首页 > 最新文献

Advanced Materials & Technologies最新文献

英文 中文
Hofmeister Ions‐Induced Thinning of Gelatin to Enhance 3D Printing Precision 霍夫迈斯特离子诱导明胶稀化,提高三维打印精度
Pub Date : 2024-07-30 DOI: 10.1002/admt.202302230
Heng Li Chee, Jing Wen Koo, Ee En Ian Sim, Qiang Zhu, Xu Gao, Md. Faris H. Ramli, Jennifer L. Young, Andrew W. Holle, FuKe Wang
Hydrogel 3D printing holds immense potential in fields like personalized medicine, regenerative therapies, and organ creation, offering biocompatible structures similar to the extracellular matrix. Gelatin‐Methacryloyl (GelMA) emerges as a promising candidate, while its high viscosity poses a significant challenge, especially in vat photopolymerization‐based 3D printing. Here, a new approach is presented by using Hofmeister ionic effect to substantially reduce the viscosity of high‐content (up to 60%) Gelatin bioink at room temperature with enhanced mechanical performance of the printed structures. The thinning effect induced by chaotropic Hofmeister ions is investigated through complex viscosity analysis, optical rotation measurements, and sol–gel conversion studies. The thinning effect induced by chaotropic ions enables precise 3D printing of Gelatin hydrogel, achieving accuracy comparable to prints made with polymers. Furthermore, after polymerization, the cations of the chaotropic salt change their role to cross‐linkers, leading to stronger scaffolds that exhibit biocompatibility with robust cell attachment, proliferation, and suitability for cell growth. The combination facilitates the creation of customizable structures and high printing accuracy will promote the wide application of Gelatin in the development of patient‐specific implants, drug delivery systems, and tissue scaffolds, further improving medical treatment efficacy and personalized healthcare.
水凝胶三维打印在个性化医疗、再生疗法和器官创建等领域具有巨大潜力,可提供与细胞外基质类似的生物相容性结构。明胶-甲基丙烯酰(GelMA)是一种很有前景的候选材料,但它的高粘度带来了巨大的挑战,尤其是在基于大桶光聚合的三维打印中。本文介绍了一种新方法,即利用霍夫迈斯特离子效应在室温下大幅降低高含量(高达 60%)明胶生物墨水的粘度,同时提高打印结构的机械性能。通过复杂粘度分析、光学旋转测量和溶胶-凝胶转换研究,研究了各向同性霍夫迈斯特离子诱导的稀化效应。各向混沌离子诱导的稀化效应可实现明胶水凝胶的精确三维打印,打印精度可与聚合物媲美。此外,在聚合之后,混沌盐中的阳离子会转变为交联剂,从而形成更坚固的支架,这种支架具有生物相容性,能促进细胞附着、增殖并适合细胞生长。这种组合有助于创建可定制的结构,而且打印精度高,将促进明胶在开发患者专用植入物、给药系统和组织支架方面的广泛应用,进一步提高医疗效果和个性化医疗保健水平。
{"title":"Hofmeister Ions‐Induced Thinning of Gelatin to Enhance 3D Printing Precision","authors":"Heng Li Chee, Jing Wen Koo, Ee En Ian Sim, Qiang Zhu, Xu Gao, Md. Faris H. Ramli, Jennifer L. Young, Andrew W. Holle, FuKe Wang","doi":"10.1002/admt.202302230","DOIUrl":"https://doi.org/10.1002/admt.202302230","url":null,"abstract":"Hydrogel 3D printing holds immense potential in fields like personalized medicine, regenerative therapies, and organ creation, offering biocompatible structures similar to the extracellular matrix. Gelatin‐Methacryloyl (GelMA) emerges as a promising candidate, while its high viscosity poses a significant challenge, especially in vat photopolymerization‐based 3D printing. Here, a new approach is presented by using Hofmeister ionic effect to substantially reduce the viscosity of high‐content (up to 60%) Gelatin bioink at room temperature with enhanced mechanical performance of the printed structures. The thinning effect induced by chaotropic Hofmeister ions is investigated through complex viscosity analysis, optical rotation measurements, and sol–gel conversion studies. The thinning effect induced by chaotropic ions enables precise 3D printing of Gelatin hydrogel, achieving accuracy comparable to prints made with polymers. Furthermore, after polymerization, the cations of the chaotropic salt change their role to cross‐linkers, leading to stronger scaffolds that exhibit biocompatibility with robust cell attachment, proliferation, and suitability for cell growth. The combination facilitates the creation of customizable structures and high printing accuracy will promote the wide application of Gelatin in the development of patient‐specific implants, drug delivery systems, and tissue scaffolds, further improving medical treatment efficacy and personalized healthcare.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"74 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Performance Magnetic Mass‐Enhanced Triboelectric‐Electromagnetic Hybrid Vibration Energy Harvester Enabling Totally Self‐Powered Long‐Distance Wireless Sensing 实现完全自供电远距离无线传感的高性能磁性质量增强型三电-电磁混合振动能量收集器
Pub Date : 2024-07-30 DOI: 10.1002/admt.202400451
Ziyue Xi, Hongyong Yu, Hengxu Du, Hengyi Yang, Yawei Wang, Mengyuan Guan, Zhaoyang Wang, Hao Wang, Taili Du, Minyi Xu
Wireless sensor networks play a significant role in various fields, and it is promising to construct a totally self‐powered wireless sensor network by harvesting unused mechanical vibration energy. Here, a magnetic mass‐enhanced triboelectric‐electromagnetic hybrid nanogenerator (MM‐HNG) is proposed for harvesting mechanical vibration energy. The additional magnets generate magnetic fields for electromagnetic power generation. As an additional mass effectively increases the membrane's amplitude, thereby enhancing the output performance of the MM‐HNG. The peak power density of TENG in the MM‐HNG reaches 380.4 W m−3, while the peak power density of EMG achieves 736 W m−3, which can charge a 0.1 F capacitor rapidly. In addition, a totally self‐powered wireless sensing system is constructed, with the integrated microcontroller unit (MCU), which detects and processes various sensing parameters and controls wireless transmission. The system features rapid transmission speeds and an extensive transmission range (up to 1 km), and its effectiveness has been validated in a practical application aboard an actual ship. The results illustrate the MM‐HNG's broad applicability across various Internet of Things (IoT) scenarios, including smart machinery, smart transportation, and smart factories.
