首页 > 最新文献

AMIA ... Annual Symposium proceedings. AMIA Symposium最新文献

英文 中文
Subtyping Gastrointestinal Surgical Outcomes from Real World Data: A Comprehensive Analysis of UK Biobank. 从真实世界数据中对胃肠道手术结果进行细分:英国生物库综合分析。
Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Uri Kartoun, Kingsley Njoku, Tesfaye Yadete, Sivan Ravid, Eileen Koski, William Ogallo, Joao Bettencourt-Silva, Natasha Mulligan, Jianying Hu, Julia Liu, Thaddeus Stappenbeck, Vibha Anand

Chronic gastrointestinal (GI) conditions, such as inflammatory bowel diseases (IBD), offer a promising opportunity to create classification systems that can enhance the accuracy of predicting the most effective therapies and prognosis for each patient. Here, we present a novel methodology to explore disease subtypes using our open-sourced BiomedSciAI toolkit. Applying methods available in this toolkit on the UK Biobank, including subpopulation-based feature selection and multi-dimensional subset scanning, we aimed to discover unique subgroups from GI surgery cohorts. Of a 12,073-patient cohort, a subgroup of 440 IBD patients was discovered with an increased risk of a subsequent GI surgery (OR: 2.21, 95% CI [1.81-2.69]). We iteratively demonstrate the discovery process using an additional cohort (with a narrower definition of GI surgery). Our results show that the iterative process can refine the subgroup discovery process and generate novel hypotheses to investigate determinants of treatment response.

慢性胃肠道(GI)疾病,如炎症性肠病(IBD),为创建分类系统提供了一个大有可为的机会,该系统可以提高预测每位患者最有效疗法和预后的准确性。在此,我们介绍一种利用开源 BiomedSciAI 工具包探索疾病亚型的新方法。我们在英国生物库中应用了该工具包中的方法,包括基于亚群的特征选择和多维子集扫描,旨在从消化道手术队列中发现独特的亚群。在一个由 12073 名患者组成的队列中,我们发现了一个由 440 名 IBD 患者组成的亚群,该亚群的后续消化道手术风险较高(OR:2.21,95% CI [1.81-2.69])。我们使用另一个队列(对消化道手术的定义更窄)反复演示了这一发现过程。我们的结果表明,迭代过程可以完善亚组发现过程,并产生新的假设来研究治疗反应的决定因素。
{"title":"Subtyping Gastrointestinal Surgical Outcomes from Real World Data: A Comprehensive Analysis of UK Biobank.","authors":"Uri Kartoun, Kingsley Njoku, Tesfaye Yadete, Sivan Ravid, Eileen Koski, William Ogallo, Joao Bettencourt-Silva, Natasha Mulligan, Jianying Hu, Julia Liu, Thaddeus Stappenbeck, Vibha Anand","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Chronic gastrointestinal (GI) conditions, such as inflammatory bowel diseases (IBD), offer a promising opportunity to create classification systems that can enhance the accuracy of predicting the most effective therapies and prognosis for each patient. Here, we present a novel methodology to explore disease subtypes using our open-sourced BiomedSciAI toolkit. Applying methods available in this toolkit on the UK Biobank, including subpopulation-based feature selection and multi-dimensional subset scanning, we aimed to discover unique subgroups from GI surgery cohorts. Of a 12,073-patient cohort, a subgroup of 440 IBD patients was discovered with an increased risk of a subsequent GI surgery (OR: 2.21, 95% CI [1.81-2.69]). We iteratively demonstrate the discovery process using an additional cohort (with a narrower definition of GI surgery). Our results show that the iterative process can refine the subgroup discovery process and generate novel hypotheses to investigate determinants of treatment response.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"426-435"},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139467621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The SMART Text2FHIR Pipeline. SMART Text2FHIR 管道。
Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Timothy A Miller, Andrew J McMurry, James Jones, Daniel Gottlieb, Kenneth D Mandl

