首页 > 最新文献

Advanced Powder Technology最新文献

英文 中文
A time-domain nuclear magnetic resonance (TD-NMR) as a tool to characterize affinity between partially hydrophobic silica nanoparticles and ethanol/hexane mixtures 将时域核磁共振(TD-NMR)作为表征部分疏水性二氧化硅纳米颗粒与乙醇/正己烷混合物之间亲和力的工具
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-05 DOI: 10.1016/j.apt.2024.104593
Atsushi Teramae , Chika Takai-Yamashita , Junko Ikeda , Seiji Yamashita , Motoya Sugiura , Ariga Kato , Yutaka Ohya , Paul Kinyanjui Kimani

Affinity between partially hydrophobic silica nanoparticles and organic solvents (ethanol and hexane) as dispersing medium has been characterized with change in the relaxation time obtained by a time-domain nuclear magnetic resonance (TD-NMR). Different chain lengths (denoted as C3, C6, and C12) were utilized as surface modifiers for the particles and the modification ratio was controlled. For ethanol, the longer chain length and higher modification ratio showed the higher affinity while for hexane, vice versa even though a quite poor affinity appeared in whole conditions. We hypothesize that the ethanol molecules could be attracted to residual silanol groups among long-chain length-functional groups. In order to prove, affinity of the partially hydrophobic silica nanoparticles with ethanol/hexane mixture has been investigated. In the range from 60 to 80 vol% of hexane, relaxation time of the C12-modified silica nanoparticles (modification ratio was 1.4 /nm2) quickly decreased. When the residual silanol was additionally modified with C3, the corresponding decrease disappeared. The TD-NMR has an effective tool to detect the change in the surface affinity of the partially hydrophobic nanoparticles even if they showed the same hydrophobicity.

通过时域核磁共振(TD-NMR)获得的弛豫时间的变化,表征了部分疏水性二氧化硅纳米粒子与作为分散介质的有机溶剂(乙醇和正己烷)之间的亲和性。利用不同的链长(表示为 C3、C6 和 C12)作为颗粒的表面改性剂,并控制改性比例。对于乙醇来说,链长越长、改性比例越高,亲和力就越强;而对于正己烷来说,尽管在整个条件下亲和力都很差,但亲和力也越强。我们推测乙醇分子可能被长链长度官能团中的残余硅醇基团所吸引。为了证明这一点,我们研究了部分疏水性二氧化硅纳米粒子与乙醇/正己烷混合物的亲和性。在己烷含量为 60% 至 80% 的范围内,C12 改性纳米二氧化硅(改性比为 1.4 /nm2)的弛豫时间迅速缩短。当残留的硅烷醇被 C3 额外修饰时,相应的减少消失了。TD-NMR 是检测部分疏水性纳米粒子表面亲和性变化的有效工具,即使它们的疏水性相同。
{"title":"A time-domain nuclear magnetic resonance (TD-NMR) as a tool to characterize affinity between partially hydrophobic silica nanoparticles and ethanol/hexane mixtures","authors":"Atsushi Teramae ,&nbsp;Chika Takai-Yamashita ,&nbsp;Junko Ikeda ,&nbsp;Seiji Yamashita ,&nbsp;Motoya Sugiura ,&nbsp;Ariga Kato ,&nbsp;Yutaka Ohya ,&nbsp;Paul Kinyanjui Kimani","doi":"10.1016/j.apt.2024.104593","DOIUrl":"10.1016/j.apt.2024.104593","url":null,"abstract":"<div><p>Affinity between partially hydrophobic silica nanoparticles and organic solvents (ethanol and hexane) as dispersing medium has been characterized with change in the relaxation time obtained by a time-domain nuclear magnetic resonance (TD-NMR). Different chain lengths (denoted as C3, C6, and C12) were utilized as surface modifiers for the particles and the modification ratio was controlled. For ethanol, the longer chain length and higher modification ratio showed the higher affinity while for hexane, vice versa even though a quite poor affinity appeared in whole conditions. We hypothesize that the ethanol molecules could be attracted to residual silanol groups among long-chain length-functional groups. In order to prove, affinity of the partially hydrophobic silica nanoparticles with ethanol/hexane mixture has been investigated. In the range from 60 to 80 vol% of hexane, relaxation time of the C12-modified silica nanoparticles (modification ratio was 1.4 /nm<sup>2</sup>) quickly decreased. When the residual silanol was additionally modified with C3, the corresponding decrease disappeared. The TD-NMR has an effective tool to detect the change in the surface affinity of the partially hydrophobic nanoparticles even if they showed the same hydrophobicity.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104593"},"PeriodicalIF":4.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parametric and non-parametric evaluation of conversion of number-based particle size distribution to mass-based distribution 将基于数量的粒度分布转换为基于质量的分布的参数和非参数评估
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-03 DOI: 10.1016/j.apt.2024.104594
Tatsushi Matsuyama

