all crops. Further, morphological and Internal Transcribed Spacer (ITS) sequencing phylogenetic analysis ascertained the fungus belong to Alternaria section of Alternaria genus. As tomato was found most susceptible, host plant resistance was explored among 197 tomato germplasm/breeding lines under epiphytotic conditions. It was found that 08 accessions exhibited moderate resistance against pathogen. The findings in the study suggest that small-spored Alternaria is an emerging problem in the solanaceous vegetables and warrants attention for effective management of the disease.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04059-7.
{"title":"<i>Alternaria alternata</i> species complex impairing solanaceous vegetables in Northern parts of India: an emerging problem in <i>Solanum lycopersicum</i> L.","authors":"Rekha Balodi, Kerur Vishwanath Raghavendra, Praveen Kumar Singh, Zakir Hussain, Sachin Suresh Suroshe, Pawan Kumar, Subhash Chander","doi":"10.1007/s13205-024-04059-7","DOIUrl":"10.1007/s13205-024-04059-7","url":null,"abstract":"<p><p>Severe incidence of <i>Alternaria</i> spp. was observed in the three solanaceous vegetables viz. tomato, potato and brinjal grown in National Capital Region of Delhi and Haryana. The symptomatic plants exhibited necrotic brown lesions on the leaves initiating from the lower older leaves and extending to stem, affecting the whole plant. Subsequently, black sooty sporulation was observed in fruits of tomato and brinjal crop. During the survey, tomato crop was most susceptible with 98.99% incidence, followed by brinjal with 82.36% and potato with 61.19% incidence. The mean plant disease index varied between 9.98% and 65.99% among the three crops. Isolation and characterization of the causal agent from symptomatic plants revealed association of small-spored <i>Alternaria</i> spp. in all crops. Further, morphological and Internal Transcribed Spacer (ITS) sequencing phylogenetic analysis ascertained the fungus belong to <i>Alternaria</i> section of <i>Alternaria</i> genus. As tomato was found most susceptible, host plant resistance was explored among 197 tomato germplasm/breeding lines under epiphytotic conditions. It was found that 08 accessions exhibited moderate resistance against pathogen. The findings in the study suggest that small-spored <i>Alternaria</i> is an emerging problem in the solanaceous vegetables and warrants attention for effective management of the disease.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04059-7.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368882/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Genetic risk significantly influence susceptibility and heterogeneity of chronic obstructive pulmonary disease (COPD) and asthma, and increasing evidence suggests their close association with lipdome. However, their causal relationship remains unclear. In this study, we conducted a two-sample MR (Mendelian randomization) analysis using publicly available large-scale genome-wide association studies (GWAS) data to evaluate the causal impact of lipdome on COPD and asthma. The inverse variance weighted (IVW) method served as the primary analysis method, and multiple sensitivity and heterogeneity tests were performed to assess the reliability of the results. Finally, a Meta-analysis was conducted on lipdome with significant causal relationships to validate the robustness of the results. Our findings suggest that Sterol ester (27:1/18:2), Phosphatidylcholine (15:0_18:2), (16:0_18:2), (16:0_20:2), (17:0_18:2), (18:1_18:1), (18:1_18:2), (18:1_20:2), Triacylglycerol (54:3), and (56:4) levels are protective factors for COPD, while levels of Phosphatidylcholine (16:0_22:5), (18:0_20:4), and (O-16:0_20:4) are risk factors for COPD. Meta-analysis of lipids causally related to COPD also indicates significant results. Phosphatidylcholine (16:0_20:4), (16:0_22:5), and (18:0_20:4) levels are risk factors for asthma, while Phosphatidylcholine (18:1_18:2), (18:1_20:2), and Sphingomyelin (d38:1) levels are protective factors for asthma. However, the lack of statistical significance in the Meta-analysis may be due to heterogeneity in research methods and data statistics. This study indicates that 4 lipdome species have significant correlations with COPD and asthma. Phosphatidylcholine (18:1_18:2) and (18:1_20:2) are protective factors, while Phosphatidylcholine (16:0_22:5) and (18:0_20:4) are risk factors. Additionally, due to differences in molecular subtypes, phosphatidylcholine, sterol ester, and triacylglycerol exhibit differential effects on the diseases.