无线传感器网络在各个领域都发挥着重要作用,而通过收集未使用的机械振动能来构建完全自供电的无线传感器网络则大有可为。本文提出了一种磁性质量增强三电电磁混合纳米发电机(MM-HNG),用于采集机械振动能。附加磁体产生磁场,用于电磁发电。附加质量可有效增加膜的振幅,从而提高 MM-HNG 的输出性能。MM-HNG 中 TENG 的峰值功率密度达到 380.4 W m-3,而 EMG 的峰值功率密度达到 736 W m-3,可为 0.1 F 的电容器快速充电。此外,还构建了一个完全自供电的无线传感系统,其中集成了微控制器单元(MCU),用于检测和处理各种传感参数并控制无线传输。该系统具有传输速度快、传输距离远(达 1 公里)的特点,其有效性已在实际船舶上的实际应用中得到验证。结果表明,MM-HNG 可广泛应用于各种物联网(IoT)场景,包括智能机械、智能交通和智能工厂。
{"title":"High Performance Magnetic Mass‐Enhanced Triboelectric‐Electromagnetic Hybrid Vibration Energy Harvester Enabling Totally Self‐Powered Long‐Distance Wireless Sensing","authors":"Ziyue Xi, Hongyong Yu, Hengxu Du, Hengyi Yang, Yawei Wang, Mengyuan Guan, Zhaoyang Wang, Hao Wang, Taili Du, Minyi Xu","doi":"10.1002/admt.202400451","DOIUrl":"https://doi.org/10.1002/admt.202400451","url":null,"abstract":"Wireless sensor networks play a significant role in various fields, and it is promising to construct a totally self‐powered wireless sensor network by harvesting unused mechanical vibration energy. Here, a magnetic mass‐enhanced triboelectric‐electromagnetic hybrid nanogenerator (MM‐HNG) is proposed for harvesting mechanical vibration energy. The additional magnets generate magnetic fields for electromagnetic power generation. As an additional mass effectively increases the membrane's amplitude, thereby enhancing the output performance of the MM‐HNG. The peak power density of TENG in the MM‐HNG reaches 380.4 W m<jats:sup>−3</jats:sup>, while the peak power density of EMG achieves 736 W m<jats:sup>−3</jats:sup>, which can charge a 0.1 F capacitor rapidly. In addition, a totally self‐powered wireless sensing system is constructed, with the integrated microcontroller unit (MCU), which detects and processes various sensing parameters and controls wireless transmission. The system features rapid transmission speeds and an extensive transmission range (up to 1 km), and its effectiveness has been validated in a practical application aboard an actual ship. The results illustrate the MM‐HNG's broad applicability across various Internet of Things (IoT) scenarios, including smart machinery, smart transportation, and smart factories.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patterned PEDOT:PSS‐Flexible Electrode Using Electrospinning Nano‐Fiber Substrate with UV‐Induced Selective Wettability 使用具有紫外线诱导选择性润湿性的电纺丝纳米纤维基底的图案化 PEDOT:PSS 柔性电极
Pub Date : 2024-07-30 DOI: 10.1002/admt.202400315
Bin‐Hai Yu, Bin Zhang, Jia‐sheng Li, Zhou Lu, Guan‐Wei Liang, Zong‐tao Li
Water‐soluble conductive polymer poly(3,4‐ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) has a broad application prospect in the field of flexible wearable electronics, but the simple and efficient manufacture of patterned PEDOT:PSS flexible electrodes is still challenging. In this paper, a patterned PEDOT:PSS‐flexible electrode with a electrospinning nano‐fiber substrate is proposed. The electrode substrate is produced by electrospinning a hydrophobic polyvinylidene difluoride (PVDF) matrix material loaded with TiO2 UV‐induced hydrophilic‐hydrophobic conversion particles. The PEDOT:PSS flexible electrode is prepared using a simple UV‐induced selective wettability(UV‐SW) process and optimized vacuum filtration method. The method of manufacturing flexible electrodes based on patterned wetting film substrates is simple and feasible, while the electrode features high precision, good conductivity, and excellent deformation ability. The electrode has a line width error of less than 5%, an initial conductivity of 584.44 S m−1, and maintains stable conductivity under 0–180° bending and 0–30° torsion, with variation rates of only 4.9% and 2.3%, respectively. This paper presents a simple method to fabricate patterned PEDOT:PSS flexible electrode with high precision. This study provides an efficient method for the manufacturing of fibric‐based patterned flexible electrodes, this method is promising for fabric‐based wearable electronics.
