首页 > 最新文献

Additive manufacturing letters最新文献

英文 中文
High-temperature tensile behaviors of an ultra-strong aluminum alloy fabricated by additive manufacturing 增材制造超强铝合金的高温拉伸行为
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-08-17 DOI: 10.1016/j.addlet.2024.100234
Anyu Shang, Benjamin Stegman, Xuanyu Sheng, Ke Xu, Yifan Zhang, Chao Shen, Emiliano Flores, Tanner McElroy, Haiyan Wang, Xinghang Zhang

Additively manufactured (AM) Al alloys have widespread applications. Their high-temperature mechanical behaviors are also of significant interest. In this study, we investigated the microstructure and mechanical behavior of Al-2Ti-2Fe-2Co-2Ni (at%) alloy processed by laser powder bed fusion. The as-printed alloy contains a distinctive heterogeneous microstructure characterized by nanoscale intermetallic lamellae arranged in rosette patterns in the Al matrix. Notably, this alloy exhibits high tensile strength and thermal stability up to 500 °C as revealed by in-situ tension studies in a scanning electron microscope. The enhanced high temperature performance can be attributed to a substantial volume fraction of well-dispersed, nanoscale stable intermetallic particles.

快速成型(AM)铝合金应用广泛。它们的高温力学行为也备受关注。在本研究中,我们研究了通过激光粉末床熔融技术加工的 Al-2Ti-2Fe-2Co-2Ni (at%) 合金的微观结构和力学行为。打印后的合金含有一种独特的异质微观结构,其特征是铝基体中排列成莲座状的纳米级金属间薄片。值得注意的是,通过扫描电子显微镜进行的原位拉伸研究显示,这种合金具有很高的拉伸强度和热稳定性,温度可达 500 ℃。高温性能的增强可归功于大量分散良好的纳米级稳定金属间化合物颗粒。
{"title":"High-temperature tensile behaviors of an ultra-strong aluminum alloy fabricated by additive manufacturing","authors":"Anyu Shang,&nbsp;Benjamin Stegman,&nbsp;Xuanyu Sheng,&nbsp;Ke Xu,&nbsp;Yifan Zhang,&nbsp;Chao Shen,&nbsp;Emiliano Flores,&nbsp;Tanner McElroy,&nbsp;Haiyan Wang,&nbsp;Xinghang Zhang","doi":"10.1016/j.addlet.2024.100234","DOIUrl":"10.1016/j.addlet.2024.100234","url":null,"abstract":"<div><p>Additively manufactured (AM) Al alloys have widespread applications. Their high-temperature mechanical behaviors are also of significant interest. In this study, we investigated the microstructure and mechanical behavior of Al-2Ti-2Fe-2Co-2Ni (at%) alloy processed by laser powder bed fusion. The as-printed alloy contains a distinctive heterogeneous microstructure characterized by nanoscale intermetallic lamellae arranged in rosette patterns in the Al matrix. Notably, this alloy exhibits high tensile strength and thermal stability up to 500 °C as revealed by in-situ tension studies in a scanning electron microscope. The enhanced high temperature performance can be attributed to a substantial volume fraction of well-dispersed, nanoscale stable intermetallic particles.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"11 ","pages":"Article 100234"},"PeriodicalIF":4.2,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000422/pdfft?md5=9c3e13483ce05908d95af7c80d08c72c&pid=1-s2.0-S2772369024000422-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142086894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the use of slurry as an alternative to dry powder for laser powder bed fusion of 316L stainless steel 在 316L 不锈钢激光粉末床熔化中使用浆料替代干粉
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-08-17 DOI: 10.1016/j.addlet.2024.100230
Sebastian Meyers, Kopila Gurung, Yannis Kinds, Brecht Van Hooreweder

Laser powder bed fusion (LPBF) is a well-established additive manufacturing process for producing high-quality metal components with unparallelled design freedom. However, LPBF also has its limitations, including a limited materials palette, low productivity and high costs, mainly due to the expensive feedstock powders. These powders must meet highly stringent requirements regarding particle size (15–45μm), particle size distribution (mono-modal) and morphology (spherical), which is achievable only through expensive gas- and plasma-atomised powders. This paper investigates slurry-LPBF as an alternative to conventional dry powder LPBF. The use of slurry removes some of the stringent powder requirements by allowing deposition of smaller particles with a variety of particle morphologies. Slurry-LPBF can therefore increase the useful yield of the atomisation process and expand the materials palette for LPBF, by enabling the use of powders for which atomised variants are not commercially available. This study used 316L stainless steel powder with an average particle size <18μm. An existing slurry-LPBF machine was re-designed and re-built, allowing successful slurry processing. Two optimal parameter sets were obtained, resulting in component density of 99.4%. Tensile testing revealed an ultimate tensile strength (UTS) of 622 ± 2 MPa and an elongation at break of 66 ± 2%. These results are consistent, and fall within the range of reported values in literature for dry-powder LPBF, with the UTS being on the lower side of the range, whilst elongation at break being on the higher side.

