首页 > 最新文献

Additive manufacturing最新文献

英文 中文
Carbon reduction of 3D-ink-extruded oxide powders for synthesis of equiatomic CoCuFeNi microlattices 三维墨水挤压氧化物粉末的碳还原,用于合成等原子 CoCuFeNi 微晶格
IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-08-25 DOI: 10.1016/j.addma.2024.104489
Ya-Chu Hsu, Dingchang Zhang, David C. Dunand
Equiatomic CoCuFeNi high-entropy alloy microlattices are created by 3D-extrusion printing of an ink containing a blend of binary oxides (Co3O4+CuO+Fe2O3+NiO) and graphite (C) powders. After printing, the green parts are subjected to a series of heat treatments under Ar leading to (i) carbon reduction of the oxides to form metallic particles, (ii) interdiffusion of these metallic particles to create an alloy, and (iii) sintering to remove porosity. The phase evolution in individual extruded filaments (similar to struts in the microlattices) is observed by in-situ X-ray diffraction, showing that intermediate suboxide phases (Cu2O, CoO, Fe3O4, CuFeO2, and FeO) form as the original oxides are reduced by carbon, before the final metallic alloy is formed. At 830 °C, the extruded filaments comprise a face-centered cubic CoCuNi(+Fe) alloy with unreduced FeO inclusions. After reduction and sintering at 1100 °C, homogeneous, densified, equiatomic CoCuFeNi microlattices are achieved, containing small amounts of a Cu-rich phase. At room temperature, the compressive strength of these CoCuFeNi microlattices increases as the strut diameter decreases from ∼260 to ∼130 µm, as expected from an observed drop in strut porosity resulting from more complete sintering. This is consistent with the easier escape of CO+CO2 gas created during carbothermic oxide reduction from the thinner struts undergoing reduction and sintering.
等原子 CoCuFeNi 高熵合金微晶格是通过三维挤压打印含有二元氧化物(Co3O4+CuO+Fe2O3+NiO)和石墨(C)粉末混合物的墨水制成的。印刷完成后,在氩气环境下对绿色部件进行一系列热处理,使(i) 氧化物碳还原形成金属颗粒,(ii) 这些金属颗粒相互扩散形成合金,(iii) 烧结去除孔隙。通过原位 X 射线衍射观察单个挤压丝(类似于微晶格中的支柱)的相变,显示在形成最终的金属合金之前,随着原始氧化物被碳还原,形成了中间亚氧化物相(Cu2O、CoO、Fe3O4、CuFeO2 和 FeO)。在 830 ℃ 时,挤压出的丝由面心立方的 CoCuNi(+Fe)合金和未还原的 FeO 杂质组成。在 1100 °C 下还原和烧结后,形成了均匀、致密、等原子的 CoCuFeNi 微晶格,其中含有少量富铜相。在室温下,这些 CoCuFeNi 微晶格的抗压强度随着支杆直径从 ∼260 微米减小到 ∼130 微米而增加,这与观察到的支杆孔隙率因烧结更完全而下降是一致的。这与碳热氧化还原过程中产生的 CO+CO2 气体更容易从还原和烧结过程中更薄的支柱中逸出是一致的。
{"title":"Carbon reduction of 3D-ink-extruded oxide powders for synthesis of equiatomic CoCuFeNi microlattices","authors":"Ya-Chu Hsu,&nbsp;Dingchang Zhang,&nbsp;David C. Dunand","doi":"10.1016/j.addma.2024.104489","DOIUrl":"10.1016/j.addma.2024.104489","url":null,"abstract":"<div><div>Equiatomic CoCuFeNi high-entropy alloy microlattices are created by 3D-extrusion printing of an ink containing a blend of binary oxides (Co<sub>3</sub>O<sub>4</sub>+CuO+Fe<sub>2</sub>O<sub>3</sub>+NiO) and graphite (C) powders. After printing, the green parts are subjected to a series of heat treatments under Ar leading to (i) carbon reduction of the oxides to form metallic particles, (ii) interdiffusion of these metallic particles to create an alloy, and (iii) sintering to remove porosity. The phase evolution in individual extruded filaments (similar to struts in the microlattices) is observed by <em>in-situ</em> X-ray diffraction, showing that intermediate suboxide phases (Cu<sub>2</sub>O, CoO, Fe<sub>3</sub>O<sub>4</sub>, CuFeO<sub>2</sub>, and FeO) form as the original oxides are reduced by carbon, before the final metallic alloy is formed. At 830 °C, the extruded filaments comprise a face-centered cubic CoCuNi(+Fe) alloy with unreduced FeO inclusions. After reduction and sintering at 1100 °C, homogeneous, densified, equiatomic CoCuFeNi microlattices are achieved, containing small amounts of a Cu-rich phase. At room temperature, the compressive strength of these CoCuFeNi microlattices increases as the strut diameter decreases from ∼260 to ∼130 µm, as expected from an observed drop in strut porosity resulting from more complete sintering. This is consistent with the easier escape of CO+CO<sub>2</sub> gas created during carbothermic oxide reduction from the thinner struts undergoing reduction and sintering.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104489"},"PeriodicalIF":10.3,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-physics simulation for predicting surface roughness of laser powder bed fused parts after laser polishing 预测激光抛光后激光粉末床熔融部件表面粗糙度的多物理场模拟
IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-08-25 DOI: 10.1016/j.addma.2024.104486
Dac-Phuc Pham , Hong-Chuong Tran
Laser powder bed fusion (L-PBF) uses a controlled laser beam to melt specific regions of a metal powder bed in a layer-by-layer fashion to fabricate parts with an intricate geometry. However, due to the stochastic nature of the L-PBF process, many defects may occur during the build process, including distortion, porosity, and high surface roughness. A poor roughness of the upper surface is frequently associated with impaired mechanical properties and a lower corrosion resistance. Thus, laser polishing (LP) is commonly employed to smooth the surface of the component following the build process. The surface finish of the polished part is dependent not only on the initial morphology of the surface, but also the processing conditions employed in the polishing process (i.e., the laser power, scanning speed, and hatching space). The surface profile is also influenced by physical phenomena such as the surface tension force, recoil pressure, and Marangoni force. The present study thus proposes an integrated framework based on discrete element method (DEM) and computational fluid dynamics (CFD) simulations which takes account of all of these factors to predict the final surface morphology and roughness of L-PBF components following LP processing. The validity of the simulation model is confirmed by comparing the calculated mean surface roughness of the polished components (Sa)with the experimental values. It is found that the maximum error of the simulation results for different initial surface morphologies and LP processing conditions is less than 6.8 %.
