首页 > 最新文献

Additive manufacturing letters最新文献

英文 中文
Local composition control using an active-mixing hotend in fused filament fabrication 在熔丝制造中使用主动混合加热器的局部成分控制
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-10-13 DOI: 10.1016/j.addlet.2023.100177
Joshua T. Green , Ian A. Rybak , Jonathan J. Slager , Mauricio Lopez , Zachary Chanoi , Calvin M. Stewart , Roger V. Gonzalez

Additive manufacturing with local composition control is uniquely suited for the development and exploration of advanced materials with compositionally graded structures. A fused filament fabrication printer was designed with in situ composition control facilitated by using an active-mixing hotend. Stepper motors drive three filament extruders and a mixing rod in proportions instructed by a print file to control composition and material distribution within extrusions. Composition tailoring was demonstrated by printing specimens with twelve distinct regions each consisting of unique filament mixtures. Local control of composition was demonstrated by printing a variety of specimens with composition gradients having horizontal, vertical, radial, and circumferential orientations. The tensile properties of printed materials were modified by printing with mix ratios of polylactic acid and thermoplastic polyurethane. Eight blend ratios were tested in tension and have tensile moduli ranging from 17.3 to 3480 MPa. These methods demonstrate advanced capabilities that are well suited for manufacturing functionally graded structures.

具有局部成分控制的增材制造特别适合开发和探索具有成分梯度结构的先进材料。设计了一种熔融丝制造打印机,通过使用活性混合棒促进了原位成分控制。步进电机按打印文件指示的比例驱动三台长丝挤出机和一根混合棒,以控制挤出机内的成分和材料分布。通过印刷具有十二个不同区域的样品来证明成分剪裁,每个区域由独特的细丝混合物组成。通过打印具有水平、垂直、径向和圆周方向的成分梯度的各种样品,证明了成分的局部控制。采用聚乳酸和热塑性聚氨酯的混合比例对印刷材料的拉伸性能进行了改性。在张力下测试了八种共混比,其拉伸模量范围为17.3至3480MPa。这些方法展示了非常适合制造功能梯度结构的先进能力。
{"title":"Local composition control using an active-mixing hotend in fused filament fabrication","authors":"Joshua T. Green ,&nbsp;Ian A. Rybak ,&nbsp;Jonathan J. Slager ,&nbsp;Mauricio Lopez ,&nbsp;Zachary Chanoi ,&nbsp;Calvin M. Stewart ,&nbsp;Roger V. Gonzalez","doi":"10.1016/j.addlet.2023.100177","DOIUrl":"https://doi.org/10.1016/j.addlet.2023.100177","url":null,"abstract":"<div><p>Additive manufacturing with local composition control is uniquely suited for the development and exploration of advanced materials with compositionally graded structures. A fused filament fabrication printer was designed with in situ composition control facilitated by using an active-mixing hotend. Stepper motors drive three filament extruders and a mixing rod in proportions instructed by a print file to control composition and material distribution within extrusions. Composition tailoring was demonstrated by printing specimens with twelve distinct regions each consisting of unique filament mixtures. Local control of composition was demonstrated by printing a variety of specimens with composition gradients having horizontal, vertical, radial, and circumferential orientations. The tensile properties of printed materials were modified by printing with mix ratios of polylactic acid and thermoplastic polyurethane. Eight blend ratios were tested in tension and have tensile moduli ranging from 17.3 to 3480 MPa. These methods demonstrate advanced capabilities that are well suited for manufacturing functionally graded structures.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"7 ","pages":"Article 100177"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49751534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mechanical properties of stochastically cracked soft magnetic material 随机裂纹软磁材料的力学性能
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-10-13 DOI: 10.1016/j.addlet.2023.100179
Alexander D. Goodall , Jared Uramowski , Chad W Sinclair , Lova Chechik , Iain Todd

Processing of soft magnetic materials with additive manufacturing has shown capability to deliver good magnetic properties and increased silicon content of Fe-6.5 wt%Si, however methods must be used to reduce the eddy currents in large bulk cross-sections in components created by additive manufacturing. Geometrical design has been shown to do this effectively, however stochastically cracked parts show similar magnetic performance with a large increase in stacking factor. To enable their use in electrical machines the mechanical properties of this material must be understood. Therefore, this study uses uniaxial tensile testing to understand the mechanical performance. The ultimate tensile strength of the material in the as-built condition was 17.9 MPa (σ = 4.5 MPa), which was improved by 40% to 25.5 MPa (σ = 5.7 MPa) by infiltrating the cracks with a low viscosity resin. This brings the material strength to more than three standard deviations from the required strength of 7 MPa to be used in a specific axial flux machine. The material exhibited an elongation to failure of 8-10%, showing that the suppression of ordered phases by high cooling rates has improved the ductility of the material. Hence, the stochastically cracked parts have sufficient properties to be used in the 3D magnetic circuits of electrical machines.