激光粉末床熔融技术(LPBF)是一种成熟的增材制造工艺,可生产出具有无与伦比的设计自由度的高质量金属部件。然而,LPBF 也有其局限性,包括材料种类有限、生产率低和成本高,这主要是由于原料粉末价格昂贵。这些粉末必须满足对粒度(15-45μm)、粒度分布(单模态)和形态(球形)的严格要求,而这只有通过昂贵的气体和等离子体雾化粉末才能实现。本文研究了浆料-低压无卤聚苯乙烯泡沫塑料,作为传统干粉低压无卤聚苯乙烯泡沫塑料的替代品。浆料的使用允许沉积具有各种颗粒形态的较小颗粒,从而消除了对粉末的一些严格要求。因此,浆料低压喷射工艺可以提高雾化工艺的有用产量,并扩大低压喷射工艺的材料范围,可以使用市场上没有雾化变体的粉末。本研究使用了平均粒径为 18 微米的 316L 不锈钢粉末。对现有的浆料-LPBF 设备进行了重新设计和建造,使其能够成功地进行浆料处理。获得了两个最佳参数集,使成分密度达到 99.4%。拉伸测试显示,极限拉伸强度 (UTS) 为 622 ± 2 兆帕,断裂伸长率为 66 ± 2%。这些结果是一致的,属于干粉 LPBF 的文献报告值范围,其中 UTS 值偏低,而断裂伸长率偏高。
{"title":"On the use of slurry as an alternative to dry powder for laser powder bed fusion of 316L stainless steel","authors":"Sebastian Meyers,&nbsp;Kopila Gurung,&nbsp;Yannis Kinds,&nbsp;Brecht Van Hooreweder","doi":"10.1016/j.addlet.2024.100230","DOIUrl":"10.1016/j.addlet.2024.100230","url":null,"abstract":"<div><p>Laser powder bed fusion (LPBF) is a well-established additive manufacturing process for producing high-quality metal components with unparallelled design freedom. However, LPBF also has its limitations, including a limited materials palette, low productivity and high costs, mainly due to the expensive feedstock powders. These powders must meet highly stringent requirements regarding particle size (15–<span><math><mrow><mn>45</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>), particle size distribution (mono-modal) and morphology (spherical), which is achievable only through expensive gas- and plasma-atomised powders. This paper investigates slurry-LPBF as an alternative to conventional dry powder LPBF. The use of slurry removes some of the stringent powder requirements by allowing deposition of smaller particles with a variety of particle morphologies. Slurry-LPBF can therefore increase the useful yield of the atomisation process and expand the materials palette for LPBF, by enabling the use of powders for which atomised variants are not commercially available. This study used 316L stainless steel powder with an average particle size <span><math><mrow><mo>&lt;</mo><mn>18</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>. An existing slurry-LPBF machine was re-designed and re-built, allowing successful slurry processing. Two optimal parameter sets were obtained, resulting in component density of 99.4%. Tensile testing revealed an ultimate tensile strength (UTS) of 622 ± 2 MPa and an elongation at break of 66 ± 2%. These results are consistent, and fall within the range of reported values in literature for dry-powder LPBF, with the UTS being on the lower side of the range, whilst elongation at break being on the higher side.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"11 ","pages":"Article 100230"},"PeriodicalIF":4.2,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000380/pdfft?md5=5e6b605faf1666b404a4bcade4865925&pid=1-s2.0-S2772369024000380-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Economics of 3D printing ceramic cores for gas turbine investment castings 三维打印燃气轮机熔模铸造陶瓷芯的经济性
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-01 DOI: 10.1016/j.addlet.2024.100223
Eduardo Maristany , Zachary C. Cordero , Jesse Boyer , Lynnora O. Grant

Recent supply chain issues affecting the airfoil casting industry have renewed interest in industrial-scale 3D printing of ceramic cores. Ceramic cores are conventionally manufactured through injection molding. However, injection molding of low-volume production runs can be challenging because of the long lead times and high costs associated with mold tooling. 3D printing can mitigate up-front tooling costs, but there are other trade-offs, e.g., higher material costs of 3D printing feedstocks. Here, we develop a techno-economic model that accounts for costs (materials, tooling, equipment), core size, experience curve effects, and other important variables to determine threshold production volumes for which 3D printing is less expensive than conventional processing techniques. Using market data from 2019, our analysis shows that 3D printing a single dedicated core design with typical dimensions for aeroengine applications is less expensive than injection molding below ∼1,800 units. By simultaneously printing multiple core designs, this threshold increases to 120,000 units, or approximately 2 % of the 2019 aeroengine market demand. This threshold value decreases with increasing core size, indicating 3D printing is less favorable for large castings used in industrial gas turbines. These results are compared against the demand for ceramic cores in engine development, engine sustainment, and new engine manufacturing.