激光粉末床熔融(L-PBF)利用可控激光束逐层熔化金属粉末床的特定区域,从而制造出具有复杂几何形状的零件。然而,由于 L-PBF 工艺的随机性,在制造过程中可能会出现许多缺陷,包括变形、气孔和高表面粗糙度。上表面粗糙度差通常与机械性能受损和耐腐蚀性降低有关。因此,通常采用激光抛光(LP)来平滑制造过程后的部件表面。抛光部件的表面光洁度不仅取决于表面的初始形态,还取决于抛光过程中采用的加工条件(即激光功率、扫描速度和孵化空间)。表面轮廓还受到表面张力、反冲压力和马兰戈尼力等物理现象的影响。因此,本研究提出了一个基于离散元素法(DEM)和计算流体动力学(CFD)模拟的综合框架,该框架考虑了所有这些因素,以预测 LP 加工后 L-PBF 组件的最终表面形态和粗糙度。通过将计算得出的抛光组件平均表面粗糙度 (Sa) 与实验值进行比较,证实了模拟模型的有效性。结果发现,在不同的初始表面形态和 LP 加工条件下,模拟结果的最大误差小于 6.8%。
{"title":"Multi-physics simulation for predicting surface roughness of laser powder bed fused parts after laser polishing","authors":"Dac-Phuc Pham ,&nbsp;Hong-Chuong Tran","doi":"10.1016/j.addma.2024.104486","DOIUrl":"10.1016/j.addma.2024.104486","url":null,"abstract":"<div><div>Laser powder bed fusion (L-PBF) uses a controlled laser beam to melt specific regions of a metal powder bed in a layer-by-layer fashion to fabricate parts with an intricate geometry. However, due to the stochastic nature of the L-PBF process, many defects may occur during the build process, including distortion, porosity, and high surface roughness. A poor roughness of the upper surface is frequently associated with impaired mechanical properties and a lower corrosion resistance. Thus, laser polishing (LP) is commonly employed to smooth the surface of the component following the build process. The surface finish of the polished part is dependent not only on the initial morphology of the surface, but also the processing conditions employed in the polishing process (i.e., the laser power, scanning speed, and hatching space). The surface profile is also influenced by physical phenomena such as the surface tension force, recoil pressure, and Marangoni force. The present study thus proposes an integrated framework based on discrete element method (DEM) and computational fluid dynamics (CFD) simulations which takes account of all of these factors to predict the final surface morphology and roughness of L-PBF components following LP processing. The validity of the simulation model is confirmed by comparing the calculated mean surface roughness of the polished components (<span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo><mspace></mspace></mrow></math></span>with the experimental values. It is found that the maximum error of the simulation results for different initial surface morphologies and LP processing conditions is less than 6.8 %.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104486"},"PeriodicalIF":10.3,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards bespoke gas permeability by functionally graded structures in laser-based powder bed fusion of metals 通过激光粉末床熔融金属中的功能分级结构实现定制气体渗透性
IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-08-25 DOI: 10.1016/j.addma.2024.104466
Clemens Maucher , Yeonse Kang , Stefan Bechler , Matthias Ruf , Holger Steeb , Hans-Christian Möhring , Fabian Hampp
Permeable, media transporting, components are an integral part in numerous technical applications. In gas turbines combustors, for example, gaseous oxidizer and fuel are transported separately into the burner, where they are injected and mixed, and subsequently combusted. The mixture homogeneity strongly affects the combustion performance and emissions formation and is, amongst other, determined by the spatial distribution of fuel injection ports. In this context, porous media provide the limiting case for a spatial distribution of media-injecting pores, yet is typically associated with a high pressure drop that yields a loss in efficiency. In this study, possibilities of achieving gas permeability in additively manufactured porous structures are investigated. The objective is to selectively functionalize the permeable layers for gaseous media supply with low pressure loss and, when needed, enable a targeted mixing of different gas streams. For this purpose, a laser-based powder bed fusion process (PBF-LB/M) was used in this study. It offers the opportunity to manufacture varying porosities inside complex monolithic metal parts. To produce the porous structures and to achieve gas permeability, the effect of scan rotation angle, hatch distance, build-up direction and length of the porous specimen is investigated. Due to the high temperatures present in combustion systems, the present work utilizes Inconel 718 material. The AM gas permeable specimen are experimentally characterized by means of surface topography, micro X-ray computed tomography (µXRCT) as well as flow and pressure loss test. The results show, that the AM process parameter provide effective control parameters to adjust the permeability. The strongest effect originates from the hatch distance for a given build-up direction. Depending on the scan rotation, the flow transitions from a turbulent pipe flow to a Darcy flow as present in conventional porous media. A structured alignment and connectivity of pores can be realized as evident in the µXRCT results, surface topography and the flow measurements. Residual powder, powder adhering to the pore walls and stochastic closure of pores or channels lead to deviations and need to be considered when designing respective parts. Nonetheless, the results further show that a directional dependence of the permeability and the build-up direction can be realized and controlled. Consequently, when considering the AM build-strategy in the design of components, this directed permeability can be functionalized in the generation of gas transporting and gas mixing layers separately by adjusting the AM processing parameter.