Objective: To implement an open source, free, and easily deployable high throughput natural language processing module to extract concepts from clinician notes and map them to Fast Healthcare Interoperability Resources (FHIR). Materials and Methods: Using a popular open-source NLP tool (Apache cTAKES), we create FHIR resources that use modifier extensions to represent negation and NLP sourcing, and another extension to represent provenance of extracted concepts. Results: The SMART Text2FHIR Pipeline is an open-source tool, released through standard package managers, and publicly available container images that implement the mappings, enabling ready conversion of clinical text to FHIR. Discussion: With the increased data liquidity because of new interoperability regulations, NLP processes that can output FHIR can enable a common language for transporting structured and unstructured data. This framework can be valuable for critical public health or clinical research use cases. Conclusion: Future work should include mapping more categories of NLP-extracted information into FHIR resources and mappings from additional open-source NLP tools.

目标:实施一个开源、免费且易于部署的高通量自然语言处理模块,从临床医生笔记中提取概念,并将其映射到快速医疗保健互操作性资源(FHIR)。材料与方法:使用流行的开源 NLP 工具(Apache cTAKES),我们创建了 FHIR 资源,该资源使用修饰符扩展来表示否定和 NLP 来源,并使用另一个扩展来表示提取概念的出处。结果:SMART Text2FHIR Pipeline 是一款开源工具,通过标准软件包管理器发布,并公开了实现映射的容器映像,从而实现了临床文本到 FHIR 的随时转换。讨论由于新的互操作性法规的出台,数据流动性增加,能够输出 FHIR 的 NLP 流程可以为传输结构化和非结构化数据提供一种通用语言。这一框架对于关键的公共卫生或临床研究用例非常有价值。结论未来的工作应包括将更多类别的 NLP 提取信息映射到 FHIR 资源和其他开源 NLP 工具的映射。
{"title":"The SMART Text2FHIR Pipeline.","authors":"Timothy A Miller, Andrew J McMurry, James Jones, Daniel Gottlieb, Kenneth D Mandl","doi":"","DOIUrl":"","url":null,"abstract":"<p><p><b>Objective</b>: To implement an open source, free, and easily deployable high throughput natural language processing module to extract concepts from clinician notes and map them to Fast Healthcare Interoperability Resources (FHIR). <b>Materials and Methods</b>: Using a popular open-source NLP tool (Apache cTAKES), we create FHIR resources that use modifier extensions to represent negation and NLP sourcing, and another extension to represent provenance of extracted concepts. <b>Results</b>: The SMART Text2FHIR Pipeline is an open-source tool, released through standard package managers, and publicly available container images that implement the mappings, enabling ready conversion of clinical text to FHIR. <b>Discussion</b>: With the increased data liquidity because of new interoperability regulations, NLP processes that can output FHIR can enable a common language for transporting structured and unstructured data. This framework can be valuable for critical public health or clinical research use cases. <b>Conclusion</b>: Future work should include mapping more categories of NLP-extracted information into FHIR resources and mappings from additional open-source NLP tools.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"514-520"},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785871/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139467631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal Pediatric Lymphoma Detection using PET and MRI. 利用正电子发射计算机断层显像和核磁共振成像进行小儿淋巴瘤多模态检测
Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Hongzhi Wang, Amirhossein Sarrami, Joy Tzung-Yu Wu, Lucia Baratto, Arjun Sharma, Ken C L Wong, Shashi Bhushan Singh, Heike E Daldrup-Link, Tanveer Syeda-Mahmood

Lymphoma is one of the most common types of cancer for children (ages 0 to 19). Due to the reduced radiation exposure, PET/MR systems that allow simultaneous PET and MR imaging have become the standard of care for diagnosing cancers and monitoring tumor response to therapy in the pediatric population. In this work, we developed a multimodal deep learning algorithm for automatic pediatric lymphoma detection using PET and MRI. Through innovative designs such as standardized uptake value (SUV) guided tumor candidate generation, location aware classification model learning and weighted multimodal feature fusion, our algorithm can be effectively trained with limited data and achieved superior tumor detection performance over the state-of-the-art in our experiments.