采用增材制造对软磁材料进行加工已显示出提供良好磁性能和增加Fe-6.5wt%Si的硅含量的能力,然而,必须使用方法来减少增材制造产生的部件中大体积横截面中的涡电流。几何设计已被证明可以有效地做到这一点,但随机开裂的零件显示出类似的磁性性能,堆叠因子大幅增加。为了使其能够在电机中使用,必须了解这种材料的机械性能。因此,本研究采用单轴拉伸试验来了解其力学性能。在竣工条件下,材料的极限抗拉强度为17.9MPa(σ=4.5MPa),通过用低粘度树脂渗透裂缝,抗拉强度提高了40%,达到25.5MPa(σ=5.7MPa)。这使得材料强度与在特定轴向磁通机中使用的7MPa的要求强度相比达到三个以上的标准偏差。该材料表现出8-10%的断裂伸长率,表明高冷却速率对有序相的抑制提高了材料的延展性。因此,随机裂纹零件具有足够的性能,可用于电机的3D磁路。
{"title":"Mechanical properties of stochastically cracked soft magnetic material","authors":"Alexander D. Goodall ,&nbsp;Jared Uramowski ,&nbsp;Chad W Sinclair ,&nbsp;Lova Chechik ,&nbsp;Iain Todd","doi":"10.1016/j.addlet.2023.100179","DOIUrl":"https://doi.org/10.1016/j.addlet.2023.100179","url":null,"abstract":"<div><p>Processing of soft magnetic materials with additive manufacturing has shown capability to deliver good magnetic properties and increased silicon content of Fe-6.5 wt%Si, however methods must be used to reduce the eddy currents in large bulk cross-sections in components created by additive manufacturing. Geometrical design has been shown to do this effectively, however stochastically cracked parts show similar magnetic performance with a large increase in stacking factor. To enable their use in electrical machines the mechanical properties of this material must be understood. Therefore, this study uses uniaxial tensile testing to understand the mechanical performance. The ultimate tensile strength of the material in the as-built condition was 17.9 MPa (σ = 4.5 MPa), which was improved by 40% to 25.5 MPa (σ = 5.7 MPa) by infiltrating the cracks with a low viscosity resin. This brings the material strength to more than three standard deviations from the required strength of 7 MPa to be used in a specific axial flux machine. The material exhibited an elongation to failure of 8-10%, showing that the suppression of ordered phases by high cooling rates has improved the ductility of the material. Hence, the stochastically cracked parts have sufficient properties to be used in the 3D magnetic circuits of electrical machines.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"7 ","pages":"Article 100179"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49751251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the development of twinning-induced plasticity in additively manufactured 316L stainless steel 增材制造316L不锈钢孪晶诱导塑性研究进展
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-10-11 DOI: 10.1016/j.addlet.2023.100176
D. Della Crociata, I. Maskery, R. Hague, M. Simonelli

A report on twinning-induced plasticity in 316L stainless steel manufactured by metal additive manufacturing (AM) is presented. A tapered tensile test geometry was used which enabled the investigation of twin formation over a range of strain levels in a single specimen. Hardness and twinning concentration were observed to increase with strain up to peak values of 380 ± 10 HV and 28 ± 4%, respectively. Furthermore, twin formation was found to be regulated by grain size and crystal texture. This methodology can be applied to new AM materials development and will inform the design of energy-absorbing structures that maximise the benefits of AM design and strain-hardenable materials.