可渗透介质输送部件是众多技术应用中不可或缺的组成部分。例如,在燃气轮机的燃烧器中,气态氧化剂和燃料被分别输送到燃烧器中,在那里进行喷射和混合,然后进行燃烧。混合物的均匀性对燃烧性能和排放物的形成有很大影响,除其他外,还取决于燃料喷射口的空间分布。在这种情况下,多孔介质提供了介质喷射孔空间分布的极限情况,但通常与产生效率损失的高压力降有关。本研究探讨了在添加制造的多孔结构中实现气体渗透的可能性。其目的是有选择性地对透气层进行功能化处理,以便以较低的压力损失提供气体介质,并在需要时实现不同气流的定向混合。为此,本研究采用了激光粉末床熔融工艺(PBF-LB/M)。该工艺可在复杂的整体金属部件内制造不同的多孔结构。为了制造多孔结构并实现气体渗透性,研究了扫描旋转角度、舱口距离、堆积方向和多孔试样长度的影响。由于燃烧系统温度较高,本研究采用了铬镍铁合金 718 材料。通过表面形貌、微 X 射线计算机断层扫描 (µXRCT) 以及流量和压力损失测试,对 AM 气体渗透试样进行了实验表征。结果表明,AM 工艺参数提供了调整渗透性的有效控制参数。在给定的堆积方向上,最大的影响来自于舱口距离。根据扫描旋转的不同,流动会从湍流管流过渡到传统多孔介质中的达西流。从 µXRCT 结果、表面形貌和流动测量结果中可以明显看出,孔隙的结构排列和连通性得以实现。残留粉末、粘附在孔壁的粉末以及孔隙或通道的随机闭合会导致偏差,因此在设计相应部件时需要加以考虑。尽管如此,结果进一步表明,渗透率和堆积方向的定向依赖性是可以实现和控制的。因此,在设计部件时考虑 AM 构建策略时,可以通过调整 AM 加工参数,在生成气体输送层和气体混合层时将这种定向渗透性功能化。
{"title":"Towards bespoke gas permeability by functionally graded structures in laser-based powder bed fusion of metals","authors":"Clemens Maucher ,&nbsp;Yeonse Kang ,&nbsp;Stefan Bechler ,&nbsp;Matthias Ruf ,&nbsp;Holger Steeb ,&nbsp;Hans-Christian Möhring ,&nbsp;Fabian Hampp","doi":"10.1016/j.addma.2024.104466","DOIUrl":"10.1016/j.addma.2024.104466","url":null,"abstract":"<div><div>Permeable, media transporting, components are an integral part in numerous technical applications. In gas turbines combustors, for example, gaseous oxidizer and fuel are transported separately into the burner, where they are injected and mixed, and subsequently combusted. The mixture homogeneity strongly affects the combustion performance and emissions formation and is, amongst other, determined by the spatial distribution of fuel injection ports. In this context, porous media provide the limiting case for a spatial distribution of media-injecting pores, yet is typically associated with a high pressure drop that yields a loss in efficiency. In this study, possibilities of achieving gas permeability in additively manufactured porous structures are investigated. The objective is to selectively functionalize the permeable layers for gaseous media supply with low pressure loss and, when needed, enable a targeted mixing of different gas streams. For this purpose, a laser-based powder bed fusion process (PBF-LB/M) was used in this study. It offers the opportunity to manufacture varying porosities inside complex monolithic metal parts. To produce the porous structures and to achieve gas permeability, the effect of scan rotation angle, hatch distance, build-up direction and length of the porous specimen is investigated. Due to the high temperatures present in combustion systems, the present work utilizes Inconel 718 material. The AM gas permeable specimen are experimentally characterized by means of surface topography, micro X-ray computed tomography (µXRCT) as well as flow and pressure loss test. The results show, that the AM process parameter provide effective control parameters to adjust the permeability. The strongest effect originates from the hatch distance for a given build-up direction. Depending on the scan rotation, the flow transitions from a turbulent pipe flow to a Darcy flow as present in conventional porous media. A structured alignment and connectivity of pores can be realized as evident in the µXRCT results, surface topography and the flow measurements. Residual powder, powder adhering to the pore walls and stochastic closure of pores or channels lead to deviations and need to be considered when designing respective parts. Nonetheless, the results further show that a directional dependence of the permeability and the build-up direction can be realized and controlled. Consequently, when considering the AM build-strategy in the design of components, this directed permeability can be functionalized in the generation of gas transporting and gas mixing layers separately by adjusting the AM processing parameter.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104466"},"PeriodicalIF":10.3,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vat photopolymerization based digital light processing 3D printing hydrogels in biomedical fields: Key parameters and perspective 用于生物医学领域的基于槽式光聚合的数字光处理三维打印水凝胶:关键参数和前景
IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-08-25 DOI: 10.1016/j.addma.2024.104443
Zhe Lu , Weizi Gao , Fukang Liu, Jingjing Cui, Shiwei Feng, Chen Liang, Yunlong Guo, Zhenxiang Wang, Zhijie Mao, Biao Zhang
Vat photopolymerization (VP) based digital light processing (DLP) 3D printing technology gains prominence in biomedical fields, particularly for creating complex tissue structures and aiding in regeneration. Hydrogels, known for their high-water content and biocompatibility, serve as an ideal material used in VP based DLP 3D printing for mimicking biological tissues. The review examines the crucial components of VP based DLP 3D printing of hydrogels in three categories: materials, including monomers and crosslinkers that make up of hydrogels; equipment, featuring various types of VP based DLP 3D printers; and printing parameters, such as light source and exposure time. The application of VP based DLP 3D printed hydrogels at different levels of biomedical field is discussed, providing an overview of the current trends and future possibilities of VP based DLP 3D printing hydrogels in biomedical science.