淋巴瘤是儿童(0 至 19 岁)最常见的癌症类型之一。由于减少了辐射暴露,可同时进行 PET 和 MR 成像的 PET/MR 系统已成为诊断癌症和监测肿瘤对儿科治疗反应的标准。在这项工作中,我们开发了一种利用 PET 和 MRI 自动检测儿科淋巴瘤的多模态深度学习算法。通过标准化摄取值(SUV)引导的候选肿瘤生成、位置感知分类模型学习和加权多模态特征融合等创新设计,我们的算法可以用有限的数据进行有效训练,并在实验中取得了优于最先进水平的肿瘤检测性能。
{"title":"Multimodal Pediatric Lymphoma Detection using PET and MRI.","authors":"Hongzhi Wang, Amirhossein Sarrami, Joy Tzung-Yu Wu, Lucia Baratto, Arjun Sharma, Ken C L Wong, Shashi Bhushan Singh, Heike E Daldrup-Link, Tanveer Syeda-Mahmood","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Lymphoma is one of the most common types of cancer for children (ages 0 to 19). Due to the reduced radiation exposure, PET/MR systems that allow simultaneous PET and MR imaging have become the standard of care for diagnosing cancers and monitoring tumor response to therapy in the pediatric population. In this work, we developed a multimodal deep learning algorithm for automatic pediatric lymphoma detection using PET and MRI. Through innovative designs such as standardized uptake value (SUV) guided tumor candidate generation, location aware classification model learning and weighted multimodal feature fusion, our algorithm can be effectively trained with limited data and achieved superior tumor detection performance over the state-of-the-art in our experiments.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"736-743"},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785920/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139467640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing Autism Spectrum Disorder and Predicting Suicide Risk for Pediatric Psychiatric Emergency Services Encounters. 确定自闭症谱系障碍的特征并预测儿科精神科急诊就诊者的自杀风险。
Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Katherine A Brown, Kathleen R Donise, Mary Kathryn Cancilliere, Dilum P Aluthge, Elizabeth S Chen

Individuals diagnosed with autism spectrum disorder (ASD) are at a higher risk for mental health concerns including suicidal thoughts and behaviors (STB). Limited studies have focused on suicidal risk factors that are more prevalent or unique to the population with ASD. This study sought to characterize and classify youth presenting to the psychiatric emergency department (ED) for a chief complaint of STB. The results of this study validated that a high number of patients with ASD present to the ED with STB. There were important differences in clinical characteristics to those with ASD versus those without. Clinical features that showed important impact in predicting high suicide risk in the ASD cases include elements of the mental status exam such as affect, trauma symptoms, abuse history, and auditory hallucinations. Focused attention is needed on these unique differences in ASD cases so that suicide risk level can be appropriately and promptly addressed.