本文报道了金属增材制造316L不锈钢的孪晶诱发塑性。使用了锥形拉伸试验几何结构,这使得能够在单个样品的一系列应变水平上研究孪晶的形成。观察到硬度和孪晶浓度随着应变的增加而增加,分别达到380±10HV和28±4%的峰值。此外,发现孪晶的形成受晶粒尺寸和晶体结构的调节。该方法可应用于新AM材料的开发,并将为能量吸收结构的设计提供信息,以最大限度地提高AM设计和应变硬化材料的效益。
{"title":"On the development of twinning-induced plasticity in additively manufactured 316L stainless steel","authors":"D. Della Crociata,&nbsp;I. Maskery,&nbsp;R. Hague,&nbsp;M. Simonelli","doi":"10.1016/j.addlet.2023.100176","DOIUrl":"https://doi.org/10.1016/j.addlet.2023.100176","url":null,"abstract":"<div><p>A report on twinning-induced plasticity in 316L stainless steel manufactured by metal additive manufacturing (AM) is presented. A tapered tensile test geometry was used which enabled the investigation of twin formation over a range of strain levels in a single specimen. Hardness and twinning concentration were observed to increase with strain up to peak values of 380 ± 10 HV and 28 ± 4%, respectively. Furthermore, twin formation was found to be regulated by grain size and crystal texture. This methodology can be applied to new AM materials development and will inform the design of energy-absorbing structures that maximise the benefits of AM design and strain-hardenable materials.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"7 ","pages":"Article 100176"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49751655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disorder-order transformation in Fe-50 %Co fabricated via laser powder bed fusion 激光粉末床熔合制备fe - 50% Co的无序-有序相变
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-09-27 DOI: 10.1016/j.addlet.2023.100174
Peeyush Nandwana , Chris M. Fancher , Rangasayee Kannan , Tomas F. Babuska , Brandon Krick , Andrew B. Kustas

Fe-Co alloys are an important class of soft magnetic materials that often pose challenges in their fabrication because of the brittle B2-ordered phase. We show that laser beam powder bed fusion (PBF-LB), owing to its rapid cooling rates, offers an avenue for the fabrication of these alloys by suppressing the disorder →order phase transformation at room temperature. We use neutron diffraction to understand the phase transformations in a Fe-50 %Co alloy fabricated via PBF-LB. We report that the disorder→order phase transformation in this alloy occurs concurrently via homogeneous ordering and classical nucleation and growth.

Fe-Co合金是一类重要的软磁材料,由于其B2有序相的脆性,在其制造过程中经常面临挑战。我们发现,激光束粉末床聚变(PBF-LB)由于其快速冷却速率,通过抑制无序为制造这些合金提供了一条途径→室温下的有序相变。我们使用中子衍射来了解通过PBF-LB制备的Fe-50%Co合金中的相变。我们报告说→该合金中的有序相变通过均匀有序和经典形核和生长同时发生。
{"title":"Disorder-order transformation in Fe-50 %Co fabricated via laser powder bed fusion","authors":"Peeyush Nandwana ,&nbsp;Chris M. Fancher ,&nbsp;Rangasayee Kannan ,&nbsp;Tomas F. Babuska ,&nbsp;Brandon Krick ,&nbsp;Andrew B. Kustas","doi":"10.1016/j.addlet.2023.100174","DOIUrl":"https://doi.org/10.1016/j.addlet.2023.100174","url":null,"abstract":"<div><p>Fe-Co alloys are an important class of soft magnetic materials that often pose challenges in their fabrication because of the brittle B2-ordered phase. We show that laser beam powder bed fusion (PBF-LB), owing to its rapid cooling rates, offers an avenue for the fabrication of these alloys by suppressing the disorder →order phase transformation at room temperature. We use neutron diffraction to understand the phase transformations in a Fe-50 %Co alloy fabricated via PBF-LB. We report that the disorder→order phase transformation in this alloy occurs concurrently via homogeneous ordering and classical nucleation and growth.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"7 ","pages":"Article 100174"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49751653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatigue performance of U-notched additively manufactured AlSi10Mg parts: The effects of chemical and thermal post-treatments u形缺口增材制造AlSi10Mg零件的疲劳性能:化学和热后处理的影响
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-09-27 DOI: 10.1016/j.addlet.2023.100175
Erfan Maleki , Sara Bagherifard , Nabeel Ahmad , Shuai Shao , Okan Unal , Mario Guagliano , Nima Shamsaei

In the current study, the effects of different post-processing methods, including heat treatment (HT) and electro-chemical polishing (ECP) as well as their combination on the surface texture, porosity, microstructure, mechanical properties, and rotating bending fatigue behavior of U-notched laser powder bed fused AlSi10Mg specimens were comprehensively investigated. In addition, to better understand the effects of the applied post-processing methods on the sensitivity of the notched specimen to surface and near-surface defects, finite element analysis was performed. Chemical treatment was found to be very influential on surface texture modification of the very narrow notched parts, for which the application of other treatments can be quite challenging. It was also found that the fatigue behavior of the notched specimens was more sensitive to the surface texture rather than to the near-surface defects. The hybrid treatment involving HT+ECP was the most effective for fatigue behavior improvement due to simultaneous homogenization of the microstructure, released tensile residual stresses, enhanced ductility and high surface texture modification.