近期影响机翼铸造业的供应链问题再次激发了人们对陶瓷芯材工业级三维打印的兴趣。陶瓷型芯的传统制造方法是注塑成型。然而,小批量生产的注塑成型具有挑战性,因为与模具相关的交付周期长、成本高。三维打印可以降低前期模具成本,但也有其他折衷方法,例如,三维打印原料的材料成本较高。在此,我们开发了一个技术经济模型,该模型考虑了成本(材料、模具、设备)、型芯尺寸、经验曲线效应和其他重要变量,以确定 3D 打印成本低于传统加工技术的临界产量。利用 2019 年的市场数据,我们的分析表明,在低于 1800 件的情况下,3D 打印具有航空发动机应用典型尺寸的单个专用型芯设计的成本低于注塑成型。如果同时打印多个型芯设计,这一临界值将增加到 120,000 件,约占 2019 年航空发动机市场需求的 2%。这一临界值随着型芯尺寸的增大而减小,表明3D打印对工业燃气轮机中使用的大型铸件不太有利。这些结果与发动机开发、发动机维护和新发动机制造中对陶瓷型芯的需求进行了比较。
{"title":"Economics of 3D printing ceramic cores for gas turbine investment castings","authors":"Eduardo Maristany ,&nbsp;Zachary C. Cordero ,&nbsp;Jesse Boyer ,&nbsp;Lynnora O. Grant","doi":"10.1016/j.addlet.2024.100223","DOIUrl":"https://doi.org/10.1016/j.addlet.2024.100223","url":null,"abstract":"<div><p>Recent supply chain issues affecting the airfoil casting industry have renewed interest in industrial-scale 3D printing of ceramic cores. Ceramic cores are conventionally manufactured through injection molding. However, injection molding of low-volume production runs can be challenging because of the long lead times and high costs associated with mold tooling. 3D printing can mitigate up-front tooling costs, but there are other trade-offs, e.g., higher material costs of 3D printing feedstocks. Here, we develop a techno-economic model that accounts for costs (materials, tooling, equipment), core size, experience curve effects, and other important variables to determine threshold production volumes for which 3D printing is less expensive than conventional processing techniques. Using market data from 2019, our analysis shows that 3D printing a single dedicated core design with typical dimensions for aeroengine applications is less expensive than injection molding below ∼1,800 units. By simultaneously printing multiple core designs, this threshold increases to 120,000 units, or approximately 2 % of the 2019 aeroengine market demand. This threshold value decreases with increasing core size, indicating 3D printing is less favorable for large castings used in industrial gas turbines. These results are compared against the demand for ceramic cores in engine development, engine sustainment, and new engine manufacturing.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"10 ","pages":"Article 100223"},"PeriodicalIF":4.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000318/pdfft?md5=513763866f7c987f0368cd3cd50d5036&pid=1-s2.0-S2772369024000318-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141595178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reproducing wrought grain structure in additive IN718 through nanosecond laser induced cavitation 通过纳秒激光诱导空化再现添加剂 IN718 中的锻造晶粒结构
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-01 DOI: 10.1016/j.addlet.2024.100229
Hannah Sims , Lonnie J. Love , Jonathan Pegues , Michael J. Abere

Pulsed laser assisted additive manufacturing has been demonstrated as a promising technology for controlling grain structure in 3D-printing processes. The integration of a nanosecond laser onto a wire arc additive manufacturing tool has enabled the localized printing of Inconel 718 with grain sizes meeting ASTM 9 standards (average measured grain size of 13.7μm) for wrought material within a single bead under solidification conditions that would otherwise produce 340μm columnar grains. The observed grain refinement holds promise, provided scale up is possible, for overcoming the highly anisotropic mechanical properties and microcracking associated with large columnar grains of Inconel 718 that have long stood in the way of leveraging the advantages of direct energy deposition printing techniques of difficult to machine alloys. Experiments on large bead sizes allowed for decoupling surface versus bulk nanosecond laser/liquid metal interaction mechanisms to determine that the source of the observed grain refinement is the collapse of cavitation bubbles originating from acoustic waves generated by momentum transfer into the melt of an ablation plasma. Additionally, experiments that increased the cavitation bubble density within the mushy zone during solidification by tuning the nanosecond laser scan path went beyond the 25 times reduction in grain size to a 70 times factor of refinement with a minimum average grain diameter approaching 4μm.