被诊断患有自闭症谱系障碍(ASD)的人有更高的心理健康风险,包括自杀想法和行为(STB)。有关自闭症谱系障碍人群更普遍或更独特的自杀风险因素的研究十分有限。本研究旨在对因 STB 主诉而到精神科急诊室(ED)就诊的青少年进行特征描述和分类。研究结果证实,有大量 ASD 患者因 STB 到急诊科就诊。患有 ASD 的患者与未患有 ASD 的患者在临床特征上存在重要差异。在 ASD 病例中,对预测高自杀风险有重要影响的临床特征包括精神状态检查的要素,如情感、创伤症状、虐待史和幻听。我们需要重点关注 ASD 病例中的这些独特差异,以便适当、及时地应对自杀风险水平。
{"title":"Characterizing Autism Spectrum Disorder and Predicting Suicide Risk for Pediatric Psychiatric Emergency Services Encounters.","authors":"Katherine A Brown, Kathleen R Donise, Mary Kathryn Cancilliere, Dilum P Aluthge, Elizabeth S Chen","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Individuals diagnosed with autism spectrum disorder (ASD) are at a higher risk for mental health concerns including suicidal thoughts and behaviors (STB). Limited studies have focused on suicidal risk factors that are more prevalent or unique to the population with ASD. This study sought to characterize and classify youth presenting to the psychiatric emergency department (ED) for a chief complaint of STB. The results of this study validated that a high number of patients with ASD present to the ED with STB. There were important differences in clinical characteristics to those with ASD versus those without. Clinical features that showed important impact in predicting high suicide risk in the ASD cases include elements of the mental status exam such as affect, trauma symptoms, abuse history, and auditory hallucinations. Focused attention is needed on these unique differences in ASD cases so that suicide risk level can be appropriately and promptly addressed.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"864-873"},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785882/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139467653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying TBI Physiological States by Clustering Multivariate Clinical Time-Series Data. 通过聚类多变量临床时间序列数据识别创伤性脑损伤的生理状态。
Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Hamid Ghaderi, Brandon Foreman, Amin Nayebi, Sindhu Tipirneni, Chandan K Reddy, Vignesh Subbian

Determining clinically relevant physiological states from multivariate time-series data with missing values is essential for providing appropriate treatment for acute conditions such as Traumatic Brain Injury (TBI), respiratory failure, and heart failure. Utilizing non-temporal clustering or data imputation and aggregation techniques may lead to loss of valuable information and biased analyses. In our study, we apply the SLAC-Time algorithm, an innovative self-supervision-based approach that maintains data integrity by avoiding imputation or aggregation, offering a more useful representation of acute patient states. By using SLAC-Time to cluster data in a large research dataset, we identified three distinct TBI physiological states and their specific feature profiles. We employed various clustering evaluation metrics and incorporated input from a clinical domain expert to validate and interpret the identified physiological states. Further, we discovered how specific clinical events and interventions can influence patient states and state transitions.

要为创伤性脑损伤(TBI)、呼吸衰竭和心力衰竭等急性病提供适当的治疗,必须从具有缺失值的多变量时间序列数据中确定临床相关的生理状态。使用非时间聚类或数据估算和聚合技术可能会导致宝贵信息的丢失和分析结果的偏差。在我们的研究中,我们采用了 SLAC-Time 算法,这是一种基于自我监督的创新方法,它通过避免估算或聚合来保持数据的完整性,从而为急性病患者的状态提供更有用的表征。通过使用 SLAC-Time 对大型研究数据集中的数据进行聚类,我们确定了三种不同的创伤性脑损伤生理状态及其特定特征。我们采用了各种聚类评估指标,并结合临床领域专家的意见来验证和解释所识别的生理状态。此外,我们还发现了特定临床事件和干预措施如何影响患者状态和状态转换。
{"title":"Identifying TBI Physiological States by Clustering Multivariate Clinical Time-Series Data.","authors":"Hamid Ghaderi, Brandon Foreman, Amin Nayebi, Sindhu Tipirneni, Chandan K Reddy, Vignesh Subbian","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Determining clinically relevant physiological states from multivariate time-series data with missing values is essential for providing appropriate treatment for acute conditions such as Traumatic Brain Injury (TBI), respiratory failure, and heart failure. Utilizing non-temporal clustering or data imputation and aggregation techniques may lead to loss of valuable information and biased analyses. In our study, we apply the SLAC-Time algorithm, an innovative self-supervision-based approach that maintains data integrity by avoiding imputation or aggregation, offering a more useful representation of acute patient states. By using SLAC-Time to cluster data in a large research dataset, we identified three distinct TBI physiological states and their specific feature profiles. We employed various clustering evaluation metrics and incorporated input from a clinical domain expert to validate and interpret the identified physiological states. Further, we discovered how specific clinical events and interventions can influence patient states and state transitions.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"379-388"},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785849/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139467495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Contrastive Learning for Medical Image Recognition. 医学图像识别的局部对比学习
Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Syed A Rizvi, Ruixiang Tang, Xiaoqian Jiang, Xiaotian Ma, Xia Hu