Interest in applying non-parametric methods to analyze particle size distribution (PSD) is growing. Previous studies have demonstrated the effectiveness of the bootstrap method in evaluating percentile values and confidence intervals for number-based PSD data. In this study, the application of the method to mass-based (volume-based) distribution was extended. The performance of the parametric method, which uses the Hatch-Choate equation for lognormal distribution, was compared with that of the non-parametric method in evaluating mass-based distribution data converted from number-based distribution. The superior performance of the parametric method underscores the importance of prior distribution function knowledge. For non-parametric methods, “real repeat” simulations involving 5000 repetitions of individual samplings were conducted as a reference for the bootstrap method. It was found that there exists a critical sample size, beyond which larger samples are necessary to accurately represent the population through non-parametric analysis. This critical size requires that the maximum size in the dataset exceeds the target size (e.g., the 90th percentile value) for direct evaluation of existing data. When the sample size range surpasses the critical size, bootstrap provides a good approximation to the “real repeat” experiments. Therefore, it is essential to have a diagnostic strategy to determine whether the sample size is sufficiently large for non-parametric analysis. A simple method using multi-scale bootstrap is proposed in this regard.

人们对应用非参数方法分析粒度分布(PSD)的兴趣与日俱增。之前的研究已经证明了自举法在评估基于数量的 PSD 数据的百分位值和置信区间方面的有效性。在本研究中,该方法的应用扩展到了基于质量(体积)的分布。使用对数正态分布的 Hatch-Choate 方程的参数法与非参数法在评估从基于数字的分布转换而来的基于质量的分布数据时的性能进行了比较。参数法的优越性能突出了先验分布函数知识的重要性。对于非参数方法,我们进行了包含 5000 次单个采样重复的 "真实重复 "模拟,作为 bootstrap 方法的参考。结果发现,存在一个临界样本量,超过这个临界样本量,就需要更大的样本量才能通过非参数分析准确地代表总体。这个临界规模要求数据集中的最大规模超过直接评估现有数据的目标规模(如第 90 百分位值)。当样本大小范围超过临界大小时,bootstrap 就能很好地接近 "真实重复 "实验。因此,必须有一个诊断策略来确定样本量是否足够大,以便进行非参数分析。为此,我们提出了一种使用多尺度引导法的简单方法。
{"title":"Parametric and non-parametric evaluation of conversion of number-based particle size distribution to mass-based distribution","authors":"Tatsushi Matsuyama","doi":"10.1016/j.apt.2024.104594","DOIUrl":"10.1016/j.apt.2024.104594","url":null,"abstract":"<div><p>Interest in applying non-parametric methods to analyze particle size distribution (PSD) is growing. Previous studies have demonstrated the effectiveness of the bootstrap method in evaluating percentile values and confidence intervals for number-based PSD data. In this study, the application of the method to mass-based (volume-based) distribution was extended. The performance of the parametric method, which uses the Hatch-Choate equation for lognormal distribution, was compared with that of the non-parametric method in evaluating mass-based distribution data converted from number-based distribution. The superior performance of the parametric method underscores the importance of prior distribution function knowledge. For non-parametric methods, “real repeat” simulations involving 5000 repetitions of individual samplings were conducted as a reference for the bootstrap method. It was found that there exists a critical sample size, beyond which larger samples are necessary to accurately represent the population through non-parametric analysis. This critical size requires that the maximum size in the dataset exceeds the target size (e.g., the 90th percentile value) for direct evaluation of existing data. When the sample size range surpasses the critical size, bootstrap provides a good approximation to the “real repeat” experiments. Therefore, it is essential to have a diagnostic strategy to determine whether the sample size is sufficiently large for non-parametric analysis. A simple method using multi-scale bootstrap is proposed in this regard.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104594"},"PeriodicalIF":4.2,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092188312400270X/pdfft?md5=4c04d30467bc9bafc10635a5e42637e8&pid=1-s2.0-S092188312400270X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Removal of deep traps in Lu2O3:Tm phosphors via formation of continuous solid solutions with In2O3 enabling widely tailorable bandgap energy 通过与 In2O3 形成连续固溶体消除 Lu2O3:Tm 荧光粉中的深陷阱,实现广泛的可定制带隙能
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-03 DOI: 10.1016/j.apt.2024.104610
Bin Lu , Hanchen Shen , Yun Shi , Jiang Li , Oleg Shichalin , Eugeniy Papynov , Xuejiao Wang

