Manuel Alonso-Orts, Ruben J. T. Neelissen, Daniel Carrasco, Marco Schowalter, Andreas Rosenauer, Emilio Nogales, Bianchi Méndez, Martin Eickhoff
The high spatial resolution and contactless optical readout capabilities of luminescence thermometry offer significant advantages in numerous fields, including biomedicine, space exploration and optoelectronics. In addition, robust, reproducible, and accurate temperature measurements are essential in these areas. The ultra-wide band gap semiconductor material Ga2O3 is a suitable host for optical sensing in harsh environments due to its high stability. In this work, the thermometric operation of Ga2O3:Cr-based microcavities are evaluated. They are designed as follows: Ga2O3:Cr microwires are encapsulated in multilayers fabricated by atomic layer deposition (ALD), which act as both Bragg reflectors and protective layers for the thermometric sensor. Prior to the ALD encapsulation step, focused ion beam carved trenches at the microwire ends are necessary to accommodate the multilayer coating. The structural and optical properties of the devices are assessed experimentally, analytically and by simulations. The developed microthermometers can be easily calibrated using a cubic polynomial for the temperature-dependent resonant peak position shift. A better than 0.5 °C temperature resolution and accuracy for temperatures above −80 °C is demonstrated. Additionally, the devices show robustness against excitation laser densities of at least 34 W mm−2, can operate at temperatures up to 600 °C and remain functional in liquids.
发光测温仪的高空间分辨率和非接触式光学读出功能为生物医学、太空探索和光电子学等众多领域提供了显著优势。此外,稳健、可重现和精确的温度测量在这些领域也至关重要。超宽带隙半导体材料 Ga2O3 具有高稳定性,适合在恶劣环境中进行光学传感。在这项工作中,对基于 Ga2O3:Cr 的微腔的测温操作进行了评估。它们的设计如下:Ga2O3:Cr微线封装在通过原子层沉积(ALD)制造的多层膜中,这些多层膜既是布拉格反射器,又是测温传感器的保护层。在进行 ALD 封装之前,必须在微线两端用聚焦离子束刻出沟槽,以容纳多层涂层。通过实验、分析和模拟,对设备的结构和光学特性进行了评估。所开发的微温度计可使用三次多项式轻松校准随温度变化的共振峰位置偏移。温度分辨率和精确度优于 0.5 °C,适用于 -80 °C 以上的温度。此外,该装置在激发激光密度至少为 34 W mm-2 的情况下也表现出很强的稳定性,可在高达 600 °C 的温度下工作,并能在液体中保持功能。
{"title":"Accurate and Robust Wide-Range Luminescent Microthermometer Based on ALD-Encapsulated Ga2O3:Cr DBR Microcavities","authors":"Manuel Alonso-Orts, Ruben J. T. Neelissen, Daniel Carrasco, Marco Schowalter, Andreas Rosenauer, Emilio Nogales, Bianchi Méndez, Martin Eickhoff","doi":"10.1002/admt.202400881","DOIUrl":"https://doi.org/10.1002/admt.202400881","url":null,"abstract":"The high spatial resolution and contactless optical readout capabilities of luminescence thermometry offer significant advantages in numerous fields, including biomedicine, space exploration and optoelectronics. In addition, robust, reproducible, and accurate temperature measurements are essential in these areas. The ultra-wide band gap semiconductor material Ga<sub>2</sub>O<sub>3</sub> is a suitable host for optical sensing in harsh environments due to its high stability. In this work, the thermometric operation of Ga<sub>2</sub>O<sub>3</sub>:Cr-based microcavities are evaluated. They are designed as follows: Ga<sub>2</sub>O<sub>3</sub>:Cr microwires are encapsulated in multilayers fabricated by atomic layer deposition (ALD), which act as both Bragg reflectors and protective layers for the thermometric sensor. Prior to the ALD encapsulation step, focused ion beam carved trenches at the microwire ends are necessary to accommodate the multilayer coating. The structural and optical properties of the devices are assessed experimentally, analytically and by simulations. The developed microthermometers can be easily calibrated using a cubic polynomial for the temperature-dependent resonant peak position shift. A better than 0.5 °C temperature resolution and accuracy for temperatures above −80 °C is demonstrated. Additionally, the devices show robustness against excitation laser densities of at least 34 W mm<sup>−2</sup>, can operate at temperatures up to 600 °C and remain functional in liquids.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph Jang, Hyuk Jun Kwon, Ki-Seob Hwang, Jun-Young Lee