The proliferation of Deep Learning (DL)-based methods for radiographic image analysis has created a great demand for expert-labeled radiology data. Recent self-supervised frameworks have alleviated the need for expert labeling by obtaining supervision from associated radiology reports. These frameworks, however, struggle to distinguish the subtle differences between different pathologies in medical images. Additionally, many of them do not provide interpretation between image regions and text, making it difficult for radiologists to assess model predictions. In this work, we propose Local Region Contrastive Learning (LRCLR), a flexible fine-tuning framework that adds layers for significant image region selection as well as cross-modality interaction. Our results on an external validation set of chest x-rays suggest that LRCLR identifies significant local image regions and provides meaningful interpretation against radiology text while improving zero-shot performance on several chest x-ray medical findings.

基于深度学习(Deep Learning,DL)的放射图像分析方法层出不穷,对专家标注的放射学数据产生了巨大需求。最近的自监督框架通过从相关放射学报告中获取监督信息,减轻了对专家标签的需求。然而,这些框架难以区分医学图像中不同病理之间的细微差别。此外,许多框架不提供图像区域和文本之间的解释,这使得放射科医生很难评估模型预测。在这项工作中,我们提出了局部区域对比学习(LRCLR),这是一种灵活的微调框架,它为重要的图像区域选择和跨模态交互增加了层次。我们在胸部 X 光片外部验证集上取得的结果表明,LRCLR 可以识别重要的局部图像区域,并根据放射学文本提供有意义的解释,同时提高了几种胸部 X 光片医学发现的零拍摄性能。
{"title":"Local Contrastive Learning for Medical Image Recognition.","authors":"Syed A Rizvi, Ruixiang Tang, Xiaoqian Jiang, Xiaotian Ma, Xia Hu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The proliferation of Deep Learning (DL)-based methods for radiographic image analysis has created a great demand for expert-labeled radiology data. Recent self-supervised frameworks have alleviated the need for expert labeling by obtaining supervision from associated radiology reports. These frameworks, however, struggle to distinguish the subtle differences between different pathologies in medical images. Additionally, many of them do not provide interpretation between image regions and text, making it difficult for radiologists to assess model predictions. In this work, we propose Local Region Contrastive Learning (LRCLR), a flexible fine-tuning framework that adds layers for significant image region selection as well as cross-modality interaction. Our results on an external validation set of chest x-rays suggest that LRCLR identifies significant local image regions and provides meaningful interpretation against radiology text while improving zero-shot performance on several chest x-ray medical findings.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1236-1245"},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139467530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. 通过患者-标准水平公平性约束实现公平的患者-试验匹配
Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Chia-Yuan Chang, Jiayi Yuan, Sirui Ding, Qiaoyu Tan, Kai Zhang, Xiaoqian Jiang, Xia Hu, Na Zou

Clinical trials are indispensable in developing new treatments, but they face obstacles in patient recruitment and retention, hindering the enrollment of necessary participants. To tackle these challenges, deep learning frameworks have been created to match patients to trials. These frameworks calculate the similarity between patients and clinical trial eligibility criteria, considering the discrepancy between inclusion and exclusion criteria. Recent studies have shown that these frameworks outperform earlier approaches. However, deep learning models may raise fairness issues in patient-trial matching when certain sensitive groups of individuals are underrepresented in clinical trials, leading to incomplete or inaccurate data and potential harm. To tackle the issue of fairness, this work proposes a fair patient-trial matching framework by generating a patient-criterion level fairness constraint. The proposed framework considers the inconsistency between the embedding of inclusion and exclusion criteria among patients of different sensitive groups. The experimental results on real-world patient-trial and patient-criterion matching tasks demonstrate that the proposed framework can successfully alleviate the predictions that tend to be biased.