在本研究中,全面研究了不同的后处理方法,包括热处理(HT)和电化学抛光(ECP)及其组合对U型缺口激光粉末床熔融AlSi10Mg试样表面织构、孔隙率、微观结构、力学性能和旋转弯曲疲劳行为的影响。此外,为了更好地了解所应用的后处理方法对缺口试样对表面和近表面缺陷敏感性的影响,进行了有限元分析。化学处理对极窄缺口零件的表面织构改性有很大影响,其他处理的应用可能非常具有挑战性。研究还发现,缺口试样的疲劳行为对表面织构比对近表面缺陷更敏感。HT+ECP的混合处理对改善疲劳行为最有效,因为同时使微观结构均匀化,释放拉伸残余应力,增强延展性和高表面织构改性。
{"title":"Fatigue performance of U-notched additively manufactured AlSi10Mg parts: The effects of chemical and thermal post-treatments","authors":"Erfan Maleki ,&nbsp;Sara Bagherifard ,&nbsp;Nabeel Ahmad ,&nbsp;Shuai Shao ,&nbsp;Okan Unal ,&nbsp;Mario Guagliano ,&nbsp;Nima Shamsaei","doi":"10.1016/j.addlet.2023.100175","DOIUrl":"https://doi.org/10.1016/j.addlet.2023.100175","url":null,"abstract":"<div><p>In the current study, the effects of different post-processing methods, including heat treatment (HT) and electro-chemical polishing (ECP) as well as their combination on the surface texture, porosity, microstructure, mechanical properties, and rotating bending fatigue behavior of U-notched laser powder bed fused AlSi10Mg specimens were comprehensively investigated. In addition, to better understand the effects of the applied post-processing methods on the sensitivity of the notched specimen to surface and near-surface defects, finite element analysis was performed. Chemical treatment was found to be very influential on surface texture modification of the very narrow notched parts, for which the application of other treatments can be quite challenging. It was also found that the fatigue behavior of the notched specimens was more sensitive to the surface texture rather than to the near-surface defects. The hybrid treatment involving HT+ECP was the most effective for fatigue behavior improvement due to simultaneous homogenization of the microstructure, released tensile residual stresses, enhanced ductility and high surface texture modification.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"7 ","pages":"Article 100175"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49727294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular structure engineering of additive manufactured CoCrFeMnNi high-entropy composite: The role of hard ceramic reinforcements in elemental segregation of constitutive elements 增材制造CoCrFeMnNi高熵复合材料的胞状结构工程:硬质陶瓷增强剂在本构元素偏析中的作用
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-09-22 DOI: 10.1016/j.addlet.2023.100172
Soung Yeoul Ahn , Farahnaz Haftlang , Eun Seong Kim , Ji Sun Lee , Sang Guk Jeong , Jae Bok Seol , Hyunjoo Choi , Hyoung Seop Kim

This study explores cellular structures in TiC/B4CCoCrFeMnNi high-entropy composites (HECs) fabricated by direct energy deposition (DED) additive manufacturing process, investigating the role of TiC and B4C nano-paticles in enhancing mechanical properties. Despite larger dislocation cell structures and thinner boundaries in TiC/B4CCoCrFeMnNi HECs compared to CoCrFeMnNi high-entropy alloy (HEA), they exhibit significantly higher hardness and strength, challenging traditional strength-size relationships. Additionally, we examine the behavior of ceramic nano-particles (TiC and B4C) with high melting points relative to matrix CoCrFeMnNi HEA. Rapid scanning prevents full nano-particle melting, leading to distinct element distribution of cell structure. These findings provide insights for selecting suitable nanoceramic particles in HEC development via metal additive manufacturing.