Superhydrophilic coatings are prominent in various industries, including automotive, and consumer electronics. However, challenges persist in terms of mechanical performance and durability. This study focuses on the development of organic–inorganic hybrid nanoparticles for superhydrophilic coatings that exhibit exceptional thermomechanical stability and long-term durability. Employing green chemistry, polyethylene glycols (PEGs) are grafted onto silica nanoparticles, controlling the PEG molecular weight from 200 to 1000 to systematically investigate its impact on coating characteristics. Additionally, the intriguing phenomenon of phase separation facilitated by a polyurethane binder and its effects on both morphology and hydrophilicity is investigated. All hybrid coatings consistently exhibit remarkable superhydrophilicity, with contact angles consistently below 10°, the lowest being 1.4°. Longer PEG chains played a pivotal role in enhancing the thermal stability of the grafted PEG shell within the hybrid nanoparticles, achieving a maximum enhancement in decomposition temperature of 150 °C. Furthermore, the PEG shell substantially improves strain durability, with SiO2-PEG 1000–50% exhibiting outstanding transmittance retention of 100% without any cracks even under a 100% tensile strain. SiO2-PEG 200 emerged as the champion in maintaining superhydrophilicity throughout a 20-day long-term durability assessment. Moreover, the research has unveiled the intricate degradation mechanism responsible for the decline in hydrophilicity in these hybrid coatings.
{"title":"Enhancing the Durability and Mechanical Performance of Superhydrophilic Coatings through Organic–Inorganic Hybrid Nanoparticles","authors":"Joseph Jang, Hyuk Jun Kwon, Ki-Seob Hwang, Jun-Young Lee","doi":"10.1002/admt.202400383","DOIUrl":"https://doi.org/10.1002/admt.202400383","url":null,"abstract":"Superhydrophilic coatings are prominent in various industries, including automotive, and consumer electronics. However, challenges persist in terms of mechanical performance and durability. This study focuses on the development of organic–inorganic hybrid nanoparticles for superhydrophilic coatings that exhibit exceptional thermomechanical stability and long-term durability. Employing green chemistry, polyethylene glycols (PEGs) are grafted onto silica nanoparticles, controlling the PEG molecular weight from 200 to 1000 to systematically investigate its impact on coating characteristics. Additionally, the intriguing phenomenon of phase separation facilitated by a polyurethane binder and its effects on both morphology and hydrophilicity is investigated. All hybrid coatings consistently exhibit remarkable superhydrophilicity, with contact angles consistently below 10°, the lowest being 1.4°. Longer PEG chains played a pivotal role in enhancing the thermal stability of the grafted PEG shell within the hybrid nanoparticles, achieving a maximum enhancement in decomposition temperature of 150 °C. Furthermore, the PEG shell substantially improves strain durability, with SiO<sub>2</sub>-PEG 1000–50% exhibiting outstanding transmittance retention of 100% without any cracks even under a 100% tensile strain. SiO<sub>2</sub>-PEG 200 emerged as the champion in maintaining superhydrophilicity throughout a 20-day long-term durability assessment. Moreover, the research has unveiled the intricate degradation mechanism responsible for the decline in hydrophilicity in these hybrid coatings.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the growing number of sensor nodes at edge devices, it is critical to guarantee the security of private data transmitted over the Internet of Things (IoT), especially in image and video applications. Traditional software-based encryption schemes are vulnerable to advanced attacks based on machine learning or quantum computing, leading to the exploration of hardware-based solutions. This study proposes a novel in-sensor encryption technique using a perovskite photodetectors (PDs) array to integrate image acquisition and encryption functions within a single hardware platform. The technique exploits the inherent physical disorder and randomness of perovskite PDs to provide an optimal source of entropy for the generation of cryptographic keys. The MAPbI3 perovskite PDs array is fabricated by a convenient method and passivated by thioacetamide (TAA) to improve the performance in photoresponsivity, response time, spectra response, and stability, enabling sensitive imaging and reliable key generation. The improved perovskite PDs array exhibits remarkable optoelectronic properties and stability, highlighting its potential for in-sensor encryption and the creation of trustworthy hardware security systems for imaging terminals.