基于蒸气光聚合(VP)技术的数字光处理(DLP)三维打印技术在生物医学领域大放异彩,尤其是在创建复杂组织结构和帮助再生方面。水凝胶因其高含水量和生物相容性而闻名,是基于 VP 的 DLP 三维打印技术用于模拟生物组织的理想材料。综述从三个方面探讨了基于VP的DLP三维打印水凝胶的关键组成部分:材料,包括构成水凝胶的单体和交联剂;设备,包括各种类型的基于VP的DLP三维打印机;以及打印参数,如光源和曝光时间。讨论了基于 VP 的 DLP 三维打印水凝胶在生物医学领域不同层面的应用,概述了基于 VP 的 DLP 三维打印水凝胶在生物医学科学中的当前趋势和未来可能性。
{"title":"Vat photopolymerization based digital light processing 3D printing hydrogels in biomedical fields: Key parameters and perspective","authors":"Zhe Lu ,&nbsp;Weizi Gao ,&nbsp;Fukang Liu,&nbsp;Jingjing Cui,&nbsp;Shiwei Feng,&nbsp;Chen Liang,&nbsp;Yunlong Guo,&nbsp;Zhenxiang Wang,&nbsp;Zhijie Mao,&nbsp;Biao Zhang","doi":"10.1016/j.addma.2024.104443","DOIUrl":"10.1016/j.addma.2024.104443","url":null,"abstract":"<div><div>Vat photopolymerization (VP) based digital light processing (DLP) 3D printing technology gains prominence in biomedical fields, particularly for creating complex tissue structures and aiding in regeneration. Hydrogels, known for their high-water content and biocompatibility, serve as an ideal material used in VP based DLP 3D printing for mimicking biological tissues. The review examines the crucial components of VP based DLP 3D printing of hydrogels in three categories: materials, including monomers and crosslinkers that make up of hydrogels; equipment, featuring various types of VP based DLP 3D printers; and printing parameters, such as light source and exposure time. The application of VP based DLP 3D printed hydrogels at different levels of biomedical field is discussed, providing an overview of the current trends and future possibilities of VP based DLP 3D printing hydrogels in biomedical science.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104443"},"PeriodicalIF":10.3,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving high strength-ductility of AZ91 magnesium alloy via wire-arc directed energy deposition assisted by interlayer friction stir processing 通过层间摩擦搅拌加工辅助线弧定向能沉积实现 AZ91 镁合金的高强度-电导率
IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-08-25 DOI: 10.1016/j.addma.2024.104453
Jingxun Wei , Changshu He , Mofan Qie , Yunan Liu , Hao Zhou , Chenxi Kang , Gaowu Qin
The coarse grain size and poor mechanical properties of wire-arc directed energy deposition (DED) magnesium (Mg) alloys have hindered their wider application. In this study, the AZ91 Mg alloy component was fabricated by wire-arc DED assisted by interlayer friction stir processing (IFSP), and the highest strength and elongation were obtained in wire-arc DED AZ91 Mg alloy, which was mainly attributed to grain refinement, fragmentation/dispersion/dissolution of β-Mg17Al12 phase and heterogeneous microstructure in the IFSP stir zone (SZ). The formation of heterogeneous structure is caused by the fact that the refined grains in the SZ of the previous layer are affected by the thermal cycling of the subsequent additive manufacturing process, which led to different degrees of grain growth in different micro-zones within a SZ, and ultimately formed the microstructure characteristics with alternating distribution of coarse and fine grains. Compared with the wire-arc DED samples, the ultimate tensile strength of the wire-arc DED + IFSP samples in the perpendicular and parallel to the building directions increased from 284 and 264 MPa to 315 and 324 MPa, respectively. These values are comparable to those of their wrought counterparts, and the elongation increased by over 50 %. This study thus provides new insights into microstructure modification and performance enhancement of wire-arc DED fabricated Mg-alloys via a novel IFSP technique.