本研究探索了通过直接能量沉积(DED)增材制造工艺制备的TiC/B4CCoCrFeMnNi高熵复合材料(HECs)中的细胞结构,研究了TiC和B4C纳米颗粒在提高力学性能中的作用。尽管与CoCrFeMnNi高熵合金(HEA)相比,TiC/B4CCoCrFeMnNi HECs中的位错胞结构更大,边界更薄,但它们表现出显著更高的硬度和强度,挑战了传统的强度-尺寸关系。此外,我们还研究了具有高熔点的陶瓷纳米粒子(TiC和B4C)相对于基体CoCrFeMnNi HEA的行为。快速扫描可防止纳米颗粒完全熔化,导致细胞结构的元素分布明显。这些发现为通过金属增材制造在HEC开发中选择合适的纳米陶瓷颗粒提供了见解。
{"title":"Cellular structure engineering of additive manufactured CoCrFeMnNi high-entropy composite: The role of hard ceramic reinforcements in elemental segregation of constitutive elements","authors":"Soung Yeoul Ahn ,&nbsp;Farahnaz Haftlang ,&nbsp;Eun Seong Kim ,&nbsp;Ji Sun Lee ,&nbsp;Sang Guk Jeong ,&nbsp;Jae Bok Seol ,&nbsp;Hyunjoo Choi ,&nbsp;Hyoung Seop Kim","doi":"10.1016/j.addlet.2023.100172","DOIUrl":"https://doi.org/10.1016/j.addlet.2023.100172","url":null,"abstract":"<div><p>This study explores cellular structures in TiC/B<sub>4</sub>C<img>CoCrFeMnNi high-entropy composites (HECs) fabricated by direct energy deposition (DED) additive manufacturing process, investigating the role of TiC and B<sub>4</sub>C nano-paticles in enhancing mechanical properties. Despite larger dislocation cell structures and thinner boundaries in TiC/B<sub>4</sub>C<img>CoCrFeMnNi HECs compared to CoCrFeMnNi high-entropy alloy (HEA), they exhibit significantly higher hardness and strength, challenging traditional strength-size relationships. Additionally, we examine the behavior of ceramic nano-particles (TiC and B<sub>4</sub>C) with high melting points relative to matrix CoCrFeMnNi HEA. Rapid scanning prevents full nano-particle melting, leading to distinct element distribution of cell structure. These findings provide insights for selecting suitable nanoceramic particles in HEC development via metal additive manufacturing.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"7 ","pages":"Article 100172"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49751392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction and understanding of non-linear distortion on large curved wall manufactured by wire-arc direct energy deposition 线弧直接能量沉积大曲面壁非线性畸变的预测与认识
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-09-22 DOI: 10.1016/j.addlet.2023.100173
Yousub Lee , Andrzej Nycz , Srdjan Simunovic , Luke Meyer , Derek Vaughan , William Carter , Sudarsanam S. Babu , Joshua Vaughan , Lonnie Love

Wire-arc direct energy deposition (wire-arc DED) has been developed to manufacture large-scale metal products with high deposition rates, low material cost, and high material efficiency. However, dynamically varying printing conditions and complex geometries frequently lead to unfavorable part distortions during and after printing which are magnified as part sizes increase. In this study, an effective computational simulation method was developed for large-scale 316 L stainless steel parts using finite element method. The model was validated with the measured distortion using a 3D laser scanner. The distribution of deviation is within 16 % (=1.6 mm) against a measured value for a 483.6 mm tall part with 248 layers, with excellent agreement with the spatial pattern of distortion. The dynamic part deformation during printing and cooling was tracked using vision camera to investigate the thermo-mechanical deformation mechanism. The result showed that long pauses during machine maintenance pauses have strong influence on part distortion.

线弧直接能量沉积(Wire-arc DED)已被开发用于制造具有高沉积速率、低材料成本和高材料效率的大规模金属产品。然而,动态变化的打印条件和复杂的几何形状经常导致在打印期间和打印之后的不利零件变形,这些变形随着零件尺寸的增加而放大。本研究采用有限元方法对大型316 L不锈钢零件进行了有效的计算模拟。使用3D激光扫描仪通过测量的畸变对模型进行了验证。对于具有248层的483.6mm高的零件,偏差分布相对于测量值在16%(=1.6mm)以内,与畸变的空间模式非常一致。利用视觉相机跟踪零件在印刷和冷却过程中的动态变形,研究其热机械变形机制。结果表明,在机器维修暂停过程中,长时间的暂停对零件变形有很大影响。
{"title":"Prediction and understanding of non-linear distortion on large curved wall manufactured by wire-arc direct energy deposition","authors":"Yousub Lee ,&nbsp;Andrzej Nycz ,&nbsp;Srdjan Simunovic ,&nbsp;Luke Meyer ,&nbsp;Derek Vaughan ,&nbsp;William Carter ,&nbsp;Sudarsanam S. Babu ,&nbsp;Joshua Vaughan ,&nbsp;Lonnie Love","doi":"10.1016/j.addlet.2023.100173","DOIUrl":"https://doi.org/10.1016/j.addlet.2023.100173","url":null,"abstract":"<div><p>Wire-arc direct energy deposition (wire-arc DED) has been developed to manufacture large-scale metal products with high deposition rates, low material cost, and high material efficiency. However, dynamically varying printing conditions and complex geometries frequently lead to unfavorable part distortions during and after printing which are magnified as part sizes increase. In this study, an effective computational simulation method was developed for large-scale 316 L stainless steel parts using finite element method. The model was validated with the measured distortion using a 3D laser scanner. The distribution of deviation is within 16 % (=1.6 mm) against a measured value for a 483.6 mm tall part with 248 layers, with excellent agreement with the spatial pattern of distortion. The dynamic part deformation during printing and cooling was tracked using vision camera to investigate the thermo-mechanical deformation mechanism. The result showed that long pauses during machine maintenance pauses have strong influence on part distortion.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"7 ","pages":"Article 100173"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49758992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large Format Composite Additive Manufacturing for Low-Head Hydropower 用于低水头水电的大幅面复合增材制造
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-09-21 DOI: 10.1016/j.addlet.2023.100170
Alex Roschli , Brian Post , Randal Mueller , Vito Gervasi , Phillip Chesser , Jesse Heineman , Rebecca Brink