{"title":"Photodetector Array Based on Perovskite Thin Film Enhanced by Thioacetamide for Imaging and Integrated In-Sensor Encryption","authors":"Zhenhui He, Zhanwei Liu, Xuehu Luo, Yanting Chen, Yuhao Ruan, Dengyun Lei, Shuting Cai, Guijun Li, Hoi-Sing Kwok, Jianfeng Zhang, Yuan Liu","doi":"10.1002/admt.202400841","DOIUrl":"https://doi.org/10.1002/admt.202400841","url":null,"abstract":"With the growing number of sensor nodes at edge devices, it is critical to guarantee the security of private data transmitted over the Internet of Things (IoT), especially in image and video applications. Traditional software-based encryption schemes are vulnerable to advanced attacks based on machine learning or quantum computing, leading to the exploration of hardware-based solutions. This study proposes a novel in-sensor encryption technique using a perovskite photodetectors (PDs) array to integrate image acquisition and encryption functions within a single hardware platform. The technique exploits the inherent physical disorder and randomness of perovskite PDs to provide an optimal source of entropy for the generation of cryptographic keys. The MAPbI<sub>3</sub> perovskite PDs array is fabricated by a convenient method and passivated by thioacetamide (TAA) to improve the performance in photoresponsivity, response time, spectra response, and stability, enabling sensitive imaging and reliable key generation. The improved perovskite PDs array exhibits remarkable optoelectronic properties and stability, highlighting its potential for in-sensor encryption and the creation of trustworthy hardware security systems for imaging terminals.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica R. Wagner, Matthew R. Jamison, Stephen A. Morin
Traditional circuit board fabrication schemes are not directly applicable to the production of flexible, multi-material circuits. This article reports a technique, microfluidic directed material patterning, which combines soft microfluidic stamps and low-temperature solution-phase deposition to generate multi-material circuits on flexible, non-planar polymeric supports. Specifically, metallic and semiconductive traces are combined on commodity plastic films to yield functional photosensitive circuits that can be used in the spectrophotometric detection and concentration measurement of microdroplets on 3D “e-plates.” The photoresistive material cadmium sulfide is used in these circuits because it is suitable for visible light detection and it can be deposited directly from aqueous solutions following established bath deposition procedures. This method can produce colorimetric devices capable of quantifying micromolar concentrations of Allura Red in microdroplets of Kool-Aid. This technique presents the opportunity for producing single-use or low-use disposable/recyclable devices for flexible 3D sensors and detectors following a convenient, low-waste fabrication scheme. The general capabilities of this approach, in terms of substrate geometry and device layout (e.g., the number, area, and pattern of photoresistive elements), can be applied to the design and manufacture of more intricate, multiplexed devices supportive of advanced and/or specialized functions that go beyond those reported in this initial demonstration.