脉冲激光辅助增材制造已被证明是在三维打印过程中控制晶粒结构的一项前景广阔的技术。将纳秒激光器集成到线弧增材制造工具上,可以在单个珠子内局部打印出晶粒大小符合 ASTM 9 标准(平均测量晶粒大小为 13.7μm)的 Inconel 718 锻造材料,而在凝固条件下,这种材料会产生 340μm 的柱状晶粒。长期以来,Inconel 718 的各向异性机械性能和与大柱状晶粒相关的微裂纹一直阻碍着人们利用直接能量沉积打印技术的优势加工难以加工的合金。通过对大尺寸微珠进行实验,可以将表面与块体的纳秒激光/液态金属相互作用机理进行解耦,从而确定观察到的晶粒细化源于空化气泡的塌陷,而空化气泡源于将动量传递到烧蚀等离子体熔体中产生的声波。此外,在凝固过程中,通过调整纳秒激光扫描路径来增加粘稠区内空化泡密度的实验结果表明,晶粒尺寸缩小了 25 倍,细化系数提高了 70 倍,最小平均晶粒直径接近 4μm。
{"title":"Reproducing wrought grain structure in additive IN718 through nanosecond laser induced cavitation","authors":"Hannah Sims ,&nbsp;Lonnie J. Love ,&nbsp;Jonathan Pegues ,&nbsp;Michael J. Abere","doi":"10.1016/j.addlet.2024.100229","DOIUrl":"10.1016/j.addlet.2024.100229","url":null,"abstract":"<div><p>Pulsed laser assisted additive manufacturing has been demonstrated as a promising technology for controlling grain structure in 3D-printing processes. The integration of a nanosecond laser onto a wire arc additive manufacturing tool has enabled the localized printing of Inconel 718 with grain sizes meeting ASTM 9 standards (average measured grain size of <span><math><mrow><mn>13</mn><mo>.</mo><mn>7</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>) for wrought material within a single bead under solidification conditions that would otherwise produce <span><math><mrow><mn>340</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span> columnar grains. The observed grain refinement holds promise, provided scale up is possible, for overcoming the highly anisotropic mechanical properties and microcracking associated with large columnar grains of Inconel 718 that have long stood in the way of leveraging the advantages of direct energy deposition printing techniques of difficult to machine alloys. Experiments on large bead sizes allowed for decoupling surface versus bulk nanosecond laser/liquid metal interaction mechanisms to determine that the source of the observed grain refinement is the collapse of cavitation bubbles originating from acoustic waves generated by momentum transfer into the melt of an ablation plasma. Additionally, experiments that increased the cavitation bubble density within the mushy zone during solidification by tuning the nanosecond laser scan path went beyond the 25 times reduction in grain size to a 70 times factor of refinement with a minimum average grain diameter approaching <span><math><mrow><mn>4</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"10 ","pages":"Article 100229"},"PeriodicalIF":4.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000379/pdfft?md5=ada98bcd10763fcf7aecb0356eb93822&pid=1-s2.0-S2772369024000379-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracking the chemical composition of 3D printed 94 % alumina during the thermal post-process 在热后处理过程中跟踪 3D 打印 94% 氧化铝的化学成分
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-01 DOI: 10.1016/j.addlet.2024.100225
Sofia G Gomez , Dale Cillessen , Jonathon Duay , Kevin Strong , Katrina Sadzewicz , Eric MacDonald

Additive manufactured (AM) 94 % alumina was successfully 3D printed using the Lithography Ceramic Manufacturing (LCM) technique. Each 3D printed sample was exposed to a different stage of the thermal post-process to identify changes in chemical composition at each stage. The thermal phases studied were the as printed green state, preconditioning at 120 °C, debinding at 600 °C, debinding at 1100 °C, and sintering at 1650 °C. Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), and X-Ray Fluorescence (XRF) were used to evaluate the changes in composition at each stage of the thermal post-process. Cross-sectional images of 3D printed alumina samples after thermal exposure were captured using scanning electron microscopy (SEM).