Hydropower with a small elevation change from inlet to outlet, known as “low-head” hydropower, is a relatively untapped resource for reliable green power generation. One major barrier to entry is the cost of the components needed to generate the power. Each installation site is unique, with various head levels, flow rates, and other unique site characteristics that drive up the cost of development and installation. As a result, custom-made components are necessary because the sites are intrinsically inefficient. However, customized parts are generally more expensive to manufacture than ready-made parts. Often times, the cost of custom-made components is so high that the low-head hydropower installation becomes non-viable. Additive manufacturing offers the ability to make custom components, ideal for one-off applications, at low costs that are well suited for the needs of low-head hydropower. Indirect additive manufacturing, such as making tools or dies rather than end use components, can also be used to make low-cost composite tooling as needed for these custom applications. This paper explores the use of additive manufacturing, both directly and indirectly, to produce the components of a turbine system for a low-head hydropower site. The parts were designed to form a unique modular system, which saves time for future designs and iterations. The system has operated for more than three years without failure at a test site in Wisconsin, USA. This work serves as a basis for future application of AM to low-head systems, in which the modular components can be customized for each unique hydropower installation.

从进水口到出水口高程变化较小的水电,被称为“低水头”水电,是一种相对未开发的可靠绿色发电资源。进入的一个主要障碍是发电所需组件的成本。每个安装场地都是独特的,具有不同的水头水平、流速和其他独特的场地特性,这些特性会推高开发和安装成本。因此,定制组件是必要的,因为这些站点本质上效率低下。然而,定制零件的制造成本通常高于现成零件。通常情况下,定制组件的成本非常高,以至于低水头水电安装变得不可行。增材制造提供了以低成本制造定制组件的能力,非常适合一次性应用,非常适合低水头水电的需求。间接增材制造,例如制造工具或模具,而不是最终用途的部件,也可以用于制造这些定制应用所需的低成本复合材料工具。本文探讨了直接和间接使用增材制造来生产低水头水电站涡轮机系统的部件。这些部件被设计成一个独特的模块化系统,为未来的设计和迭代节省了时间。该系统已在美国威斯康星州的一个试验场运行了三年多,没有出现故障。这项工作为AM未来应用于低水头系统奠定了基础,在低水头系统中,模块化组件可以针对每个独特的水电安装进行定制。
{"title":"Large Format Composite Additive Manufacturing for Low-Head Hydropower","authors":"Alex Roschli ,&nbsp;Brian Post ,&nbsp;Randal Mueller ,&nbsp;Vito Gervasi ,&nbsp;Phillip Chesser ,&nbsp;Jesse Heineman ,&nbsp;Rebecca Brink","doi":"10.1016/j.addlet.2023.100170","DOIUrl":"https://doi.org/10.1016/j.addlet.2023.100170","url":null,"abstract":"<div><p>Hydropower with a small elevation change from inlet to outlet, known as “low-head” hydropower, is a relatively untapped resource for reliable green power generation. One major barrier to entry is the cost of the components needed to generate the power. Each installation site is unique, with various head levels, flow rates, and other unique site characteristics that drive up the cost of development and installation. As a result, custom-made components are necessary because the sites are intrinsically inefficient. However, customized parts are generally more expensive to manufacture than ready-made parts. Often times, the cost of custom-made components is so high that the low-head hydropower installation becomes non-viable. Additive manufacturing offers the ability to make custom components, ideal for one-off applications, at low costs that are well suited for the needs of low-head hydropower. Indirect additive manufacturing, such as making tools or dies rather than end use components, can also be used to make low-cost composite tooling as needed for these custom applications. This paper explores the use of additive manufacturing, both directly and indirectly, to produce the components of a turbine system for a low-head hydropower site. The parts were designed to form a unique modular system, which saves time for future designs and iterations. The system has operated for more than three years without failure at a test site in Wisconsin, USA. This work serves as a basis for future application of AM to low-head systems, in which the modular components can be customized for each unique hydropower installation.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"7 ","pages":"Article 100170"},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49727329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ tension investigation of additively manufactured silver lines on flexible substrates 柔性基板上增材制造银线的现场张力研究
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-09-20 DOI: 10.1016/j.addlet.2023.100171
Seungjong Lee , Zabihollah Ahmadi , Mikyle Paul , Masoud Mahjouri-Samani , Shuai Shao , Nima Shamsaei