传统的电路板制造方案无法直接用于柔性多材料电路的生产。本文报道了一种微流体定向材料图案化技术,该技术结合了软性微流体印章和低温溶液相沉积技术,可在柔性非平面聚合物支架上生成多材料电路。具体来说,在商品塑料薄膜上结合金属和半导体迹线,生成功能性光敏电路,可用于三维 "电子板 "上微滴的分光光度检测和浓度测量。这些电路中使用了光敏材料硫化镉,因为它适用于可见光检测,而且可以按照既定的浴沉积程序直接从水溶液中沉积出来。这种方法可以生产出比色装置,能够量化酷爱饮料微滴中的微摩尔浓度 Allura Red。这项技术提供了一个机会,可以按照便捷、低废物的制造方案,为灵活的三维传感器和探测器生产一次性或低用量的一次性/可回收装置。这种方法在基底几何和器件布局(如光阻元件的数量、面积和模式)方面的一般能力,可用于设计和制造更复杂、支持高级和/或特殊功能的多路复用器件,其功能超出了本次初步演示所报告的范围。
{"title":"Fabrication of Multi-Material Functional Circuits Using Microfluidic Directed Materials Patterning","authors":"Jessica R. Wagner, Matthew R. Jamison, Stephen A. Morin","doi":"10.1002/admt.202400307","DOIUrl":"https://doi.org/10.1002/admt.202400307","url":null,"abstract":"Traditional circuit board fabrication schemes are not directly applicable to the production of flexible, multi-material circuits. This article reports a technique, microfluidic directed material patterning, which combines soft microfluidic stamps and low-temperature solution-phase deposition to generate multi-material circuits on flexible, non-planar polymeric supports. Specifically, metallic and semiconductive traces are combined on commodity plastic films to yield functional photosensitive circuits that can be used in the spectrophotometric detection and concentration measurement of microdroplets on 3D “e-plates.” The photoresistive material cadmium sulfide is used in these circuits because it is suitable for visible light detection and it can be deposited directly from aqueous solutions following established bath deposition procedures. This method can produce colorimetric devices capable of quantifying micromolar concentrations of Allura Red in microdroplets of Kool-Aid. This technique presents the opportunity for producing single-use or low-use disposable/recyclable devices for flexible 3D sensors and detectors following a convenient, low-waste fabrication scheme. The general capabilities of this approach, in terms of substrate geometry and device layout (e.g., the number, area, and pattern of photoresistive elements), can be applied to the design and manufacture of more intricate, multiplexed devices supportive of advanced and/or specialized functions that go beyond those reported in this initial demonstration.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Su Yang, Woojo Kim, Hocheon Yoo, Eun Kwang Lee
Artificial synapses, inspired by the intricate design of biological synapses, utilize electrical, chemical, and mechanical signals to transmit and retain information. Recent advances have involved research on artificial synapses based on organic electrochemical transistors (OECTs), emphasizing low power consumption and rapid response times. A notable challenge arises when the gate voltage is removed, causing doped ions to return quickly to the electrolyte. A simple yet efficient approach is used to solve this problem: forming a microporous active layer using a phase separation method. This technique can maximize the contact area between the electrolyte and the active layer, enhancing ion doping/de-doping in OECTs. Improvements in the product of hole mobility and volumetric capacitance is achieved. The electrostatic coupling effect and electrochemical doping in synaptic OECTs occur better than in the pristine active layer, yielding enhanced performance with higher short-term and long-term synaptic plasticity, compared to pristine OECTs. Moreover, improved ambipolar characteristics is shown by n-dopant injection. This paper reports a way to improve performance by simply modifying the surface shape of the active layer using the phase separation, contributing to advancements in artificial synapses for neural networks.
{"title":"Organic Electrochemical Transistors with Microporous Structures via Phase-Separation for Enhancing Long-Term Plasticity in Artificial Synapses","authors":"Hui Su Yang, Woojo Kim, Hocheon Yoo, Eun Kwang Lee","doi":"10.1002/admt.202400478","DOIUrl":"https://doi.org/10.1002/admt.202400478","url":null,"abstract":"Artificial synapses, inspired by the intricate design of biological synapses, utilize electrical, chemical, and mechanical signals to transmit and retain information. Recent advances have involved research on artificial synapses based on organic electrochemical transistors (OECTs), emphasizing low power consumption and rapid response times. A notable challenge arises when the gate voltage is removed, causing doped ions to return quickly to the electrolyte. A simple yet efficient approach is used to solve this problem: forming a microporous active layer using a phase separation method. This technique can maximize the contact area between the electrolyte and the active layer, enhancing ion doping/de-doping in OECTs. Improvements in the product of hole mobility and volumetric capacitance is achieved. The electrostatic coupling effect and electrochemical doping in synaptic OECTs occur better than in the pristine active layer, yielding enhanced performance with higher short-term and long-term synaptic plasticity, compared to pristine OECTs. Moreover, improved ambipolar characteristics is shown by <i>n</i>-dopant injection. This paper reports a way to improve performance by simply modifying the surface shape of the active layer using the phase separation, contributing to advancements in artificial synapses for neural networks.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Imprint lithography is one of the most used techniques for fabricating microstructures, owing to its high efficiency in both costs and time. However, imprinting has limited feasibility in realizing complex microstructures due to difficulties arising from the inherent limitations in the demolding process. Herein, a facile method is demonstrated for fabricating closed-loop reentrant topographies with microscale meshes through a combination of imprint lithography and shape memory polymer (SMP). The mesh structure imprinted onto the pre-pressed SMP pillar array can be elevated by utilizing the form-switchable property of SMP to fabricate suspended micromesh. Suspended micromesh is fully supported by restored SMP micropillar array, exhibiting a closed-loop shape that cannot be achieved with conventional imprint lithographic methods. Also, by the nature of reentrant geometry, liquid-repellency can be realized even for liquids with a lower surface tension than water, offering numerous applications in self-cleaning, droplet manipulation, and antifouling. Various liquid-repellent performances of the fabricated suspended micromesh are investigated and compared to the theoretical expectations for a non-wetting structure, confirming the successful establishment of reentrant topography in the fabricated structures. The proposed lithographic technique can be broadly utilized not only for liquid-repellent surfaces but also for the fabrication of various functional structures.