使用光刻陶瓷制造 (LCM) 技术成功地三维打印出了添加剂制造 (AM) 的 94% 氧化铝。每个三维打印样品都经过了不同阶段的热后处理,以确定每个阶段的化学成分变化。研究的热阶段包括打印时的绿色状态、120 °C的预处理、600 °C的排胶、1100 °C的排胶和1650 °C的烧结。傅立叶变换红外光谱法(FTIR)、拉曼光谱法、热重分析法(TGA)和 X 射线荧光法(XRF)用于评估热后处理各阶段的成分变化。使用扫描电子显微镜(SEM)捕获了热暴露后三维打印氧化铝样品的横截面图像。
{"title":"Tracking the chemical composition of 3D printed 94 % alumina during the thermal post-process","authors":"Sofia G Gomez ,&nbsp;Dale Cillessen ,&nbsp;Jonathon Duay ,&nbsp;Kevin Strong ,&nbsp;Katrina Sadzewicz ,&nbsp;Eric MacDonald","doi":"10.1016/j.addlet.2024.100225","DOIUrl":"10.1016/j.addlet.2024.100225","url":null,"abstract":"<div><p>Additive manufactured (AM) 94 % alumina was successfully 3D printed using the Lithography Ceramic Manufacturing (LCM) technique. Each 3D printed sample was exposed to a different stage of the thermal post-process to identify changes in chemical composition at each stage. The thermal phases studied were the as printed green state, preconditioning at 120 °C, debinding at 600 °C, debinding at 1100 °C, and sintering at 1650 °C. Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Thermogravimetric Analysis (TGA), and X-Ray Fluorescence (XRF) were used to evaluate the changes in composition at each stage of the thermal post-process. Cross-sectional images of 3D printed alumina samples after thermal exposure were captured using scanning electron microscopy (SEM).</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"10 ","pages":"Article 100225"},"PeriodicalIF":4.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000331/pdfft?md5=91eb267da2e9f7fc88092dd888e78d85&pid=1-s2.0-S2772369024000331-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141851160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpenetrating microstructure in laser powder-bed fusion parts using selective rescanning 利用选择性重扫描技术研究激光粉末床熔融部件中的穿透微观结构
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-01 DOI: 10.1016/j.addlet.2024.100221
Bharath Bhushan Ravichander , Shweta Hanmant Jagdale , Golden Kumar

In-situ microstructural control is desirable in additively manufactured metal parts due to limited post-processing options for net-shaped components. Here, we introduce a novel selective rescanning approach to control the local solidification conditions and the microstructure in metal parts produced by laser powder-bed fusion (LPBF). We show that the melt pool dimensions, grain size, and sub-grain cell structure can be selectively varied in three dimensions to engineer the mechanical response of LPBF parts. The lattice-based rescanning strategy enables the formation of an interpenetrating microstructure comprised of fine and coarse grains. The localized heating and cooling-induced thermal stresses increase the hardness and tensile strength of rescanned specimens. The study shows the potential of selective rescanning strategy as a promising avenue for achieving precise control of microstructure and properties in as-printed LPBF parts without subsequent processing.

由于网状部件的后处理方法有限,因此原位微观结构控制是快速成型金属部件的理想选择。在这里,我们介绍了一种新型的选择性重扫描方法,用于控制激光粉末床熔融(LPBF)生产的金属零件的局部凝固条件和微观结构。我们的研究表明,熔池尺寸、晶粒大小和子晶胞结构可在三个维度上有选择性地变化,以设计 LPBF 零件的机械响应。基于晶格的重新扫描策略能够形成由细粒和粗粒组成的相互渗透的微观结构。局部加热和冷却引起的热应力提高了重新扫描试样的硬度和拉伸强度。这项研究表明,选择性重扫描策略是实现精确控制印制 LPBF 零件微观结构和性能的一种有效途径,无需后续加工。
{"title":"Interpenetrating microstructure in laser powder-bed fusion parts using selective rescanning","authors":"Bharath Bhushan Ravichander ,&nbsp;Shweta Hanmant Jagdale ,&nbsp;Golden Kumar","doi":"10.1016/j.addlet.2024.100221","DOIUrl":"https://doi.org/10.1016/j.addlet.2024.100221","url":null,"abstract":"<div><p><em>In-situ</em> microstructural control is desirable in additively manufactured metal parts due to limited post-processing options for net-shaped components. Here, we introduce a novel selective rescanning approach to control the local solidification conditions and the microstructure in metal parts produced by laser powder-bed fusion (LPBF). We show that the melt pool dimensions, grain size, and sub-grain cell structure can be selectively varied in three dimensions to engineer the mechanical response of LPBF parts. The lattice-based rescanning strategy enables the formation of an interpenetrating microstructure comprised of fine and coarse grains. The localized heating and cooling-induced thermal stresses increase the hardness and tensile strength of rescanned specimens. The study shows the potential of selective rescanning strategy as a promising avenue for achieving precise control of microstructure and properties in as-printed LPBF parts without subsequent processing.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"10 ","pages":"Article 100221"},"PeriodicalIF":4.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000306/pdfft?md5=a3c097750235487cc665b24857531d36&pid=1-s2.0-S2772369024000306-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GRCop-42: Comparison between laser powder bed fusion and laser powder direct energy deposition GRCop-42:激光粉末床熔融与激光粉末直接能量沉积的比较
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-01 DOI: 10.1016/j.addlet.2024.100224
Gabriel Demeneghi , Paul Gradl , Jason R. Mayeur , Kavan Hazeli

This study involves a comparative analysis of additively manufactured GRCop-42 specimens produced using two processes: laser-powder bed fusion (L-PBF) and laser powder direct energy deposition (LP-DED). The investigation characterizes a range of material attributes, including surface topography, internal defects, microstructural features, quasi-static mechanical properties, and fractographic characteristics. The findings demonstrate that, despite the specimens being fabricated with the same base material, the resulting material properties vary significantly between the two additive manufacturing processes. As such, material properties cannot be presumed to be uniform across different manufacturing methods. Consequently, material characterization must be conducted for individual manufacturing processes based on specific parameters.