The reliability of additively manufactured flexible electronics or so-called printed electronics is defined as mean time to failure under service conditions, which often involve mechanical loads. It is thus important to understand the mechanical behavior of the printed materials under such conditions to ensure their applicational reliability in, for example, sensors, biomedical devices, battery and storage, and flexible hybrid electronics. In this article, a testing protocol to examine the print quality of additively nanomanufactured electronics is presented. The print quality is assessed by both tensile and electrical resistivity responses during in-situ tension tests. A laser based additive nanomanufacturing method is used to print conductive silver lines on polyimide substrates, which is then tested in-situ under tension inside a scanning electron microscope (SEM). The surface morphology of the printed lines is continuously monitored via the SEM until failure. In addition, the real-time electrical resistance variations of the printed silver lines are measured in-situ with a multimeter during tensile tests conducted outside of the SEM. The protocol is shown to be effective in assessing print quality and aiding process tuning. Finally, it is revealed that samples appearing identical under the SEM can have significant different tendencies to delaminate.

额外制造的柔性电子器件或所谓的印刷电子器件的可靠性被定义为在使用条件下的平均故障时间,这通常涉及机械负载。因此,重要的是了解印刷材料在这种条件下的机械行为,以确保其在例如传感器、生物医学设备、电池和存储器以及柔性混合电子器件中的应用可靠性。在这篇文章中,提出了一个测试协议,以检查添加纳米制造的电子产品的打印质量。在现场张力测试期间,通过拉伸和电阻率响应来评估打印质量。使用基于激光的增材纳米制造方法在聚酰亚胺基底上印刷导电银线,然后在扫描电子显微镜(SEM)内的张力下进行原位测试。通过SEM连续监测印刷线路的表面形态,直到失效。此外,在扫描电镜外进行的拉伸测试中,使用万用表原位测量印刷银线的实时电阻变化。该协议被证明在评估印刷质量和帮助工艺调整方面是有效的。最后,研究表明,在SEM下看起来完全相同的样品可能具有显著不同的分层趋势。
{"title":"In-situ tension investigation of additively manufactured silver lines on flexible substrates","authors":"Seungjong Lee ,&nbsp;Zabihollah Ahmadi ,&nbsp;Mikyle Paul ,&nbsp;Masoud Mahjouri-Samani ,&nbsp;Shuai Shao ,&nbsp;Nima Shamsaei","doi":"10.1016/j.addlet.2023.100171","DOIUrl":"https://doi.org/10.1016/j.addlet.2023.100171","url":null,"abstract":"<div><p>The reliability of additively manufactured flexible electronics or so-called printed electronics is defined as mean time to failure under service conditions, which often involve mechanical loads. It is thus important to understand the mechanical behavior of the printed materials under such conditions to ensure their applicational reliability in, for example, sensors, biomedical devices, battery and storage, and flexible hybrid electronics. In this article, a testing protocol to examine the print quality of additively nanomanufactured electronics is presented. The print quality is assessed by both tensile and electrical resistivity responses during in-situ tension tests. A laser based additive nanomanufacturing method is used to print conductive silver lines on polyimide substrates, which is then tested in-situ under tension inside a scanning electron microscope (SEM). The surface morphology of the printed lines is continuously monitored via the SEM until failure. In addition, the real-time electrical resistance variations of the printed silver lines are measured in-situ with a multimeter during tensile tests conducted outside of the SEM. The protocol is shown to be effective in assessing print quality and aiding process tuning. Finally, it is revealed that samples appearing identical under the SEM can have significant different tendencies to delaminate.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"7 ","pages":"Article 100171"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49765622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of interlayer temperature on melt-pool morphology in laser powder bed fusion 层间温度对激光粉末床熔池形貌的影响
Q2 ENGINEERING, MANUFACTURING Pub Date : 2023-08-22 DOI: 10.1016/j.addlet.2023.100169
Qian Wang , Panagiotis Michaleris Pan , Yong Ren , Corey Dickman , Edward Reutzel