{"title":"Causal relationship between Lipdome and Chronic Obstructive Pulmonary Disease and Asthma: Mendelian randomization.","authors":"Qiong Wu, Jingmin Fu, Cheng Zhang, Zhuolin Liu, Jianing Shi, Zhiying Feng, Kangyu Wang, Ling Li","doi":"10.1007/s13205-024-04071-x","DOIUrl":"10.1007/s13205-024-04071-x","url":null,"abstract":"<p><p>Genetic risk significantly influence susceptibility and heterogeneity of chronic obstructive pulmonary disease (COPD) and asthma, and increasing evidence suggests their close association with lipdome. However, their causal relationship remains unclear. In this study, we conducted a two-sample MR (Mendelian randomization) analysis using publicly available large-scale genome-wide association studies (GWAS) data to evaluate the causal impact of lipdome on COPD and asthma. The inverse variance weighted (IVW) method served as the primary analysis method, and multiple sensitivity and heterogeneity tests were performed to assess the reliability of the results. Finally, a Meta-analysis was conducted on lipdome with significant causal relationships to validate the robustness of the results. Our findings suggest that Sterol ester (27:1/18:2), Phosphatidylcholine (15:0_18:2), (16:0_18:2), (16:0_20:2), (17:0_18:2), (18:1_18:1), (18:1_18:2), (18:1_20:2), Triacylglycerol (54:3), and (56:4) levels are protective factors for COPD, while levels of Phosphatidylcholine (16:0_22:5), (18:0_20:4), and (O-16:0_20:4) are risk factors for COPD. Meta-analysis of lipids causally related to COPD also indicates significant results. Phosphatidylcholine (16:0_20:4), (16:0_22:5), and (18:0_20:4) levels are risk factors for asthma, while Phosphatidylcholine (18:1_18:2), (18:1_20:2), and Sphingomyelin (d38:1) levels are protective factors for asthma. However, the lack of statistical significance in the Meta-analysis may be due to heterogeneity in research methods and data statistics. This study indicates that 4 lipdome species have significant correlations with COPD and asthma. Phosphatidylcholine (18:1_18:2) and (18:1_20:2) are protective factors, while Phosphatidylcholine (16:0_22:5) and (18:0_20:4) are risk factors. Additionally, due to differences in molecular subtypes, phosphatidylcholine, sterol ester, and triacylglycerol exhibit differential effects on the diseases.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424600/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-06DOI: 10.1007/s13205-024-04065-9
Bhumi Rajguru, Manju Shri, Vaibhav D Bhatt
The rhizosphere, the soil region influenced by plant roots, represents a dynamic microenvironment where intricate interactions between plants and microorganisms shape soil health, nutrient cycling, and plant growth. Soil microorganisms are integral players in the transformation of materials, the dynamics of energy flows, and the intricate cycles of biogeochemistry. Considerable research has been dedicated to investigating the abundance, diversity, and intricacies of interactions among different microbes, as well as the relationships between plants and microbes present in the rhizosphere. Metagenomics, a powerful suite of techniques, has emerged as a transformative tool for dissecting the genetic repertoire of complex microbial communities inhabiting the rhizosphere. The review systematically navigates through various metagenomic approaches, ranging from shotgun metagenomics, enabling unbiased analysis of entire microbial genomes, to targeted sequencing of the 16S rRNA gene for taxonomic profiling. Each approach's strengths and limitations are critically evaluated, providing researchers with a nuanced understanding of their applicability in different research contexts. A central focus of the review lies in the practical applications of rhizosphere metagenomics in various fields including agriculture. By decoding the genomic content of rhizospheric microbes, researchers gain insights into their functional roles in nutrient acquisition, disease suppression, and overall plant health. The review also addresses the broader implications of metagenomic studies in advancing our understanding of microbial diversity and community dynamics in the rhizosphere. It serves as a comprehensive guide for researchers, agronomists, and policymakers, offering a roadmap for harnessing metagenomic approaches to unlock the full potential of the rhizosphere microbiome in promoting sustainable agriculture.
{"title":"Exploring microbial diversity in the rhizosphere: a comprehensive review of metagenomic approaches and their applications.","authors":"Bhumi Rajguru, Manju Shri, Vaibhav D Bhatt","doi":"10.1007/s13205-024-04065-9","DOIUrl":"10.1007/s13205-024-04065-9","url":null,"abstract":"<p><p>The rhizosphere, the soil region influenced by plant roots, represents a dynamic microenvironment where intricate interactions between plants and microorganisms shape soil health, nutrient cycling, and plant growth. Soil microorganisms are integral players in the transformation of materials, the dynamics of energy flows, and the intricate cycles of biogeochemistry. Considerable research has been dedicated to investigating the abundance, diversity, and intricacies of interactions among different microbes, as well as the relationships between plants and microbes present in the rhizosphere. Metagenomics, a powerful suite of techniques, has emerged as a transformative tool for dissecting the genetic repertoire of complex microbial communities inhabiting the rhizosphere. The review systematically navigates through various metagenomic approaches, ranging from shotgun metagenomics, enabling unbiased analysis of entire microbial genomes, to targeted sequencing of the 16S rRNA gene for taxonomic profiling. Each approach's strengths and limitations are critically evaluated, providing researchers with a nuanced understanding of their applicability in different research contexts. A central focus of the review lies in the practical applications of rhizosphere metagenomics in various fields including agriculture. By decoding the genomic content of rhizospheric microbes, researchers gain insights into their functional roles in nutrient acquisition, disease suppression, and overall plant health. The review also addresses the broader implications of metagenomic studies in advancing our understanding of microbial diversity and community dynamics in the rhizosphere. It serves as a comprehensive guide for researchers, agronomists, and policymakers, offering a roadmap for harnessing metagenomic approaches to unlock the full potential of the rhizosphere microbiome in promoting sustainable agriculture.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-06DOI: 10.1007/s13205-024-04073-9
Anusiya Ganesan, Jaiganesh Rengarajan
The emerging field of green synthesis within nanobiotechnology presents significant environmental and economic advantages compared to conventional methodologies. This study investigates the synthesis and application of chitosan nanoparticles (ChNPs) using Cassia fistula (CF) leaf extract as a sustainable, and bio-based approach. Characterization of CF-ChNPs confirmed effective bioconversion and also demonstrated significant antimicrobial activity. Notably, CF-ChNPs demonstrated a remarkable antimicrobial effect against Pseudomonas aeruginosa, with a zone of inhibition of 17 ± 0.2 mm surpassing the impact on other organisms tested. The CF-ChNPs exhibited an initial burst release of 28 ± 0.28% after 2 h, gradually achieving a controlled release of 76.3 ± 0.43% within 24 h. In addition, CF-ChNPs exhibited an antioxidant activity of 43.1 ± 0.48% and showed excellent antibiofilm activity against Staphylococcus aureus in comparison to other organisms. The cell viability assay results have confirmed that CF-ChNPs do not have any negative impact on the viability of L929 fibroblasts, further highlighting their potential as versatile nanomaterials for treating microbial infections and other therapeutic applications.