本研究对使用激光粉末床熔融(L-PBF)和激光粉末直接能量沉积(LP-DED)两种工艺生产的增材制造 GRCop-42 试样进行了比较分析。这项研究描述了一系列材料属性,包括表面形貌、内部缺陷、微观结构特征、准静态力学性能和断口特征。研究结果表明,尽管试样是用相同的基体材料制造的,但两种快速成型制造工艺所产生的材料属性差异很大。因此,不能假定不同制造方法的材料特性是一致的。因此,必须根据特定参数对各个制造工艺进行材料表征。
{"title":"GRCop-42: Comparison between laser powder bed fusion and laser powder direct energy deposition","authors":"Gabriel Demeneghi ,&nbsp;Paul Gradl ,&nbsp;Jason R. Mayeur ,&nbsp;Kavan Hazeli","doi":"10.1016/j.addlet.2024.100224","DOIUrl":"10.1016/j.addlet.2024.100224","url":null,"abstract":"<div><p>This study involves a comparative analysis of additively manufactured GRCop-42 specimens produced using two processes: laser-powder bed fusion (L-PBF) and laser powder direct energy deposition (LP-DED). The investigation characterizes a range of material attributes, including surface topography, internal defects, microstructural features, quasi-static mechanical properties, and fractographic characteristics. The findings demonstrate that, despite the specimens being fabricated with the same base material, the resulting material properties vary significantly between the two additive manufacturing processes. As such, material properties cannot be presumed to be uniform across different manufacturing methods. Consequently, material characterization must be conducted for individual manufacturing processes based on specific parameters.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"10 ","pages":"Article 100224"},"PeriodicalIF":4.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277236902400032X/pdfft?md5=7f4251d0a304039b8027c87ac01f0bd1&pid=1-s2.0-S277236902400032X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141638261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Printing vertical flat surfaces in thermoset big area additive manufacturing 在热固性大面积增材制造中打印垂直平面
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-01 DOI: 10.1016/j.addlet.2024.100226
Marco Brander, Berin Šeta, David Bue Pedersen, Jon Spangenberg

In extrusion-based additive manufacturing, achieving high surface quality typically involves using small layer heights to reduce the size of grooves between layers. However, this approach can be both less effective and time-consuming in big-area additive manufacturing. Therefore, the current focus is on investigating methods for printing with fewer layers without compromising surface quality. In this study, single-strand walls were printed using a two-component thermoset material, where different nozzle designs and printing strategies are explored to achieve the flattest possible surface. The success of each approach was evaluated by measuring the percentage of material that required removal to achieve a perfect vertical flat wall. The results suggested that incorporating vertical wings to contain the material in the desired shape was beneficial. Furthermore, the study introduced the idea of adjustable layer heights to mitigate layer deformation. This deformation is most noticeable in the initial layers but largely affects all subsequent printed layers. Finally, making the wings have an angle with regard to the printing direction or trapezoidal wings, served as a pressure funnel that produced the greatest improvement in surface quality. These changes allowed for a reduction of the amount of material which would need to be removed to achieve a flat wall without grooves from 14.3% for a standard print from a round nozzle, to 2.5% for an optimized strand. The research shows a promising path to producing entirely flat vertical structures, even when printing with still-deformable, thermoset materials in the context of big-area additive manufacturing.