水溶性导电聚合物聚(3,4-亚乙二氧基噻吩)/聚苯乙烯磺酸盐(PEDOT:PSS)在柔性可穿戴电子设备领域具有广阔的应用前景,但如何简单高效地制造图案化 PEDOT:PSS 柔性电极仍是一项挑战。本文提出了一种以电纺丝纳米纤维为基底的图案化 PEDOT:PSS 柔性电极。该电极基底是通过电纺丝疏水性聚偏二氟乙烯(PVDF)基质材料,并在其中加入 TiO2 紫外线诱导的亲水-疏水转换颗粒而制成的。PEDOT:PSS 柔性电极的制备采用了简单的紫外光诱导选择性润湿(UV-SW)工艺和优化的真空过滤方法。基于图案化润湿膜基底的柔性电极制造方法简单可行,电极精度高、导电性好、变形能力强。该电极的线宽误差小于 5%,初始电导率为 584.44 S m-1,在 0-180° 弯曲和 0-30° 扭转条件下都能保持稳定的电导率,变化率分别仅为 4.9% 和 2.3%。本文提出了一种制作高精度图案化 PEDOT:PSS 柔性电极的简单方法。这项研究为制造基于纤维的图案化柔性电极提供了一种高效方法,这种方法有望用于基于纤维的可穿戴电子产品。
{"title":"Patterned PEDOT:PSS‐Flexible Electrode Using Electrospinning Nano‐Fiber Substrate with UV‐Induced Selective Wettability","authors":"Bin‐Hai Yu, Bin Zhang, Jia‐sheng Li, Zhou Lu, Guan‐Wei Liang, Zong‐tao Li","doi":"10.1002/admt.202400315","DOIUrl":"https://doi.org/10.1002/admt.202400315","url":null,"abstract":"Water‐soluble conductive polymer poly(3,4‐ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) has a broad application prospect in the field of flexible wearable electronics, but the simple and efficient manufacture of patterned PEDOT:PSS flexible electrodes is still challenging. In this paper, a patterned PEDOT:PSS‐flexible electrode with a electrospinning nano‐fiber substrate is proposed. The electrode substrate is produced by electrospinning a hydrophobic polyvinylidene difluoride (PVDF) matrix material loaded with TiO<jats:sub>2</jats:sub> UV‐induced hydrophilic‐hydrophobic conversion particles. The PEDOT:PSS flexible electrode is prepared using a simple UV‐induced selective wettability(UV‐SW) process and optimized vacuum filtration method. The method of manufacturing flexible electrodes based on patterned wetting film substrates is simple and feasible, while the electrode features high precision, good conductivity, and excellent deformation ability. The electrode has a line width error of less than 5%, an initial conductivity of 584.44 S m<jats:sup>−1</jats:sup>, and maintains stable conductivity under 0–180° bending and 0–30° torsion, with variation rates of only 4.9% and 2.3%, respectively. This paper presents a simple method to fabricate patterned PEDOT:PSS flexible electrode with high precision. This study provides an efficient method for the manufacturing of fibric‐based patterned flexible electrodes, this method is promising for fabric‐based wearable electronics.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"87 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bionic Microstructure-Inspired Dual-Mode Flexible Sensor with Photothermal Effect for Ultrasensitive Temperature and Strain Monitoring 仿生微结构启发的双模柔性传感器具有光热效应,可用于超灵敏温度和应变监测
Pub Date : 2024-07-27 DOI: 10.1002/admt.202400701
Xiaohui Guo, Yongzheng Niu, Zhihao Yin, Di Wang, Long Liu, Yongming Tang, Xianghui Li, Yifang Zhang, Yu Li, Tianxu Zhang, Xiaowen Zhu, Yiman Xu, Ziwen Zhang, Siwen Ding, Dandan Wang, Bing Yang, Zhihong Mai, Weiqiang Hong, Wenrui Xu, Qi Hong, Yunong Zhao, Feng Yan, Ming Wang, Guozhong Xing
Flexible dual-mode sensors play a pivotal role in information exchange between humans and the environment. However, achieving dual-mode sensing encompassing both flexibility and stretchability, while accurately quantifying stimulus signals such as temperature, remains a significant challenge. This paper presents a novel flexible dual-mode strain/temperature sensor (DMSTS) that utilizes graphite powder (GR)/polyaniline (PANI)/silicone rubber composites, inspired by the bionic microstructure of a centipede's foot. The DMSTS exhibits an exceptional strain detection range (≈177%), and a low limit of detection (0.5% strain). Regarding temperature sensing, the DMSTS demonstrates a positive temperature coefficient effect within the range of 25–90 °C, with an ultrahigh sensitivity of 10.3 within the 75–90 °C range. Leveraging the photothermal characteristics of GR and PANI, the DMSTS holds significant promise for applications in human motion detection, infrared imaging, and photothermal effects. When integrated into an intelligent sensing system, it enables dynamic noncontact temperature measurement, human micro-expression detection, and motion joint monitoring. Additionally, by incorporating a flexible thermochromic film with color-changing ink, the DMSTS transforms temperature detection into a visually intuitive operation. With its versatile dual-mode sensing capabilities, the DMSTS exhibits substantial potential in the fields of wearable electronics and healthcare.