{"title":"Green synthesis of chitosan nanoparticles using <i>Cassia fistula</i> leaf extract: evaluation of antimicrobial, antioxidant, antibiofilm, and cytotoxic activities.","authors":"Anusiya Ganesan, Jaiganesh Rengarajan","doi":"10.1007/s13205-024-04073-9","DOIUrl":"10.1007/s13205-024-04073-9","url":null,"abstract":"<p><p>The emerging field of green synthesis within nanobiotechnology presents significant environmental and economic advantages compared to conventional methodologies. This study investigates the synthesis and application of chitosan nanoparticles (ChNPs) using <i>Cassia fistula</i> (CF) leaf extract as a sustainable, and bio-based approach. Characterization of CF-ChNPs confirmed effective bioconversion and also demonstrated significant antimicrobial activity. Notably, CF-ChNPs demonstrated a remarkable antimicrobial effect against <i>Pseudomonas aeruginosa</i>, with a zone of inhibition of 17 ± 0.2 mm surpassing the impact on other organisms tested. The CF-ChNPs exhibited an initial burst release of 28 ± 0.28% after 2 h, gradually achieving a controlled release of 76.3 ± 0.43% within 24 h. In addition, CF-ChNPs exhibited an antioxidant activity of 43.1 ± 0.48% and showed excellent antibiofilm activity against <i>Staphylococcus aureus</i> in comparison to other organisms. The cell viability assay results have confirmed that CF-ChNPs do not have any negative impact on the viability of L929 fibroblasts, further highlighting their potential as versatile nanomaterials for treating microbial infections and other therapeutic applications.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-09-22DOI: 10.1007/s13205-024-04075-7
Kajal, Achyut Pandey, Shruti Mishra
This review traces the development of vaccines from ancient times to the present, highlighting major milestones and challenges. It covers the significant impact of vaccines on public health, including the eradication of diseases such as smallpox and the reduction of others such as polio, measles, and influenza. The review provides an in-depth look at the COVID-19 vaccines, which were developed at unprecedented speeds due to the urgent global need. The study emphasizes the ongoing potential of vaccine development to address future global health challenges, demonstrating the critical role vaccines play in disease prevention and public health. Moreover, it discusses the evolution of vaccine technology, from live-attenuated and inactivated vaccines to modern recombinant and mRNA vaccines, showcasing the advancements that have enabled rapid responses to emerging infectious diseases. The review underscores the importance of continued investment in research and development, global collaboration, and the adoption of new technologies to enhance vaccine efficacy and coverage. By exploring historical and contemporary examples, the article illustrates how vaccines have transformed medical practice and public health outcomes, providing valuable insights into future directions for vaccine innovation and deployment.
{"title":"From ancient remedies to modern miracles: tracing the evolution of vaccines and their impact on public health.","authors":"Kajal, Achyut Pandey, Shruti Mishra","doi":"10.1007/s13205-024-04075-7","DOIUrl":"10.1007/s13205-024-04075-7","url":null,"abstract":"<p><p>This review traces the development of vaccines from ancient times to the present, highlighting major milestones and challenges. It covers the significant impact of vaccines on public health, including the eradication of diseases such as smallpox and the reduction of others such as polio, measles, and influenza. The review provides an in-depth look at the COVID-19 vaccines, which were developed at unprecedented speeds due to the urgent global need. The study emphasizes the ongoing potential of vaccine development to address future global health challenges, demonstrating the critical role vaccines play in disease prevention and public health. Moreover, it discusses the evolution of vaccine technology, from live-attenuated and inactivated vaccines to modern recombinant and mRNA vaccines, showcasing the advancements that have enabled rapid responses to emerging infectious diseases. The review underscores the importance of continued investment in research and development, global collaboration, and the adoption of new technologies to enhance vaccine efficacy and coverage. By exploring historical and contemporary examples, the article illustrates how vaccines have transformed medical practice and public health outcomes, providing valuable insights into future directions for vaccine innovation and deployment.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}