线弧定向能沉积(DED)镁(Mg)合金晶粒粗大、机械性能差,阻碍了其广泛应用。本研究通过层间摩擦搅拌加工(IFSP)辅助线弧定向能沉积制造了 AZ91 镁合金成分,并在线弧定向能沉积 AZ91 镁合金中获得了最高的强度和伸长率,这主要归因于晶粒细化、β-Mg17Al12 相的破碎/分散/溶解以及 IFSP 搅拌区(SZ)中的异质微观结构。异质结构的形成是由于前一层 SZ 中的细化晶粒受到后续增材制造工艺热循环的影响,导致一个 SZ 内不同微区的晶粒生长程度不同,最终形成粗细晶粒交替分布的微观结构特征。与线弧 DED 样品相比,线弧 DED + IFSP 样品在垂直和平行于建筑方向上的极限抗拉强度分别从 284 和 264 兆帕增加到 315 和 324 兆帕。这些数值与锻造样品的数值相当,而伸长率则增加了 50 % 以上。因此,本研究为通过新型 IFSP 技术对线弧 DED 制造的镁合金的微观结构进行改性并提高其性能提供了新的见解。
{"title":"Achieving high strength-ductility of AZ91 magnesium alloy via wire-arc directed energy deposition assisted by interlayer friction stir processing","authors":"Jingxun Wei ,&nbsp;Changshu He ,&nbsp;Mofan Qie ,&nbsp;Yunan Liu ,&nbsp;Hao Zhou ,&nbsp;Chenxi Kang ,&nbsp;Gaowu Qin","doi":"10.1016/j.addma.2024.104453","DOIUrl":"10.1016/j.addma.2024.104453","url":null,"abstract":"<div><div>The coarse grain size and poor mechanical properties of wire-arc directed energy deposition (DED) magnesium (Mg) alloys have hindered their wider application. In this study, the AZ91 Mg alloy component was fabricated by wire-arc DED assisted by interlayer friction stir processing (IFSP), and the highest strength and elongation were obtained in wire-arc DED AZ91 Mg alloy, which was mainly attributed to grain refinement, fragmentation/dispersion/dissolution of β-Mg<sub>17</sub>Al<sub>12</sub> phase and heterogeneous microstructure in the IFSP stir zone (SZ). The formation of heterogeneous structure is caused by the fact that the refined grains in the SZ of the previous layer are affected by the thermal cycling of the subsequent additive manufacturing process, which led to different degrees of grain growth in different micro-zones within a SZ, and ultimately formed the microstructure characteristics with alternating distribution of coarse and fine grains. Compared with the wire-arc DED samples, the ultimate tensile strength of the wire-arc DED + IFSP samples in the perpendicular and parallel to the building directions increased from 284 and 264 MPa to 315 and 324 MPa, respectively. These values are comparable to those of their wrought counterparts, and the elongation increased by over 50 %. This study thus provides new insights into microstructure modification and performance enhancement of wire-arc DED fabricated Mg-alloys via a novel IFSP technique.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104453"},"PeriodicalIF":10.3,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser directed energy deposited eutectic high entropy alloy with tailored lamella structure via interlayer pause strategy 激光定向能沉积共晶高熵合金,通过层间暂停策略定制薄片结构
IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-08-25 DOI: 10.1016/j.addma.2024.104471
Zhouyang He , Xingbao Qiu , Xilei Bian , Shiwei Wu , Xiaolong Yu , Chenwei Liu , Zhen Hu , Yuefei Jia , Weisen Zheng , Jinqiang Shi , Zhibin Wu , Xiaogang Lu , Yandong Jia , Gang Wang
Eutectic high entropy alloys (EHEAs) have garnered significant attention due to their unique heterogeneous lamella structure, which imparts a desirable strength-ductility combination. Additive manufacturing (AM) techniques further exploit the advantageous properties of EHEAs through efficient fabrication and rapid heating/cooling processes. In this study, we fabricate near-fully dense and crack-free AlCoCrFeNi2.1 EHEA samples with an alternating nano-scale eutectic lamellar structure composed of disordered face-centered cubic (FCC) and ordered B2 phases using the laser directed energy deposition (LDED) method. By using a novel and simple interlayer pause strategy, we have found that the eutectic lamellar structure can be significantly refined, achieving approximately 40% greater refinement compared to the case without interlayer pause. The optimized EHEA exhibits an exceptionally high strength of 1214 MPa and a sufficient uniform elongation of 16.3%, outperforming the non-interlayer-pause counterpart by 14% in strength and 47% in uniform elongation. The superior mechanical properties of the AlCoCrFeNi2.1 EHEA are attributed to the synergistic effects of heterogeneous deformation-induced (HDI) strengthening and strain hardening mechanisms. Furthermore, the refined eutectic lamellar structure can effectively mitigate stress concentration mediated the formation of microcracks, thereby delaying fracture and maintaining plasticity. The interlayer pause strategy presented in this work offers a simple yet effective approach and valuable insights for the preparation of metallic materials with exceptional mechanical properties via LDED process.
共晶高熵合金(EHEAs)因其独特的异质薄片结构而备受关注,这种结构使其具有理想的强度-韧性组合。增材制造(AM)技术通过高效制造和快速加热/冷却过程,进一步利用了 EHEAs 的优势特性。在本研究中,我们采用激光定向能沉积(LDED)方法制造出了近乎完全致密且无裂纹的 AlCoCrFeNi2.1 EHEA 样品,该样品具有由无序面心立方(FCC)相和有序 B2 相组成的交替纳米级共晶薄片结构。通过使用一种新颖而简单的层间暂停策略,我们发现共晶薄片结构可以得到显著的细化,与没有层间暂停的情况相比,细化程度提高了约 40%。优化后的 EHEA 具有 1214 兆帕的超高强度和 16.3% 的足够均匀伸长率,在强度和均匀伸长率方面分别比未进行层间停顿的同类产品高出 14% 和 47%。AlCoCrFeNi2.1 EHEA 的优异机械性能归功于异质变形诱导(HDI)强化和应变硬化机制的协同效应。此外,细化的共晶层状结构可有效缓解应力集中导致的微裂纹形成,从而延迟断裂并保持塑性。本研究提出的层间暂停策略为通过 LDED 工艺制备具有优异机械性能的金属材料提供了一种简单而有效的方法和宝贵的见解。