{"title":"Facile Lithographic Fabrication of Closed-Loop Reentrant Micromesh via Shape Memory Effect-Induced Suspension for Robust Liquid-Repellency","authors":"Gain Lee, Bong Su Kang, Minsu Kim, Moon Kyu Kwak","doi":"10.1002/admt.202400679","DOIUrl":"https://doi.org/10.1002/admt.202400679","url":null,"abstract":"Imprint lithography is one of the most used techniques for fabricating microstructures, owing to its high efficiency in both costs and time. However, imprinting has limited feasibility in realizing complex microstructures due to difficulties arising from the inherent limitations in the demolding process. Herein, a facile method is demonstrated for fabricating closed-loop reentrant topographies with microscale meshes through a combination of imprint lithography and shape memory polymer (SMP). The mesh structure imprinted onto the pre-pressed SMP pillar array can be elevated by utilizing the form-switchable property of SMP to fabricate suspended micromesh. Suspended micromesh is fully supported by restored SMP micropillar array, exhibiting a closed-loop shape that cannot be achieved with conventional imprint lithographic methods. Also, by the nature of reentrant geometry, liquid-repellency can be realized even for liquids with a lower surface tension than water, offering numerous applications in self-cleaning, droplet manipulation, and antifouling. Various liquid-repellent performances of the fabricated suspended micromesh are investigated and compared to the theoretical expectations for a non-wetting structure, confirming the successful establishment of reentrant topography in the fabricated structures. The proposed lithographic technique can be broadly utilized not only for liquid-repellent surfaces but also for the fabrication of various functional structures.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peikai Zhang, Omkar N. Athavale, Bicheng Zhu, Jadranka Travas‐Sejdic, Peng Du
Wearable and implantable devices play a crucial role in clinical diagnosis, disease treatment, and fundamental research on the body's electrophysiology and biochemical processes. Conducting polymers are emerging as promising solutions to surpass the limitations of traditional metal‐based electrodes, offering enhanced conformability, and stretchability. However, current microfabrication techniques of CP electrodes have a number of limitations. In this study, a novel wet‐printing technique is developed for the fabrication of highly stretchable poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) microelectrodes. The wet‐printing, conducted in a liquid coagulation bath, has the advantages of being non‐contact, easy and fast to perform, and capable of printing low‐viscosity inks. Wet‐printing of PEDOT:PSS lines with a width of ≈20 µm is demonstrated. By adding D‐sorbitol as a plasticizer, an ultra‐high stretchability of PEDOT:PSS electrodes, of more than 720% is achieved while the electrodes remained conductive and strain‐insensitive up to high strains. The use of PEDOT:PSS wet‐printed electrode arrays for the electrophysiological recording from the stomach is demonstrated. The stretchable electrodes conformed swell to the tissue and recorded comparable electrophysiological signals to Au‐plated electrodes in porcine and rodent animal models. The wet‐printing approach to fabricating flexible and stretchable electrode arrays using low‐viscosity, conducting inks holds promise for applications in conformable electronics.