在基于挤压的增材制造中,要获得较高的表面质量,通常需要使用较小的层高来减小层间沟槽的尺寸。然而,在大面积增材制造中,这种方法既不有效又耗时。因此,目前的重点是研究在不影响表面质量的前提下使用较少层进行打印的方法。在这项研究中,使用双组分热固性材料打印了单股壁,并探索了不同的喷嘴设计和打印策略,以获得尽可能平整的表面。通过测量实现完美垂直平壁所需去除材料的百分比,评估了每种方法的成功率。结果表明,采用垂直翼将材料控制在所需形状是有益的。此外,该研究还引入了可调节层高的理念,以减轻层变形。这种变形在初始层中最为明显,但在很大程度上会影响所有后续打印层。最后,使翼片与印刷方向成一定角度或梯形翼片可作为压力漏斗,从而最大程度地改善表面质量。这些变化使得为获得无凹槽的平壁而需要去除的材料量从圆形喷嘴标准打印的 14.3% 减少到优化股的 2.5%。这项研究表明,即使在大面积增材制造的背景下使用仍可变形的热固性材料进行打印,也有希望生产出完全平坦的垂直结构。
{"title":"Printing vertical flat surfaces in thermoset big area additive manufacturing","authors":"Marco Brander,&nbsp;Berin Šeta,&nbsp;David Bue Pedersen,&nbsp;Jon Spangenberg","doi":"10.1016/j.addlet.2024.100226","DOIUrl":"10.1016/j.addlet.2024.100226","url":null,"abstract":"<div><p>In extrusion-based additive manufacturing, achieving high surface quality typically involves using small layer heights to reduce the size of grooves between layers. However, this approach can be both less effective and time-consuming in big-area additive manufacturing. Therefore, the current focus is on investigating methods for printing with fewer layers without compromising surface quality. In this study, single-strand walls were printed using a two-component thermoset material, where different nozzle designs and printing strategies are explored to achieve the flattest possible surface. The success of each approach was evaluated by measuring the percentage of material that required removal to achieve a perfect vertical flat wall. The results suggested that incorporating vertical wings to contain the material in the desired shape was beneficial. Furthermore, the study introduced the idea of adjustable layer heights to mitigate layer deformation. This deformation is most noticeable in the initial layers but largely affects all subsequent printed layers. Finally, making the wings have an angle with regard to the printing direction or trapezoidal wings, served as a pressure funnel that produced the greatest improvement in surface quality. These changes allowed for a reduction of the amount of material which would need to be removed to achieve a flat wall without grooves from 14.3% for a standard print from a round nozzle, to 2.5% for an optimized strand. The research shows a promising path to producing entirely flat vertical structures, even when printing with still-deformable, thermoset materials in the context of big-area additive manufacturing.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"10 ","pages":"Article 100226"},"PeriodicalIF":4.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000343/pdfft?md5=f3dc57a6059c196a163df977d90f95a8&pid=1-s2.0-S2772369024000343-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microstructure and mechanical response of as-built and solution-annealed LPBF Hastelloy X under high-temperature fatigue loading 坯料和固溶退火 LPBF 哈氏合金 X 在高温疲劳载荷下的微观结构和机械响应
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-01 DOI: 10.1016/j.addlet.2024.100227
X. Li , R. Esmaeilizadeh , E. Hosseini

This study investigates the microstructural characteristics and the high-temperature mechanical behavior of Hastelloy X, fabricated via laser powder-bed fusion (LPBF) technology. Hastelloy X, a solid solution-strengthened nickel-based superalloy known for its high strength and oxidation resistance at elevated temperatures, has gained significant interest for the fabrication of complex aerospace components through LPBF technology. The study initially focuses on the impact of solution annealing heat treatment at 1227 °C on the alloy microstructure, based on scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. It then explores the fatigue and cyclic deformation response of the alloy at 750 °C across different strain ranges, comparing the as-built and solution-annealed conditions. To understand the observed differences in the cyclic mechanical response of as-built and solution-annealed LPBF HX, for a particular condition, a set of dedicated tests have been performed and interrupted at selected numbers of cycles in the different stages of the mechanical response. At each interruption point, specimens have been examined by TEM to provide an in-depth understanding of the effect of dislocation microstructural evolution on the high-temperature cyclic mechanical response of the alloy.