柔性双模传感器在人类与环境的信息交流中发挥着举足轻重的作用。然而,要实现既具有柔韧性和伸展性,又能准确量化温度等刺激信号的双模传感,仍然是一项重大挑战。本文介绍了一种新型柔性双模应变/温度传感器(DMSTS),它采用了石墨粉(GR)/聚苯胺(PANI)/硅橡胶复合材料,灵感来自蜈蚣脚的仿生微结构。DMSTS 的应变检测范围极广(≈177%),检测限低(0.5% 应变)。在温度感应方面,DMSTS 在 25-90 °C 范围内具有正温度系数效应,在 75-90 °C 范围内具有 10.3 的超高灵敏度。利用 GR 和 PANI 的光热特性,DMSTS 在人体运动检测、红外成像和光热效应方面的应用前景十分广阔。当集成到智能传感系统中时,它可以实现动态非接触式温度测量、人体微表情检测和运动关节监测。此外,DMSTS 还采用了带有变色油墨的柔性热致变色薄膜,将温度检测转变为视觉直观操作。DMSTS 具有多功能双模传感功能,在可穿戴电子设备和医疗保健领域具有巨大潜力。
{"title":"Bionic Microstructure-Inspired Dual-Mode Flexible Sensor with Photothermal Effect for Ultrasensitive Temperature and Strain Monitoring","authors":"Xiaohui Guo, Yongzheng Niu, Zhihao Yin, Di Wang, Long Liu, Yongming Tang, Xianghui Li, Yifang Zhang, Yu Li, Tianxu Zhang, Xiaowen Zhu, Yiman Xu, Ziwen Zhang, Siwen Ding, Dandan Wang, Bing Yang, Zhihong Mai, Weiqiang Hong, Wenrui Xu, Qi Hong, Yunong Zhao, Feng Yan, Ming Wang, Guozhong Xing","doi":"10.1002/admt.202400701","DOIUrl":"https://doi.org/10.1002/admt.202400701","url":null,"abstract":"Flexible dual-mode sensors play a pivotal role in information exchange between humans and the environment. However, achieving dual-mode sensing encompassing both flexibility and stretchability, while accurately quantifying stimulus signals such as temperature, remains a significant challenge. This paper presents a novel flexible dual-mode strain/temperature sensor (DMSTS) that utilizes graphite powder (GR)/polyaniline (PANI)/silicone rubber composites, inspired by the bionic microstructure of a centipede's foot. The DMSTS exhibits an exceptional strain detection range (≈177%), and a low limit of detection (0.5% strain). Regarding temperature sensing, the DMSTS demonstrates a positive temperature coefficient effect within the range of 25–90 °C, with an ultrahigh sensitivity of 10.3 within the 75–90 °C range. Leveraging the photothermal characteristics of GR and PANI, the DMSTS holds significant promise for applications in human motion detection, infrared imaging, and photothermal effects. When integrated into an intelligent sensing system, it enables dynamic noncontact temperature measurement, human micro-expression detection, and motion joint monitoring. Additionally, by incorporating a flexible thermochromic film with color-changing ink, the DMSTS transforms temperature detection into a visually intuitive operation. With its versatile dual-mode sensing capabilities, the DMSTS exhibits substantial potential in the fields of wearable electronics and healthcare.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optomechanical Cavities Based on Epitaxial GaP on Nominally (001)-Oriented Si 基于标称 (001) 方向硅上外延 GaP 的光机械腔体
Pub Date : 2024-07-27 DOI: 10.1002/admt.202400525
Paula Mouriño, Laura Mercadé, Miguel Sinusía Lozano, Raquel Resta, Amadeu Griol, Karim Ben Saddik, Enrique Barrigón, Sergio Fernández-Garrido, Basilio Javier García, Alejandro Martínez, Víctor J. Gómez
Gallium Phosphide (GaP) has recently received considerable attention as a suitable material for building photonic integrated circuits due to its remarkable optical and piezoelectric properties. Usually, GaP is grown epitaxially on III–V substrates to keep its crystallinity and later transferred to silicon wafers for further processing. Here, an alternative promising route for the fabrication of optomechanical (OM) cavities on GaP epitaxially grown on nominally (001)-oriented Si is introduced by using a two-step process consisting of a low-temperature etching of GaP followed by selective etching of the underneath silicon. The low-temperature (–30 °C) during the dry-etching of GaP hinders the lateral etching rate, preserving the pattern with a deviation between the design and the pattern in the GaP layer lower than 5%, avoiding the complex process of transferring and bonding a GaP wafer to a silicon-on-insulator wafer. To demonstrate the quality and feasibility of the proposed fabrication route, suspended OM cavities are fabricated and experimentally characterized. The cavities exhibit optical quality factors between 103 and 104 at telecom wavelengths, and localized mechanical resonances ≈3.1 GHz with quality factors ≈63 when measured at room temperature. These results suggest a simple and low-cost way to build GaP-based photonic devices directly integrated on industry-standard Si(001) photonic wafers.