Considering the high correlation of melt-pool size and build quality of a part fabricated by a laser power bed fusion (L-PBF) process, it is important to understand what are the major thermal factors that affect melt-pool size during the build process. This paper conducts an experimental investigation on how interlayer temperature affects the melt-pool morphology through a case study of a square-canonical part of Inconel 718 built with the EOS M280 system. Interlayer temperature is the layer temperature after powder spreading but before scanning a new layer. This paper examines variations in melt-pool morphology across representative layers with a large difference in interlayer temperature. It also investigates how the melt-pool size variation is affected by local temperature change caused by switching the laser scanning direction from hatch-to-hatch within a single layer. It is observed that the melt-pool half-width has increased by 40% - 100% when the interlayer temperature has increased from 100 °C to 300 °C. On the other hand, the variation of melt-pool dimensions due to local temperature change is less significant under a low interlayer temperature at 100 °C. The difference in melt-pool dimensions due to laser turnaround gets amplified when the interlayer temperature reaches high at 300 °C. Moreover, a trend of melt-pool morphology transitioning from a conduction to a convective heat transfer mode is observed at the interlayer temperature of 300 °C. Results of this paper demonstrate that interlayer temperature plays a critical role in thermal effects on melt-pool morphology, indicating a need of controlling interlayer temperature to improve build quality.

考虑到熔池尺寸与激光动力床熔融(L-PBF)工艺制造的零件的构建质量高度相关,了解在构建过程中影响熔池尺寸的主要热因素是很重要的。本文以EOS M280系统构建的英科耐尔718方形正截面为例,对层间温度对熔池形貌的影响进行了实验研究。层间温度是粉末扩散后扫描新层之前的层间温度。本文考察了具有代表性的层间温度差异较大的熔池形态的变化。本文还研究了当激光扫描方向在单层内从一个舱口切换到另一个舱口时所引起的局部温度变化对熔池尺寸变化的影响。观察到,当层间温度从100℃升高到300℃时,熔池半宽增加了40% ~ 100%。另一方面,当层间温度较低(100°C)时,由于局部温度变化引起的熔池尺寸变化不太显著。当层间温度达到300°C时,由于激光旋转引起的熔池尺寸差异被放大。此外,在层间温度为300℃时,熔池形态有由传导传热向对流传热转变的趋势。研究结果表明,层间温度对熔池形态的热效应起着至关重要的作用,表明需要控制层间温度以提高熔池质量。
{"title":"Effect of interlayer temperature on melt-pool morphology in laser powder bed fusion","authors":"Qian Wang ,&nbsp;Panagiotis Michaleris Pan ,&nbsp;Yong Ren ,&nbsp;Corey Dickman ,&nbsp;Edward Reutzel","doi":"10.1016/j.addlet.2023.100169","DOIUrl":"10.1016/j.addlet.2023.100169","url":null,"abstract":"<div><p>Considering the high correlation of melt-pool size and build quality of a part fabricated by a laser power bed fusion (L-PBF) process, it is important to understand what are the major thermal factors that affect melt-pool size during the build process. This paper conducts an experimental investigation on how interlayer temperature affects the melt-pool morphology through a case study of a square-canonical part of Inconel 718 built with the EOS M280 system. Interlayer temperature is the layer temperature after powder spreading but before scanning a new layer. This paper examines variations in melt-pool morphology across representative layers with a large difference in interlayer temperature. It also investigates how the melt-pool size variation is affected by local temperature change caused by switching the laser scanning direction from hatch-to-hatch within a single layer. It is observed that the melt-pool half-width has increased by 40% - 100% when the interlayer temperature has increased from 100<!--> <!-->°C to 300<!--> <!-->°C. On the other hand, the variation of melt-pool dimensions due to local temperature change is less significant under a low interlayer temperature at 100<!--> <!-->°C. The difference in melt-pool dimensions due to laser turnaround gets amplified when the interlayer temperature reaches high at 300<!--> <!-->°C. Moreover, a trend of melt-pool morphology transitioning from a conduction to a convective heat transfer mode is observed at the interlayer temperature of 300<!--> <!-->°C. Results of this paper demonstrate that interlayer temperature plays a critical role in thermal effects on melt-pool morphology, indicating a need of controlling interlayer temperature to improve build quality.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"7 ","pages":"Article 100169"},"PeriodicalIF":0.0,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45196800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Additive manufacturing letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1