{"title":"Wet‐Printed Stretchable and Strain‐Insensitive Conducting Polymer Electrodes: Facilitating In Vivo Gastric Slow Wave Mapping","authors":"Peikai Zhang, Omkar N. Athavale, Bicheng Zhu, Jadranka Travas‐Sejdic, Peng Du","doi":"10.1002/admt.202400849","DOIUrl":"https://doi.org/10.1002/admt.202400849","url":null,"abstract":"Wearable and implantable devices play a crucial role in clinical diagnosis, disease treatment, and fundamental research on the body's electrophysiology and biochemical processes. Conducting polymers are emerging as promising solutions to surpass the limitations of traditional metal‐based electrodes, offering enhanced conformability, and stretchability. However, current microfabrication techniques of CP electrodes have a number of limitations. In this study, a novel wet‐printing technique is developed for the fabrication of highly stretchable poly(3,4‐ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) microelectrodes. The wet‐printing, conducted in a liquid coagulation bath, has the advantages of being non‐contact, easy and fast to perform, and capable of printing low‐viscosity inks. Wet‐printing of PEDOT:PSS lines with a width of ≈20 µm is demonstrated. By adding D‐sorbitol as a plasticizer, an ultra‐high stretchability of PEDOT:PSS electrodes, of more than 720% is achieved while the electrodes remained conductive and strain‐insensitive up to high strains. The use of PEDOT:PSS wet‐printed electrode arrays for the electrophysiological recording from the stomach is demonstrated. The stretchable electrodes conformed swell to the tissue and recorded comparable electrophysiological signals to Au‐plated electrodes in porcine and rodent animal models. The wet‐printing approach to fabricating flexible and stretchable electrode arrays using low‐viscosity, conducting inks holds promise for applications in conformable electronics.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Free space optical communication with infrared light is a promising secure wireless optical communication technology, where infrared photodetectors are the core component. To date, such applications are based on epitaxial growth narrow‐band semiconductors facing the challenge of large‐area fabrication. Infrared colloidal quantum dots (CQDs) are of interest because of the high‐throughput solution processing. Here, large‐area CQD photodetectors with adjustable wavelengths covering 1.3–2.0 µm. For 1 × 1 mm2 CQD photodetector, the response time achieved within 1 µs at room temperature, responded sharply to the 25 kbps PRBS‐7 communication code is demonstrated. For 1.5 × 1.5 cm2 large‐area CQD photodetectors, a communication rate of 2 kbps is achieved. This work is a step toward the CQD application in the field of optical communications.
{"title":"Assessing the Potential and Limitations of PbS and HgTe Colloidal Quantum Dot Infrared Detectors for Free Space Optical Communication","authors":"Xue Zhao, Haifeng Yao, Yanyan Qiu, Naiquan Yan, Qun Hao, Menglu Chen","doi":"10.1002/admt.202400302","DOIUrl":"https://doi.org/10.1002/admt.202400302","url":null,"abstract":"Free space optical communication with infrared light is a promising secure wireless optical communication technology, where infrared photodetectors are the core component. To date, such applications are based on epitaxial growth narrow‐band semiconductors facing the challenge of large‐area fabrication. Infrared colloidal quantum dots (CQDs) are of interest because of the high‐throughput solution processing. Here, large‐area CQD photodetectors with adjustable wavelengths covering 1.3–2.0 µm. For 1 × 1 mm<jats:sup>2</jats:sup> CQD photodetector, the response time achieved within 1 µs at room temperature, responded sharply to the 25 kbps PRBS‐7 communication code is demonstrated. For 1.5 × 1.5 cm<jats:sup>2</jats:sup> large‐area CQD photodetectors, a communication rate of 2 kbps is achieved. This work is a step toward the CQD application in the field of optical communications.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"96 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cheolheon Park, Minhyuk Lee, Hyeli Kim, Daewon Lee, Jangho Choi, Yeongjae Choi, Wook Park
This article presents an iris‐mimicking polymeric microparticle with randomly generated silica film cracks to be utilized as a wet‐phase micro security taggant. The microparticles are designed to replicate the capillary patterns in the human iris, providing high data capacity and stability, making them ideal for authentication. Furthermore, the microparticles integrate a QR code within the pupillary zone of the iris, enabling pupillary authentication to enhance two‐factor identification and elevate overall security levels an unprecedented feature absent in conventional iris recognition systems. The resulting artificial iris‐mimicking microparticles have high coding efficiency and unique characteristics and can be authenticated in the wet phase, making them suitable for use as micro security taggants.