磷化镓(GaP)因其卓越的光学和压电特性,最近作为一种适用于构建光子集成电路的材料受到了广泛关注。通常,GaP 是在 III-V 基底上外延生长以保持其结晶性,然后转移到硅晶片上进行进一步加工。本文介绍了在名义(001)取向硅上外延生长的 GaP 上制造光机械(OM)空腔的另一条可行路线,该路线采用两步工艺,包括低温蚀刻 GaP,然后选择性蚀刻下面的硅。GaP 干蚀刻过程中的低温(-30 °C)阻碍了横向蚀刻速度,从而保留了图案,使 GaP 层中设计与图案之间的偏差低于 5%,避免了将 GaP 硅片转移和粘接到硅绝缘体硅片的复杂过程。为了证明所建议的制造路线的质量和可行性,我们制造了悬浮 OM 型腔,并对其进行了实验表征。这些空腔在电信波长下的光学品质因数介于 103 和 104 之间,在室温下测量的局部机械共振频率≈3.1 GHz,品质因数≈63。这些结果表明,在工业标准硅(001)光子晶片上直接集成基于 GaP 的光子器件是一种简单而低成本的方法。
{"title":"Optomechanical Cavities Based on Epitaxial GaP on Nominally (001)-Oriented Si","authors":"Paula Mouriño, Laura Mercadé, Miguel Sinusía Lozano, Raquel Resta, Amadeu Griol, Karim Ben Saddik, Enrique Barrigón, Sergio Fernández-Garrido, Basilio Javier García, Alejandro Martínez, Víctor J. Gómez","doi":"10.1002/admt.202400525","DOIUrl":"https://doi.org/10.1002/admt.202400525","url":null,"abstract":"Gallium Phosphide (GaP) has recently received considerable attention as a suitable material for building photonic integrated circuits due to its remarkable optical and piezoelectric properties. Usually, GaP is grown epitaxially on III–V substrates to keep its crystallinity and later transferred to silicon wafers for further processing. Here, an alternative promising route for the fabrication of optomechanical (OM) cavities on GaP epitaxially grown on nominally (001)-oriented Si is introduced by using a two-step process consisting of a low-temperature etching of GaP followed by selective etching of the underneath silicon. The low-temperature (–30 °C) during the dry-etching of GaP hinders the lateral etching rate, preserving the pattern with a deviation between the design and the pattern in the GaP layer lower than 5%, avoiding the complex process of transferring and bonding a GaP wafer to a silicon-on-insulator wafer. To demonstrate the quality and feasibility of the proposed fabrication route, suspended OM cavities are fabricated and experimentally characterized. The cavities exhibit optical quality factors between 10<sup>3</sup> and 10<sup>4</sup> at telecom wavelengths, and localized mechanical resonances ≈3.1 GHz with quality factors ≈63 when measured at room temperature. These results suggest a simple and low-cost way to build GaP-based photonic devices directly integrated on industry-standard Si(001) photonic wafers.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"72 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic Flexible Electronics for Innovative Applications in Electronic Skin 用于电子皮肤创新应用的有机柔性电子器件
Pub Date : 2024-07-27 DOI: 10.1002/admt.202400661
Xukai Liu, Haojie Li, Minqin Tao, Yingying Yu, Zijia Zhu, Dongdong Wu, Xiaotian Hu, Yiwang Chen
The emergence of cutting-edge cross-disciplines has motivated the rapid development of wearable technology and flexible electronics. The flexibility and tunable properties of organic materials enable organic flexible electronics to adapt to complex surface deformations and achieve sensitive detection of physiological signals. The cost-effectiveness of organic materials in mass production offers additional possibilities for the practical and commercialization of e-skin technology. However, how to ensure stability and long-term reliability while maintaining a highly sensitive, flexible, and stretchable is a challenge for e-skins. In this review, the research progress and development trend of e-skin is systematically summarized, especially the latest breakthroughs and innovations in the frontier of organic flexible electronics, and systematically review the applications of e-skin in sensors, physiological monitoring, and energy supply. In addition, the review further discusses the prospects and current challenges for the application of organic flexible electronics in e-skin, which provides a one-stop reference for the development of e-skin.
前沿交叉学科的出现推动了可穿戴技术和柔性电子技术的快速发展。有机材料的柔性和可调特性使有机柔性电子器件能够适应复杂的表面变形,并实现对生理信号的灵敏检测。有机材料在大规模生产中的成本效益为电子皮肤技术的实用化和商业化提供了更多可能性。然而,如何在保持高灵敏度、柔韧性和可拉伸性的同时确保稳定性和长期可靠性,是电子皮肤面临的一个挑战。本综述系统总结了电子皮肤的研究进展和发展趋势,尤其是有机柔性电子学前沿领域的最新突破和创新,并系统回顾了电子皮肤在传感器、生理监测和能源供应等方面的应用。此外,该综述还进一步探讨了有机柔性电子技术在电子皮肤中的应用前景和当前面临的挑战,为电子皮肤的发展提供了一站式参考。
{"title":"Organic Flexible Electronics for Innovative Applications in Electronic Skin","authors":"Xukai Liu, Haojie Li, Minqin Tao, Yingying Yu, Zijia Zhu, Dongdong Wu, Xiaotian Hu, Yiwang Chen","doi":"10.1002/admt.202400661","DOIUrl":"https://doi.org/10.1002/admt.202400661","url":null,"abstract":"The emergence of cutting-edge cross-disciplines has motivated the rapid development of wearable technology and flexible electronics. The flexibility and tunable properties of organic materials enable organic flexible electronics to adapt to complex surface deformations and achieve sensitive detection of physiological signals. The cost-effectiveness of organic materials in mass production offers additional possibilities for the practical and commercialization of e-skin technology. However, how to ensure stability and long-term reliability while maintaining a highly sensitive, flexible, and stretchable is a challenge for e-skins. In this review, the research progress and development trend of e-skin is systematically summarized, especially the latest breakthroughs and innovations in the frontier of organic flexible electronics, and systematically review the applications of e-skin in sensors, physiological monitoring, and energy supply. In addition, the review further discusses the prospects and current challenges for the application of organic flexible electronics in e-skin, which provides a one-stop reference for the development of e-skin.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Printing of Lead-Free Piezoelectric Ultrasound Transducers 无铅压电超声波传感器的三维打印技术
Pub Date : 2024-07-27 DOI: 10.1002/admt.202400858
Satya K. Ammu, Xianfeng Chen, Derin Goulart Ulcay, Saurav Sharma, Farbod Alijani, Peter G. Steeneken, Pim Groen, Kunal Masania
Multi-material direct ink writing (DIW) of smart materials opens new possibilities for manufacturing complex-shaped structures with embedded sensing and actuation capabilities. In this study, DIW of UV-curable piezoelectric actuators is developed, which do not require high-temperature sintering, allowing direct integration with structural materials. Through particle size and ink rheology optimization, the highest d33*g33 piezoelectric constant compared to other DIW fabricated piezo composites is achieved, enabling tunable actuation performance. This is used to fabricate ultrasound transducers by printing piezoelectric vibrating membranes along with their support structures made from a structural ink. The impact of transducer design and scaling up transducer dimensions on the resonance behavior to design millimeter-scale ultrasound transducers with desired out-of-plane displacement is explored. A significant increase in output pressure with increasing membrane dimensions is observed. Finally, a practical application is demonstrated by using the printed transducer for accurate proximity sensing using time of flight measurements. The scalability and flexibility of the reported DIW of piezo composites can open up new advancements in biomedical, human-computer interaction, and aerospace fields.