临床试验在开发新的治疗方法中不可或缺,但在招募和留住患者方面却面临障碍,阻碍了必要参与者的注册。为了应对这些挑战,人们创建了深度学习框架,将患者与试验相匹配。这些框架考虑到纳入和排除标准之间的差异,计算患者与临床试验资格标准之间的相似度。最近的研究表明,这些框架优于早期的方法。然而,当某些敏感人群在临床试验中代表性不足时,深度学习模型可能会在患者-试验匹配中引发公平性问题,导致数据不完整或不准确,造成潜在伤害。为了解决公平性问题,本研究通过生成患者标准级别的公平性约束,提出了一种公平的患者-试验匹配框架。所提出的框架考虑了不同敏感群体患者之间纳入和排除标准嵌入的不一致性。在真实世界的患者试验和患者标准匹配任务中的实验结果表明,所提出的框架可以成功地缓解预测的偏差倾向。
{"title":"Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint.","authors":"Chia-Yuan Chang, Jiayi Yuan, Sirui Ding, Qiaoyu Tan, Kai Zhang, Xiaoqian Jiang, Xia Hu, Na Zou","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Clinical trials are indispensable in developing new treatments, but they face obstacles in patient recruitment and retention, hindering the enrollment of necessary participants. To tackle these challenges, deep learning frameworks have been created to match patients to trials. These frameworks calculate the similarity between patients and clinical trial eligibility criteria, considering the discrepancy between inclusion and exclusion criteria. Recent studies have shown that these frameworks outperform earlier approaches. However, deep learning models may raise fairness issues in patient-trial matching when certain sensitive groups of individuals are underrepresented in clinical trials, leading to incomplete or inaccurate data and potential harm. To tackle the issue of fairness, this work proposes a fair patient-trial matching framework by generating a patient-criterion level fairness constraint. The proposed framework considers the inconsistency between the embedding of inclusion and exclusion criteria among patients of different sensitive groups. The experimental results on real-world patient-trial and patient-criterion matching tasks demonstrate that the proposed framework can successfully alleviate the predictions that tend to be biased.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"884-893"},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139465532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Computable Phenotype for the Identification of Sexual and Gender Minorities in Electronic Health Records. 在电子健康记录中识别性少数群体和性别少数群体的可计算表型。
Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Yongqiu Li, Xing He, Christopher Wheldon, Yonghui Wu, Mattia Prosperi, Elizabeth A Shenkman, Michael S Jaffee, Jingchuan Guo, Fei Wang, Yi Guo, Jiang Bian

Sexual gender minorities, including lesbian, gay, and bisexual (LGB) individuals face unique challenges due to discrimination, stigma, and marginalization, which negatively impact their well-being. Electronic health record (EHR) systems present an opportunity for LGB research, but accurately identifying LGB individuals in EHRs is challenging. Our study developed and validated a rule-based computable phenotype (CP) to identify LGB individuals and their subgroups using both structured data and unstructured clinical narratives from a large integrated health system. Validating against a sample of 537 chart-reviewed patients, our three best performing CP algorithms balancing different performance metrics, each achieved sensitivity of 1.000, PPV of 0.982, and F1-score of 0.875 in identifying LGB individuals, respectively. Applying the three best-performing CPs, our study also found that the LGB population is younger and experiences a disproportionate burden of adverse health outcomes, particularly mental health distress.