{"title":"Laser directed energy deposited eutectic high entropy alloy with tailored lamella structure via interlayer pause strategy","authors":"Zhouyang He ,&nbsp;Xingbao Qiu ,&nbsp;Xilei Bian ,&nbsp;Shiwei Wu ,&nbsp;Xiaolong Yu ,&nbsp;Chenwei Liu ,&nbsp;Zhen Hu ,&nbsp;Yuefei Jia ,&nbsp;Weisen Zheng ,&nbsp;Jinqiang Shi ,&nbsp;Zhibin Wu ,&nbsp;Xiaogang Lu ,&nbsp;Yandong Jia ,&nbsp;Gang Wang","doi":"10.1016/j.addma.2024.104471","DOIUrl":"10.1016/j.addma.2024.104471","url":null,"abstract":"<div><div>Eutectic high entropy alloys (EHEAs) have garnered significant attention due to their unique heterogeneous lamella structure, which imparts a desirable strength-ductility combination. Additive manufacturing (AM) techniques further exploit the advantageous properties of EHEAs through efficient fabrication and rapid heating/cooling processes. In this study, we fabricate near-fully dense and crack-free AlCoCrFeNi<sub>2.1</sub> EHEA samples with an alternating nano-scale eutectic lamellar structure composed of disordered face-centered cubic (FCC) and ordered B2 phases using the laser directed energy deposition (LDED) method. By using a novel and simple interlayer pause strategy, we have found that the eutectic lamellar structure can be significantly refined, achieving approximately 40% greater refinement compared to the case without interlayer pause. The optimized EHEA exhibits an exceptionally high strength of 1214 MPa and a sufficient uniform elongation of 16.3%, outperforming the non-interlayer-pause counterpart by 14% in strength and 47% in uniform elongation. The superior mechanical properties of the AlCoCrFeNi<sub>2.1</sub> EHEA are attributed to the synergistic effects of heterogeneous deformation-induced (HDI) strengthening and strain hardening mechanisms. Furthermore, the refined eutectic lamellar structure can effectively mitigate stress concentration mediated the formation of microcracks, thereby delaying fracture and maintaining plasticity. The interlayer pause strategy presented in this work offers a simple yet effective approach and valuable insights for the preparation of metallic materials with exceptional mechanical properties via LDED process.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104471"},"PeriodicalIF":10.3,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive manufacturing of high-strength low-alloy AISI 4340 steel with an optimal strength-ductility-toughness trade-off 增材制造高强度低合金 AISI 4340 钢,实现强度-电导率-韧性的最佳平衡
IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-08-25 DOI: 10.1016/j.addma.2024.104496
Ju Yao, Qiyang Tan, Jeffrey Venezuela, Andrej Atrens, Ming-Xing Zhang
Additive manufacturing (AM) has revolutionised steel part fabrication, yet not all steels are amenable to its unique solidification features, characterised by cyclic and rapid heating/cooling, and directional solidification. These conditions often result in challenges such as columnar grain formation, microstructural heterogeneity, and consequently, inferior mechanical performance, brittleness and severe anisotropy in particular. Recent studies have adopted inoculation or post-fabrication treatments to address this issue, but often entailing extra cost and processing time. This study aims to verify that some steels such as AISI 4340 steel are inherently compatible to AM, producing components that are innately robust and ready for use in the as-built state. The medium carbon content and low alloying element concentration enable AM processing to produce a uniform and refined bainite microstructure with minimal elemental segregation, avoiding the formation of unstable retained austenite. The high AM-processability of this steel is demonstrated by achieving high densification (>99.9 %) across a broad processing window, which allows precise microstructural control via proper tunning the processing parameter modifications, inducing a transition from upper bainite to lower bainite dominance, to tailor mechanical properties for specific applications. The as AM-fabricated AISI 4340 steel exhibits a good combination of strength, ductility, and toughness, manifested by a yield strength range from 1240 to 1370 MPa, an ultimate tensile strength from 1360 to 1740 MPa, an elongation from 7 % to 14 %, and an impact toughness range of 11–44 J. The mechanical properties of the AM-fabricated 4340 steel are comparable to those of the wrought counterpart and superior to the majority of other AM-fabricated steels. This research reveals the high potential of AM to process high-strength low-alloy steels.
增材制造(AM)为钢部件制造带来了革命性的变化,但并非所有钢材都能适应其独特的凝固特性,其特点是循环快速加热/冷却和定向凝固。这些条件通常会导致柱状晶粒形成、微观结构异质性等挑战,从而导致机械性能下降、脆性增加,尤其是严重的各向异性。最近的研究采用接种或制造后处理来解决这一问题,但往往需要额外的成本和加工时间。本研究旨在验证某些钢材(如 AISI 4340 钢)与 AM 的内在兼容性,生产出的部件天生坚固耐用,可在竣工状态下使用。中碳含量和低合金元素浓度使 AM 加工能够产生均匀、细化的贝氏体微观结构,元素偏析最小,避免形成不稳定的残余奥氏体。这种钢在宽广的加工窗口内实现了高致密化(99.9%),从而证明了 AM 加工的高可用性,通过适当调整加工参数,可以精确控制微观结构,实现从上贝氏体为主到下贝氏体为主的转变,为特定应用定制机械性能。AM 制造的 AISI 4340 钢具有良好的强度、延展性和韧性组合,屈服强度范围为 1240 至 1370 兆帕,极限抗拉强度范围为 1360 至 1740 兆帕,伸长率范围为 7 % 至 14 %,冲击韧性范围为 11-44 J。AM 制造的 4340 钢的机械性能与锻造钢相当,优于大多数其他 AM 制造钢。这项研究揭示了 AM 在加工高强度低合金钢方面的巨大潜力。
{"title":"Additive manufacturing of high-strength low-alloy AISI 4340 steel with an optimal strength-ductility-toughness trade-off","authors":"Ju Yao,&nbsp;Qiyang Tan,&nbsp;Jeffrey Venezuela,&nbsp;Andrej Atrens,&nbsp;Ming-Xing Zhang","doi":"10.1016/j.addma.2024.104496","DOIUrl":"10.1016/j.addma.2024.104496","url":null,"abstract":"<div><div>Additive manufacturing (AM) has revolutionised steel part fabrication, yet not all steels are amenable to its unique solidification features, characterised by cyclic and rapid heating/cooling, and directional solidification. These conditions often result in challenges such as columnar grain formation, microstructural heterogeneity, and consequently, inferior mechanical performance, brittleness and severe anisotropy in particular. Recent studies have adopted inoculation or post-fabrication treatments to address this issue, but often entailing extra cost and processing time. This study aims to verify that some steels such