智能材料的多材料直接墨水写入(DIW)为制造具有嵌入式传感和致动功能的复杂形状结构提供了新的可能性。本研究开发了紫外线固化压电致动器的直接墨水书写技术,这种技术无需高温烧结,可直接与结构材料集成。通过粒度和油墨流变优化,与其他 DIW 制造的压电复合材料相比,实现了最高的 d33*g33 压电常数,从而实现了可调的致动性能。通过打印压电振动膜及其由结构性油墨制成的支撑结构,可用于制造超声波传感器。我们探讨了换能器设计和扩大换能器尺寸对共振行为的影响,从而设计出具有理想平面外位移的毫米级超声换能器。观察到输出压力随着膜尺寸的增加而明显增加。最后,通过使用飞行时间测量将印刷换能器用于精确的近距离传感,展示了其实际应用。所报告的压电复合材料 DIW 的可扩展性和灵活性可为生物医学、人机交互和航空航天领域带来新的进步。
{"title":"3D Printing of Lead-Free Piezoelectric Ultrasound Transducers","authors":"Satya K. Ammu, Xianfeng Chen, Derin Goulart Ulcay, Saurav Sharma, Farbod Alijani, Peter G. Steeneken, Pim Groen, Kunal Masania","doi":"10.1002/admt.202400858","DOIUrl":"https://doi.org/10.1002/admt.202400858","url":null,"abstract":"Multi-material direct ink writing (DIW) of smart materials opens new possibilities for manufacturing complex-shaped structures with embedded sensing and actuation capabilities. In this study, DIW of UV-curable piezoelectric actuators is developed, which do not require high-temperature sintering, allowing direct integration with structural materials. Through particle size and ink rheology optimization, the highest d<sub>33</sub><sup>*</sup>g<sub>33</sub> piezoelectric constant compared to other DIW fabricated piezo composites is achieved, enabling tunable actuation performance. This is used to fabricate ultrasound transducers by printing piezoelectric vibrating membranes along with their support structures made from a structural ink. The impact of transducer design and scaling up transducer dimensions on the resonance behavior to design millimeter-scale ultrasound transducers with desired out-of-plane displacement is explored. A significant increase in output pressure with increasing membrane dimensions is observed. Finally, a practical application is demonstrated by using the printed transducer for accurate proximity sensing using time of flight measurements. The scalability and flexibility of the reported DIW of piezo composites can open up new advancements in biomedical, human-computer interaction, and aerospace fields.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spray‐Drying‐Assisted Digital Light Processing for Highly Dense and Precise Three‐dimensional Printed Barium Titanate Ceramic Structures 喷雾干燥辅助数字光处理技术实现高密度和高精度三维印刷钛酸钡陶瓷结构
Pub Date : 2024-07-25 DOI: 10.1002/admt.202400382
Hyungyong Kim, Jisoo Nam, Yong‐Il Kim, Hyun‐Cheol Song, Jungho Ryu, Miso Kim
Photopolymerization‐based ceramic 3D printing, known as digital light processing (DLP), offers a valuable platform for rapidly prototyping previously unattainable intricate architectures without the need for additional molds. However, the presence of ceramic particles in photocurable suspensions introduces challenges, including elevated viscosity and diminished curing depth due to light‐ceramic particle interactions. This ultimately compromises the efficacy of the photocuring process, resulting in undesirable geometric inaccuracies. In this study, meticulously engineered lead‐free ferroelectric barium titanate (BaTiO3, BTO) ceramic granules, produced through a spray‐drying process, optimize ceramic suspension formulation. This approach enhances ceramic flowability and involves the judicious addition of a binder, yielding a uniform redispersion of ceramic particles within the matrix, while maintaining a bimodal particle size distribution with reduced diameters. Supported by both experimental and numerical simulations, this improves the rheological and curing properties, enabling the successful fabrication of highly dense, complex 3D‐printed BTO structures with excellent shape fidelity. Moreover, by carefully designing the thermal profiles, DLP 3D‐printed BTO ceramics exhibit impressive shape retention after debinding and sintering while demonstrating ferroelectric and dielectric performances comparable to their non‐3D‐printed counterparts. This study presents a transformative approach that unlocks the full potential of ceramic 3D DLP printing.