包括女同性恋、男同性恋和双性恋 (LGB) 在内的性性别少数群体因歧视、污名化和边缘化而面临独特的挑战,这对他们的福祉产生了负面影响。电子健康记录(EHR)系统为女同性恋、男同性恋、双性恋和变性者的研究提供了机会,但在 EHR 中准确识别女同性恋、男同性恋、双性恋和变性者却具有挑战性。我们的研究开发并验证了一种基于规则的可计算表型 (CP),利用来自大型综合医疗系统的结构化数据和非结构化临床叙述来识别 LGB 个人及其亚群。通过对 537 例病历审查患者样本进行验证,我们的三种性能最佳的 CP 算法平衡了不同的性能指标,在识别 LGB 个人方面分别达到了 1.000 的灵敏度、0.982 的 PPV 和 0.875 的 F1 分数。通过应用这三种性能最佳的 CP,我们的研究还发现,LGB 群体更年轻,其不良健康后果的负担过重,尤其是心理健康困扰。
{"title":"A Computable Phenotype for the Identification of Sexual and Gender Minorities in Electronic Health Records.","authors":"Yongqiu Li, Xing He, Christopher Wheldon, Yonghui Wu, Mattia Prosperi, Elizabeth A Shenkman, Michael S Jaffee, Jingchuan Guo, Fei Wang, Yi Guo, Jiang Bian","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Sexual gender minorities, including lesbian, gay, and bisexual (LGB) individuals face unique challenges due to discrimination, stigma, and marginalization, which negatively impact their well-being. Electronic health record (EHR) systems present an opportunity for LGB research, but accurately identifying LGB individuals in EHRs is challenging. Our study developed and validated a rule-based computable phenotype (CP) to identify LGB individuals and their subgroups using both structured data and unstructured clinical narratives from a large integrated health system. Validating against a sample of 537 chart-reviewed patients, our three best performing CP algorithms balancing different performance metrics, each achieved sensitivity of 1.000, PPV of 0.982, and F1-score of 0.875 in identifying LGB individuals, respectively. Applying the three best-performing CPs, our study also found that the LGB population is younger and experiences a disproportionate burden of adverse health outcomes, particularly mental health distress.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1057-1066"},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785915/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139467065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Computational Framework to Evaluate Emergency Department Clinician Task Switching in the Electronic Health Record Using Event Logs. 利用事件日志评估电子健康记录中急诊科临床医生任务切换的计算框架。
Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Amanda J Moy, Kenrick D Cato, Eugene Y Kim, Jennifer Withall, Sarah C Rossetti

Workflow fragmentation, defined as task switching, may be one proxy to quantify electronic health record (EHR) documentation burden in the emergency department (ED). Few measures have been operationalized to evaluate task switching at scale. Theoretically grounded in the time-based resource-sharing model (TBRSM) which conceives task switching as proportional to the cognitive load experienced, we describe the functional relationship between cognitive load and the time and effort constructs previously applied for measuring documentation burden. We present a computational framework, COMBINE, to evaluate multilevel task switching in the ED using EHR event logs. Based on this framework, we conducted a descriptive analysis on task switching among 63 full-time ED physicians from one ED site using EHR event logs extracted between April-June 2021 (n=2,068,605 events) which were matched to scheduled shifts (n=952). On average, we found a high volume of event-level (185.8±75.3/hr) and within-(6.6±1.7/chart) and between-patient chart (27.5±23.6/hr) switching per shift worked.