as AISI 4340 steel are inherently compatible to AM, producing components that are innately robust and ready for use in the as-built state. The medium carbon content and low alloying element concentration enable AM processing to produce a uniform and refined bainite microstructure with minimal elemental segregation, avoiding the formation of unstable retained austenite. The high AM-processability of this steel is demonstrated by achieving high densification (&gt;99.9 %) across a broad processing window, which allows precise microstructural control via proper tunning the processing parameter modifications, inducing a transition from upper bainite to lower bainite dominance, to tailor mechanical properties for specific applications. The as AM-fabricated AISI 4340 steel exhibits a good combination of strength, ductility, and toughness, manifested by a yield strength range from 1240 to 1370 MPa, an ultimate tensile strength from 1360 to 1740 MPa, an elongation from 7 % to 14 %, and an impact toughness range of 11–44 J. The mechanical properties of the AM-fabricated 4340 steel are comparable to those of the wrought counterpart and superior to the majority of other AM-fabricated steels. This research reveals the high potential of AM to process high-strength low-alloy steels.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104496"},"PeriodicalIF":10.3,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Operando visualization of porous metal additive manufacturing with foaming agents through high-speed x-ray imaging 通过高速 X 射线成像对使用发泡剂的多孔金属增材制造进行操作可视化观察
IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-08-25 DOI: 10.1016/j.addma.2024.104505
Chenxi Tian , Jenniffer Bustillos , Akane Wakai , Ashlee Gabourel , Samuel J. Clark , Kamel Fezzaa , Atieh Moridi
Porous metals find extensive applications in soundproofing, filtration, catalysis, and energy-absorbing structures, thanks to their unique internal pore structure and high specific strength. In recent years, there has been an increasing interest in fabricating porous metals using additive manufacturing (AM), leveraging its unique advantages, including improved design freedom, spatial material control, and cost-effective small-batch production. In this study, we conducted pioneering operando visualization of AM porous metal using a laser powder bed fusion (L-PBF) setup combined with a high-speed synchrotron x-ray imaging system. Single track printing experiments using Ti6Al4V (Ti64) combined with titanium hydride (TiH2) and sodium carbonate (Na2CO3) as foaming agents, with varying mixing ratios were performed under different processing conditions. The results elucidate the dynamic development of porosity formation. The average pore size is significantly influenced by the particle size of foaming agents when pore coalescence is absent. For all foaming agent content tested in the current study, the number of pores is found to be more sensitive to changes in laser power than in laser scanning speed. Increasing linear energy density (increasing laser power or reducing laser scanning speed) promotes the foaming agent activation thereby porosity formation. However, high linear energy density skews pore distribution towards the surface despite forming deeper melt pools. In addition, the impact of additional factors including foaming agent’s laser absorptivity and decomposition kinetics with respect to AM time scales should be carefully considered to avoid ineffective activation of foaming agents during the AM of porous metals.
多孔金属凭借其独特的内部孔隙结构和高比强度,在隔音、过滤、催化和吸能结构等领域得到广泛应用。近年来,人们对利用增材制造(AM)制造多孔金属的兴趣与日俱增,因为它具有设计自由度高、空间材料可控、小批量生产成本低等独特优势。在本研究中,我们利用激光粉末床熔融(L-PBF)装置结合高速同步辐射 X 射线成像系统,对 AM 多孔金属进行了开创性的可视化操作。在不同的加工条件下,使用 Ti6Al4V (Ti64),结合氢化钛 (TiH2) 和碳酸钠 (Na2CO3) 作为发泡剂,以不同的混合比例进行了单轨打印实验。结果阐明了孔隙形成的动态发展过程。在没有孔隙凝聚的情况下,平均孔隙大小受发泡剂颗粒大小的影响很大。对于当前研究中测试的所有发泡剂含量,孔隙数量对激光功率变化的敏感性高于激光扫描速度的变化。增加线性能量密度(增加激光功率或降低激光扫描速度)可促进发泡剂的活化,从而促进孔隙的形成。然而,高线性能量密度会使孔隙分布偏向表面,尽管会形成更深的熔池。此外,还应仔细考虑发泡剂的激光吸收率和分解动力学等其他因素对 AM 时间尺度的影响,以避免在多孔金属的 AM 过程中发泡剂无法有效激活。
{"title":"Operando visualization of porous metal additive manufacturing with foaming agents through high-speed x-ray imaging","authors":"Chenxi Tian ,&nbsp;Jenniffer Bustillos ,&nbsp;Akane Wakai ,&nbsp;Ashlee Gabourel ,&nbsp;Samuel J. Clark ,&nbsp;Kamel Fezzaa ,&nbsp;Atieh Moridi","doi":"10.1016/j.addma.2024.104505","DOIUrl":"10.1016/j.addma.2024.104505","url":null,"abstract":"<div><div>Porous metals find extensive applications in soundproofing, filtration, catalysis, and energy-absorbing structures, thanks to their unique internal pore structure and high specific strength. In recent years, there has been an increasing interest in fabricating porous metals using additive manufacturing (AM), leveraging its unique advantages, including improved design freedom, spatial material control, and cost-effective small-batch production. In this study, we conducted pioneering operando visualization of AM porous metal using a laser powder bed fusion (L-PBF) setup combined with a high-speed synchrotron x-ray imaging system. Single track printing experiments using Ti6Al4V (Ti64) combined with titanium hydride (TiH<sub>2</sub>) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>) as foaming agents, with varying mixing ratios were performed under different processing conditions. The results elucidate the dynamic development of porosity formation. The average pore size is significantly influenced by the particle size of foaming agents when pore coalescence is absent. For all foaming agent content tested in the current study, the number of pores is found to be more sensitive to changes in laser power than in laser scanning speed. Increasing linear energy density (increasing laser power or reducing laser scanning speed) promotes the foaming agent activation thereby porosity formation. However, high linear energy density skews pore distribution towards the surface despite forming deeper melt pools. In addition, the impact of additional factors including foaming agent’s laser absorptivity and decomposition kinetics with respect to AM time scales should be carefully considered to avoid ineffective activation of foaming agents during the AM of porous metals.