基于光聚合的陶瓷三维打印,即数字光处理(DLP),为快速制作以前无法实现的复杂建筑原型提供了一个宝贵的平台,而无需额外的模具。然而,光固化悬浮液中陶瓷颗粒的存在带来了挑战,包括由于光与陶瓷颗粒的相互作用而导致粘度升高和固化深度降低。这最终会影响光固化工艺的效果,导致不理想的几何误差。在这项研究中,通过喷雾干燥工艺生产的精心设计的无铅铁电钛酸钡(BaTiO3,BTO)陶瓷颗粒优化了陶瓷悬浮液配方。这种方法提高了陶瓷的流动性,并合理添加了粘合剂,使陶瓷颗粒在基质中均匀再分散,同时保持了直径减小的双峰粒度分布。在实验和数值模拟的支持下,这种方法改善了流变和固化特性,使高密度、复杂的三维打印 BTO 结构得以成功制造,并具有极佳的形状保真度。此外,通过精心设计热曲线,DLP 三维打印 BTO 陶瓷在脱胶和烧结后表现出令人印象深刻的形状保持能力,同时还表现出与非三维打印陶瓷相当的铁电和介电性能。这项研究提出了一种变革性方法,可充分释放陶瓷三维 DLP 打印的潜力。
{"title":"Spray‐Drying‐Assisted Digital Light Processing for Highly Dense and Precise Three‐dimensional Printed Barium Titanate Ceramic Structures","authors":"Hyungyong Kim, Jisoo Nam, Yong‐Il Kim, Hyun‐Cheol Song, Jungho Ryu, Miso Kim","doi":"10.1002/admt.202400382","DOIUrl":"https://doi.org/10.1002/admt.202400382","url":null,"abstract":"Photopolymerization‐based ceramic 3D printing, known as digital light processing (DLP), offers a valuable platform for rapidly prototyping previously unattainable intricate architectures without the need for additional molds. However, the presence of ceramic particles in photocurable suspensions introduces challenges, including elevated viscosity and diminished curing depth due to light‐ceramic particle interactions. This ultimately compromises the efficacy of the photocuring process, resulting in undesirable geometric inaccuracies. In this study, meticulously engineered lead‐free ferroelectric barium titanate (BaTiO<jats:sub>3</jats:sub>, BTO) ceramic granules, produced through a spray‐drying process, optimize ceramic suspension formulation. This approach enhances ceramic flowability and involves the judicious addition of a binder, yielding a uniform redispersion of ceramic particles within the matrix, while maintaining a bimodal particle size distribution with reduced diameters. Supported by both experimental and numerical simulations, this improves the rheological and curing properties, enabling the successful fabrication of highly dense, complex 3D‐printed BTO structures with excellent shape fidelity. Moreover, by carefully designing the thermal profiles, DLP 3D‐printed BTO ceramics exhibit impressive shape retention after debinding and sintering while demonstrating ferroelectric and dielectric performances comparable to their non‐3D‐printed counterparts. This study presents a transformative approach that unlocks the full potential of ceramic 3D DLP printing.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self‐Sensing Dandelion‐Inspired Flying Soft Actuator with Multi‐Stimuli Response 受蒲公英启发的具有多重刺激响应的自感应飞行软促动器
Pub Date : 2024-07-25 DOI: 10.1002/admt.202400952
Weiyu Yan, Yixiong Feng, Junjie Song, Zhaoxi Hong, Kaiyue Cui, Alexander C. Brannan, Jianrong Tan, Xiuju Song
Controlled dispersal of microfliers over large‐scale areas is crucial for both civil and agricultural applications. Until now, the study of flying soft actuators is limited by the complexity of the motion involved and with control when miniaturized to a micro‐scale. Drawing inspiration from the dynamics of dandelion seed spread, the study proposes a novel design for a flying soft actuator comprising Ti3C2Tx MXene and polyethylene (PE), which exhibits sensitive responses to various stimuli, including humidity, temperature, applied voltage, infrared light, and selective volatile organic compounds, leading to significant deformation at a rapid rate (up to 81.82°/s). An artificial seed capable of wind‐assisted flight is further fabricated by integrating a MXene/PE actuator with fiberglass. When exposed to light, the artificial seed opens its fiberglass pappus during descent, increasing resistance and thereby prolonging falling time by an impressive 83%. Moreover, the artificial seed demonstrates self‐sensing, i.e., changes in resistance caused by humidity and infrared light, which can be attributed to the absorption and desorption of water molecules within MXene layers. This enhanced falling time enables a wider dispersal range and precise control, making it highly promising for environmental monitoring, automated large‐scale sensor deployments, and large‐scale seed sowing for endangered plants species protection.
在民用和农业应用中,微型飞行器在大范围内的可控散布至关重要。到目前为止,对飞行软致动器的研究还受限于运动的复杂性以及微型化到微尺度时的控制问题。该研究从蒲公英种子的传播动力学中汲取灵感,提出了一种由 Ti3C2Tx MXene 和聚乙烯(PE)组成的飞行软致动器的新设计,该致动器对湿度、温度、外加电压、红外光和选择性挥发性有机化合物等各种刺激具有灵敏的反应,能以快速的速度(高达 81.82°/s)产生显著的形变。通过将 MXene/PE 驱动器与玻璃纤维集成,进一步制造出了能够借助风力飞行的人造种子。在光线照射下,人工种子会在下落过程中张开玻璃纤维膜,增加阻力,从而将下落时间延长 83%。此外,人工种子还具有自感应功能,即湿度和红外光会引起电阻变化,这可能是由于水分子在 MXene 层中的吸收和解吸作用所致。这种人工种子的下落时间更长,因此可以实现更广的扩散范围和更精确的控制,在环境监测、自动大规模传感器部署和大规模播种以保护濒危植物物种方面大有可为。
{"title":"Self‐Sensing Dandelion‐Inspired Flying Soft Actuator with Multi‐Stimuli Response","authors":"Weiyu Yan, Yixiong Feng, Junjie Song, Zhaoxi Hong, Kaiyue Cui, Alexander C. Brannan, Jianrong Tan, Xiuju Song","doi":"10.1002/admt.202400952","DOIUrl":"https://doi.org/10.1002/admt.202400952","url":null,"abstract":"Controlled dispersal of microfliers over large‐scale areas is crucial for both civil and agricultural applications. Until now, the study of flying soft actuators is limited by the complexity of the motion involved and with control when miniaturized to a micro‐scale. Drawing inspiration from the dynamics of dandelion seed spread, the study proposes a novel design for a flying soft actuator comprising Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:sub>x</jats:sub> MXene and polyethylene (PE), which exhibits sensitive responses to various stimuli, including humidity, temperature, applied voltage, infrared light, and selective volatile organic compounds, leading to significant deformation at a rapid rate (up to 81.82°/s). An artificial seed capable of wind‐assisted flight is further fabricated by integrating a MXene/PE actuator with fiberglass. When exposed to light, the artificial seed opens its fiberglass pappus during descent, increasing resistance and thereby prolonging falling time by an impressive 83%. Moreover, the artificial seed demonstrates self‐sensing, i.e., changes in resistance caused by humidity and infrared light, which can be attributed to the absorption and desorption of water molecules within MXene layers. This enhanced falling time enables a wider dispersal range and precise control, making it highly promising for environmental monitoring, automated large‐scale sensor deployments, and large‐scale seed sowing for endangered plants species protection.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wireless Frequency‐Multiplexed Acoustic Array‐Based Acoustofluidics 基于无线频率多路声阵列的声流体技术
Pub Date : 2024-07-25 DOI: 10.1002/admt.202400572
Jiali Li, Luyu Bo, Teng Li, Penghui Zhao, Yingshan Du, Bowen Cai, Liang Shen, Wujin Sun, Wei Zhou, Zhenhua Tian
Acoustofluidics has shown great potential in enabling on‐chip technologies for driving liquid flows and manipulating particles and cells for engineering, chemical, and biomedical applications. To introduce on‐demand liquid sample processing and micro/nano‐object manipulation functions to wearable and embeddable electronics, wireless acoustofluidic chips are highly desired. This paper presents wireless acoustofluidic chips to generate acoustic waves carrying sufficient energy and achieve key acoustofluidic functions, including arranging particles and cells, generating fluid streaming, and enriching in‐droplet particles. To enable these functions, the wireless acoustofluidic chips leverage mechanisms, including inductive coupling‐based wireless power transfer (WPT), frequency multiplexing‐based control of multiple acoustic waves, and the resultant acoustic radiation and drag forces. For validation, the wirelessly generated acoustic waves are measured using laser vibrometry when different materials (e.g., bone, tissue, and hand) are inserted between the WPT transmitter and receiver. Moreover, the wireless acoustofluidic chips successfully arrange nanoparticles into different patterns, align cells into parallel pearl chains, generate streaming, and enrich in‐droplet microparticles. This research is anticipated to facilitate the development of embeddable wireless on‐chip flow generators, wearable sensors with liquid sample processing functions, and implantable devices with flow generation and acoustic stimulation abilities for engineering, veterinary, and biomedical applications.
声学流体技术在为工程、化学和生物医学应用提供驱动液体流动、操纵颗粒和细胞的片上技术方面显示出巨大的潜力。为了将按需液体样品处理和微/纳米物体操纵功能引入可穿戴和嵌入式电子设备,无线声学流体芯片是非常必要的。本文介绍的无线声学流体芯片可产生携带足够能量的声波,并实现关键的声学流体功能,包括排列颗粒和细胞、产生流体流和富集液滴内颗粒。为了实现这些功能,无线声流体芯片利用了各种机制,包括基于感应耦合的无线功率传输(WPT)、基于频率复用的多声波控制以及由此产生的声辐射和阻力。为了进行验证,在 WPT 发射器和接收器之间插入不同材料(如骨、组织和手)时,使用激光测振仪测量无线产生的声波。此外,无线声学流体芯片成功地将纳米粒子排列成不同的图案,将细胞排列成平行的珍珠链,产生流体,并富集液滴内的微粒子。预计这项研究将促进可嵌入式无线片上流动发生器、具有液体样本处理功能的可穿戴传感器以及具有流动发生和声学刺激能力的植入式设备的开发,从而为工程、兽医和生物医学应用提供帮助。
{"title":"Wireless Frequency‐Multiplexed Acoustic Array‐Based Acoustofluidics","authors":"Jiali Li, Luyu Bo, Teng Li, Penghui Zhao, Yingshan Du, Bowen Cai, Liang Shen, Wujin Sun, Wei Zhou, Zhenhua Tian","doi":"10.1002/admt.202400572","DOIUrl":"https://doi.org/10.1002/admt.202400572","url":null,"abstract":"Acoustofluidics has shown great potential in enabling on‐chip technologies for driving liquid flows and manipulating particles and cells for engineering, chemical, and biomedical applications. To introduce on‐demand liquid sample processing and micro/nano‐object manipulation functions to wearable and embeddable electronics, wireless acoustofluidic chips are highly desired. This paper presents wireless acoustofluidic chips to generate acoustic waves carrying sufficient energy and achieve key acoustofluidic functions, including arranging particles and cells, generating fluid streaming, and enriching in‐droplet particles. To enable these functions, the wireless acoustofluidic chips leverage mechanisms, including inductive coupling‐based wireless power transfer (WPT), frequency multiplexing‐based control of multiple acoustic waves, and the resultant acoustic radiation and drag forces. For validation, the wirelessly generated acoustic waves are measured using laser vibrometry when different materials (e.g., bone, tissue, and hand) are inserted between the WPT transmitter and receiver. Moreover, the wireless acoustofluidic chips successfully arrange nanoparticles into different patterns, align cells into parallel pearl chains, generate streaming, and enrich in‐droplet microparticles. This research is anticipated to facilitate the development of embeddable wireless on‐chip flow generators, wearable sensors with liquid sample processing functions, and implantable devices with flow generation and acoustic stimulation abilities for engineering, veterinary, and biomedical applications.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Materials & Technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1