被定义为任务切换的工作流程碎片可能是量化急诊科(ED)电子健康记录(EHR)文档负担的一种替代方法。目前很少有可操作的措施来评估大规模的任务切换。基于时间的资源共享模型(TBRSM)认为任务切换与认知负荷成正比,我们以该模型为理论基础,描述了认知负荷与之前用于测量文档负担的时间和精力结构之间的功能关系。我们提出了一个名为 COMBINE 的计算框架,用于利用电子病历事件日志评估 ED 中的多层次任务切换。在此框架基础上,我们利用 2021 年 4 月至 6 月期间提取的 EHR 事件日志(n=2,068,605 个事件),对来自一个急诊室的 63 名全职急诊医生的任务切换情况进行了描述性分析,并与排定的班次(n=952)进行了匹配。我们发现,平均而言,每个轮班的事件级(185.8±75.3/小时)、病历内(6.6±1.7/张)和病历间(27.5±23.6/小时)的切换量都很高。
{"title":"A Computational Framework to Evaluate Emergency Department Clinician Task Switching in the Electronic Health Record Using Event Logs.","authors":"Amanda J Moy, Kenrick D Cato, Eugene Y Kim, Jennifer Withall, Sarah C Rossetti","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Workflow fragmentation, defined as task switching, may be one proxy to quantify electronic health record (EHR) documentation burden in the emergency department (ED). Few measures have been operationalized to evaluate task switching at scale. Theoretically grounded in the time-based resource-sharing model (TBRSM) which conceives task switching as proportional to the cognitive load experienced, we describe the functional relationship between cognitive load and the time and effort constructs previously applied for measuring documentation burden. We present a computational framework, COMBINE, to evaluate multilevel task switching in the ED using EHR event logs. Based on this framework, we conducted a descriptive analysis on task switching among 63 full-time ED physicians from one ED site using EHR event logs extracted between April-June 2021 (n=2,068,605 events) which were matched to scheduled shifts (n=952). On average, we found a high volume of event-level (185.8±75.3/hr) and within-(6.6±1.7/chart) and between-patient chart (27.5±23.6/hr) switching per shift worked.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1183-1192"},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139467069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Practical Approach to Optimize Computerized Provider Order Entry Systems and Reduce Clinician Burden: Pre-Post Evaluation of Vendor-Derived "Order Friction" Data. 优化计算机化医嘱输入系统和减轻临床医生负担的实用方法:对供应商提供的 "订单摩擦 "数据进行事后评估。
Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Elise L Ruan, Sarah C Rossetti, Hanson Hsu, Eugene Y Kim, Richard C Trepp

Computerized provider order entry (CPOE) systems have been cited as a significant contributor to clinician burden. Vendor-derived measures and data sets have been developed to help with optimization of CPOE systems. We describe how we analyzed vendor-derived Order Friction (OF) EHR log data at our health system and propose a practical approach for optimizing CPOE systems by reducing OF. We also conducted a pre-post intervention study using OF data to evaluate the impact of defaulting the frequency of urine, stool and nasal swab tests and found that all modified orders had significantly fewer changes required per order (p<0.01). Our proposed approach is a six-step process: 1) understand the ordering process, 2) understand OF data elements contextually, 3) explore ordering user-level factors, 4) evaluate order volume and friction from different order sources, 5) optimize order-level design, 6) identify high volume alerts to evaluate for appropriateness.

计算机化医嘱输入系统(CPOE)被认为是加重临床医生负担的一个重要因素。为了帮助优化 CPOE 系统,我们开发了源自供应商的测量方法和数据集。我们介绍了如何在我们的医疗系统中分析来自供应商的订单摩擦 (OF) 电子病历日志数据,并提出了通过减少订单摩擦来优化 CPOE 系统的实用方法。我们还使用 OF 数据进行了一项事前事后干预研究,以评估默认尿液、粪便和鼻拭子检测频率的影响,结果发现所有修改后的订单每单所需的更改次数都明显减少(p<0.05)。
{"title":"A Practical Approach to Optimize Computerized Provider Order Entry Systems and Reduce Clinician Burden: Pre-Post Evaluation of Vendor-Derived \"Order Friction\" Data.","authors":"Elise L Ruan, Sarah C Rossetti, Hanson Hsu, Eugene Y Kim, Richard C Trepp","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Computerized provider order entry (CPOE) systems have been cited as a significant contributor to clinician burden. Vendor-derived measures and data sets have been developed to help with optimization of CPOE systems. We describe how we analyzed vendor-derived Order Friction (OF) EHR log data at our health system and propose a practical approach for optimizing CPOE systems by reducing OF. We also conducted a pre-post intervention study using OF data to evaluate the impact of defaulting the frequency of urine, stool and nasal swab tests and found that all modified orders had significantly fewer changes required per order (p<0.01). Our proposed approach is a six-step process: 1) understand the ordering process, 2) understand OF data elements contextually, 3) explore ordering user-level factors, 4) evaluate order volume and friction from different order sources, 5) optimize order-level design, 6) identify high volume alerts to evaluate for appropriateness.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1246-1256"},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139467137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
AMIA ... Annual Symposium proceedings. AMIA Symposium
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1