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104505"},"PeriodicalIF":10.3,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “A trivariate T-spline based direct-slicing framework for support-free additive manufacturing” [Addit. Manuf. 65 (2023) 103446] 基于三变量 T 样条的无支撑增材制造直接切片框架》[Addit. Manuf. 65 (2023) 103446] 更正
IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-08-25 DOI: 10.1016/j.addma.2024.104493
Bin Li , Hongyao Shen , Jianzhong Fu
{"title":"Corrigendum to “A trivariate T-spline based direct-slicing framework for support-free additive manufacturing” [Addit. Manuf. 65 (2023) 103446]","authors":"Bin Li ,&nbsp;Hongyao Shen ,&nbsp;Jianzhong Fu","doi":"10.1016/j.addma.2024.104493","DOIUrl":"10.1016/j.addma.2024.104493","url":null,"abstract":"","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104493"},"PeriodicalIF":10.3,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive support-free slicing method library for variable posture additive manufacturing 用于可变姿态增材制造的综合无支撑切片方法库
IF 10.3 1区 工程技术 Q1 ENGINEERING, MANUFACTURING Pub Date : 2024-08-25 DOI: 10.1016/j.addma.2024.104508
Zhengren Tong , Xiaoling Yu , Chen Yang , Hongyao Shen
Support-free slicing technology plays a critical role in additive manufacturing by reducing costs and simplifying post-processing. However, due to the complexity of geometric features, existing support-free slicing strategies often lack the necessary universality in industry. This paper proposes a method library comprising six basic support-free slicing methods to enhance the applicability and computational efficiency. The general methods in the library include facet-based methods and voxel-based methods, the former facilitates rapid slicing, while the latter enables the re-decomposition of complex structural parts. For parts that cannot be covered by general methods, customized methods are developed. These include constructing a support bridge for multi-direction slicing of overhanging regions in an arch model and extracting the optimal central axis for internal channels to achieve precise channel decomposition. Additionally, the methods in the library can be flexibly combined. By recognizing surface features and incorporating manual intervention, models can be decomposed into multiple sub-models, with the most computationally efficient method is matched to each sub-model. The layers and tool-paths of each sub-model are generated by the optimal method. Four typical models are deposited without any support in a five-axis printer to verify the feasibility of the proposed methods.
无支撑切片技术通过降低成本和简化后处理,在快速成型制造中发挥着至关重要的作用。然而,由于几何特征的复杂性,现有的无支撑切片策略往往缺乏必要的工业通用性。本文提出了一个包含六种基本无支撑切片方法的方法库,以提高适用性和计算效率。方法库中的一般方法包括基于面的方法和基于体素的方法,前者便于快速切片,后者可实现复杂结构部件的再分解。对于一般方法无法覆盖的部分,则开发了定制方法。其中包括为拱形模型中悬垂区域的多方向切片构建支撑桥,以及提取内部通道的最佳中心轴以实现精确的通道分解。此外,库中的方法可以灵活组合。通过识别表面特征并结合人工干预,可将模型分解为多个子模型,并为每个子模型匹配计算效率最高的方法。每个子模型的图层和工具路径都由最优方法生成。四个典型模型在没有任何支撑的情况下沉积在五轴打印机中,以验证所提方法的可行性。
{"title":"A comprehensive support-free slicing method library for variable posture additive manufacturing","authors":"Zhengren Tong ,&nbsp;Xiaoling Yu ,&nbsp;Chen Yang ,&nbsp;Hongyao Shen","doi":"10.1016/j.addma.2024.104508","DOIUrl":"10.1016/j.addma.2024.104508","url":null,"abstract":"<div><div>Support-free slicing technology plays a critical role in additive manufacturing by reducing costs and simplifying post-processing. However, due to the complexity of geometric features, existing support-free slicing strategies often lack the necessary universality in industry. This paper proposes a method library comprising six basic support-free slicing methods to enhance the applicability and computational efficiency. The general methods in the library include facet-based methods and voxel-based methods, the former facilitates rapid slicing, while the latter enables the re-decomposition of complex structural parts. For parts that cannot be covered by general methods, customized methods are developed. These include constructing a support bridge for multi-direction slicing of overhanging regions in an arch model and extracting the optimal central axis for internal channels to achieve precise channel decomposition. Additionally, the methods in the library can be flexibly combined. By recognizing surface features and incorporating manual intervention, models can be decomposed into multiple sub-models, with the most computationally efficient method is matched to each sub-model. The layers and tool-paths of each sub-model are generated by the optimal method. Four typical models are deposited without any support in a five-axis printer to verify the feasibility of the proposed methods.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104508"},"PeriodicalIF":10.3,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142533868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Additive manufacturing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1