{"title":"Iris‐Inspired Microparticles with a Two‐Factor Authentication Security Feature for Wet‐Phase Enhanced Anti‐Counterfeiting Strategies","authors":"Cheolheon Park, Minhyuk Lee, Hyeli Kim, Daewon Lee, Jangho Choi, Yeongjae Choi, Wook Park","doi":"10.1002/admt.202400566","DOIUrl":"https://doi.org/10.1002/admt.202400566","url":null,"abstract":"This article presents an iris‐mimicking polymeric microparticle with randomly generated silica film cracks to be utilized as a wet‐phase micro security taggant. The microparticles are designed to replicate the capillary patterns in the human iris, providing high data capacity and stability, making them ideal for authentication. Furthermore, the microparticles integrate a QR code within the pupillary zone of the iris, enabling pupillary authentication to enhance two‐factor identification and elevate overall security levels an unprecedented feature absent in conventional iris recognition systems. The resulting artificial iris‐mimicking microparticles have high coding efficiency and unique characteristics and can be authenticated in the wet phase, making them suitable for use as micro security taggants.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
IlHo Seo, Rizwan Ul Hassan, Byeongseok Ryu, Won‐Gun Koh, WonHyoung Ryu
Biodegradable polymers such as polylactic‐co‐glycolic acids (PLGA) are used for various implantable devices such as tissue scaffolds, drug delivery devices, and biosensors in different forms. However, high‐resolution patterning of biodegradable polymers on implantable devices has not been explored much yet. While electrohydrodynamic printing (EHD) can achieve high‐resolution printing compared to other printing methods, EHD printing of PLGA solutions is rarely attempted due to unstable printing. Such printing instability originates from the volatile nature of PLGA inks, and it causes nozzle clogging or change of ink conditions during printing. Here, PLGA ink formulation and a voltage input profile are studied for stable and high‐resolution EHD printing. Addition of glycerol at an optimal ratio as well as the control of voltage pulse shape strongly influenced both the stability and resolution of EHD printing of PLGA patterns. With the optimized inks and voltage inputs, stable printing of PLGA micropatterns down to 5 µm is achieved on both conductive and insulating surfaces for controlled drug release. Furthermore, use of a ring type electrode allows for EHD printing of PLGA micropatterns on 3D surfaces of PLLA tubes and stent struts.
{"title":"Electrohydrodynamic Printing of Biodegradable PLGA Micro‐Patterns on 3D Polymer Structures","authors":"IlHo Seo, Rizwan Ul Hassan, Byeongseok Ryu, Won‐Gun Koh, WonHyoung Ryu","doi":"10.1002/admt.202400230","DOIUrl":"https://doi.org/10.1002/admt.202400230","url":null,"abstract":"Biodegradable polymers such as polylactic‐co‐glycolic acids (PLGA) are used for various implantable devices such as tissue scaffolds, drug delivery devices, and biosensors in different forms. However, high‐resolution patterning of biodegradable polymers on implantable devices has not been explored much yet. While electrohydrodynamic printing (EHD) can achieve high‐resolution printing compared to other printing methods, EHD printing of PLGA solutions is rarely attempted due to unstable printing. Such printing instability originates from the volatile nature of PLGA inks, and it causes nozzle clogging or change of ink conditions during printing. Here, PLGA ink formulation and a voltage input profile are studied for stable and high‐resolution EHD printing. Addition of glycerol at an optimal ratio as well as the control of voltage pulse shape strongly influenced both the stability and resolution of EHD printing of PLGA patterns. With the optimized inks and voltage inputs, stable printing of PLGA micropatterns down to 5 µ<jats:italic>m</jats:italic> is achieved on both conductive and insulating surfaces for controlled drug release. Furthermore, use of a ring type electrode allows for EHD printing of PLGA micropatterns on 3D surfaces of PLLA tubes and stent struts.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}