本研究探讨了通过激光粉末床熔融(LPBF)技术制造的哈氏合金 X 的微观结构特征和高温力学行为。哈氏合金 X 是一种固溶强化镍基超级合金,因其在高温下具有高强度和抗氧化性而闻名,它在通过 LPBF 技术制造复杂航空航天部件方面获得了极大的关注。本研究基于扫描电子显微镜(SEM)和透射电子显微镜(TEM)的研究,首先关注 1227 °C 固溶退火热处理对合金微观结构的影响。然后,比较坯料和固溶退火条件,探讨合金在 750 °C 不同应变范围内的疲劳和循环变形响应。为了解坯料和固溶退火后 LPBF HX 在特定条件下的循环机械响应差异,在机械响应的不同阶段进行了一系列专门测试,并在选定的循环次数下中断测试。在每个中断点,都用 TEM 对试样进行检查,以深入了解位错微结构演变对合金高温循环机械响应的影响。
{"title":"Microstructure and mechanical response of as-built and solution-annealed LPBF Hastelloy X under high-temperature fatigue loading","authors":"X. Li ,&nbsp;R. Esmaeilizadeh ,&nbsp;E. Hosseini","doi":"10.1016/j.addlet.2024.100227","DOIUrl":"10.1016/j.addlet.2024.100227","url":null,"abstract":"<div><p>This study investigates the microstructural characteristics and the high-temperature mechanical behavior of Hastelloy X, fabricated via laser powder-bed fusion (LPBF) technology. Hastelloy X, a solid solution-strengthened nickel-based superalloy known for its high strength and oxidation resistance at elevated temperatures, has gained significant interest for the fabrication of complex aerospace components through LPBF technology. The study initially focuses on the impact of solution annealing heat treatment at 1227 °C on the alloy microstructure, based on scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. It then explores the fatigue and cyclic deformation response of the alloy at 750 °C across different strain ranges, comparing the as-built and solution-annealed conditions. To understand the observed differences in the cyclic mechanical response of as-built and solution-annealed LPBF HX, for a particular condition, a set of dedicated tests have been performed and interrupted at selected numbers of cycles in the different stages of the mechanical response. At each interruption point, specimens have been examined by TEM to provide an in-depth understanding of the effect of dislocation microstructural evolution on the high-temperature cyclic mechanical response of the alloy.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"10 ","pages":"Article 100227"},"PeriodicalIF":4.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000355/pdfft?md5=3e6d8516fe09fdcae1e1cd847567a059&pid=1-s2.0-S2772369024000355-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141846392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidation behavior of Cu–Ag alloy in-situ manufactured via laser powder bed fusion 通过激光粉末床熔化原位制造的铜银合金的氧化行为
IF 4.2 Q2 ENGINEERING, MANUFACTURING Pub Date : 2024-07-01 DOI: 10.1016/j.addlet.2024.100228
Nadia Azizi , Hamed Asgari , Ehsan Toyserkani

The oxidation behavior of copper-silver (Cu–Ag) alloy with the structure of triply periodic minimal surfaces (TPMS) processed by laser powder bed fusion (LPBF) was investigated at 300 °C and 600 °C. The lightweight TPMSs increase surface area, boosting measurement sensitivity in oxidation studies. The presence of silver enhances oxidation resistance of Cu–Ag alloy compared to that of pure copper by slowing down the oxidation process and thinning the oxide layer. This suggests that silver in the alloy potentially suppresses the outward diffusion of copper from the substrate to the oxide layer. This effect is evident in the oxidation rate curves, where the introduction of silver changes the oxidation kinetics from a linear rate in Cu to a parabolic rate in Cu–2 wt.% Ag at 300 °C. Moreover, at 600 °C, silver induces a slower parabolic rate in Cu–2 wt.% Ag compared to Cu.

通过激光粉末床熔融(LPBF)技术,研究了具有三重周期性极小表面(TPMS)结构的铜银(Cu-Ag)合金在 300 ℃ 和 600 ℃ 下的氧化行为。轻质 TPMS 增加了表面积,提高了氧化研究中的测量灵敏度。与纯铜相比,银的存在通过减缓氧化过程和减薄氧化层增强了铜银合金的抗氧化性。这表明合金中的银有可能抑制铜从基底向氧化层的向外扩散。这种效应在氧化速率曲线中很明显,在 300 °C 时,银的引入使氧化动力学从铜的线性速率变为 Cu-2 wt.% Ag 的抛物线速率。此外,在 600 °C 时,与铜相比,银在 Cu-2 wt.% Ag 中产生的抛物线速率更慢。
{"title":"Oxidation behavior of Cu–Ag alloy in-situ manufactured via laser powder bed fusion","authors":"Nadia Azizi ,&nbsp;Hamed Asgari ,&nbsp;Ehsan Toyserkani","doi":"10.1016/j.addlet.2024.100228","DOIUrl":"10.1016/j.addlet.2024.100228","url":null,"abstract":"<div><p>The oxidation behavior of copper-silver (Cu–Ag) alloy with the structure of triply periodic minimal surfaces (TPMS) processed by laser powder bed fusion (LPBF) was investigated at 300 °C and 600 °C. The lightweight TPMSs increase surface area, boosting measurement sensitivity in oxidation studies. The presence of silver enhances oxidation resistance of Cu–Ag alloy compared to that of pure copper by slowing down the oxidation process and thinning the oxide layer. This suggests that silver in the alloy potentially suppresses the outward diffusion of copper from the substrate to the oxide layer. This effect is evident in the oxidation rate curves, where the introduction of silver changes the oxidation kinetics from a linear rate in Cu to a parabolic rate in Cu–2 wt.% Ag at 300 °C. Moreover, at 600 °C, silver induces a slower parabolic rate in Cu–2 wt.% Ag compared to Cu.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"10 ","pages":"Article 100228"},"PeriodicalIF":4.2,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000367/pdfft?md5=713a77b8b84719c9ade147ebbd06e5b6&pid=1-s2.0-S2772369024000367-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Additive manufacturing letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1