Bandgap engineering has been effectively used to reduce the shallow-trap defects (e.g. antisite defects), but there are still rare reports on the removal of deep-trap defects (e.g. oxygen defects). In this work, our proposed strategy of In3+ substitution for Lu3+ via the formation of continuous (Lu,In)2O3 solid solutions can be used to widely tailored the bandgap energy. These solid solutions prepared from the chemical co-precipitation route presented the rounded morphology and their particle sizes increased at a higher In3+ content. The (Lu,In)2O3:Tm phosphor powders exhibited characteristic Tm3+ emissions arising from its intra‐4f12 multi‐transitions upon UV excitation into strong broad charge transfer bands. The luminescence intensity reached the highest level at 15 at.% In3+ concentration. The In3+ incorporation was found to red-shift the charge transfer bands and shortened the florescence lifetimes. The luminescence quenching was dominated by exchange interaction while the theoretical and experimental quenching concentration of Tm3+ coincided well with each other (both ∼1 at.%). The trap depth in the In3+ free Lu2O3:Tm phosphor was determined to be ∼0.61 eV and these electron traps could be almost fully buried at the In3+ concentration above 5 at.%. Both the (Lu0.99Tm0.01)2O3 and (Lu0.84In0.15Tm0.01)2O3 phosphors exhibited good thermal stability with high thermal-quenching activation energies (∼0.45 eV for the former and ∼0.39 eV for the latter). However, the (Lu0.99Tm0.01)2O3 phosphor presented abnormal thermal quenching effect.

带隙工程已被有效地用于减少浅阱缺陷(.反位错缺陷),但关于消除深阱缺陷(.氧缺陷)的报道仍然很少。在这项工作中,我们提出了通过形成连续的(Lu,In)O 固溶体用 In 替代 Lu 的策略,可用于广泛调整带隙能。这些通过化学共沉淀路线制备的固溶体呈现出圆形的形态,并且当 In 含量越高时,其粒径也越大。(Lu,In)O:Tm荧光粉在紫外光激发下会发生4内多跃迁,形成强宽的电荷转移带,从而产生特征性的Tm发射。当 In 浓度为 15%时,发光强度达到最高水平。铟的掺入使电荷转移带发生红移,并缩短了荧光寿命。发光淬灭主要是由交换相互作用引起的,而 Tm 的理论淬灭浓度和实验淬灭浓度非常吻合(均为 1 at.%)。无 In 的 LuO:Tm 荧光粉中的陷阱深度被测定为 ∼0.61 eV,当 In 浓度超过 5 at.% 时,这些电子陷阱几乎可以完全埋藏。(LuTm)O和(LuInTm)O荧光粉都具有良好的热稳定性,热淬灭活化能较高(前者为0.45 eV,后者为0.39 eV)。然而,(LuTm)O 荧光粉却表现出异常的热淬火效应。
{"title":"Removal of deep traps in Lu2O3:Tm phosphors via formation of continuous solid solutions with In2O3 enabling widely tailorable bandgap energy","authors":"Bin Lu ,&nbsp;Hanchen Shen ,&nbsp;Yun Shi ,&nbsp;Jiang Li ,&nbsp;Oleg Shichalin ,&nbsp;Eugeniy Papynov ,&nbsp;Xuejiao Wang","doi":"10.1016/j.apt.2024.104610","DOIUrl":"10.1016/j.apt.2024.104610","url":null,"abstract":"<div><p>Bandgap engineering has been effectively used to reduce the shallow-trap defects (<em>e</em>.<em>g</em>. antisite defects), but there are still rare reports on the removal of deep-trap defects (<em>e</em>.<em>g</em>. oxygen defects). In this work, our proposed strategy of In<sup>3+</sup> substitution for Lu<sup>3+</sup> via the formation of continuous (Lu,In)<sub>2</sub>O<sub>3</sub> solid solutions can be used to widely tailored the bandgap energy. These solid solutions prepared from the chemical co-precipitation route presented the rounded morphology and their particle sizes increased at a higher In<sup>3+</sup> content. The (Lu,In)<sub>2</sub>O<sub>3</sub>:Tm phosphor powders exhibited characteristic Tm<sup>3+</sup> emissions arising from its intra‐4<em>f</em><sup>12</sup> multi‐transitions upon UV excitation into strong broad charge transfer bands. The luminescence intensity reached the highest level at 15 at.% In<sup>3+</sup> concentration. The In<sup>3+</sup> incorporation was found to red-shift the charge transfer bands and shortened the florescence lifetimes. The luminescence quenching was dominated by exchange interaction while the theoretical and experimental quenching concentration of Tm<sup>3+</sup> coincided well with each other (both ∼1 at.%). The trap depth in the In<sup>3+</sup> free Lu<sub>2</sub>O<sub>3</sub>:Tm phosphor was determined to be ∼0.61 eV and these electron traps could be almost fully buried at the In<sup>3+</sup> concentration above 5 at.%. Both the (Lu<sub>0.99</sub>Tm<sub>0.01</sub>)<sub>2</sub>O<sub>3</sub> and (Lu<sub>0.84</sub>In<sub>0.15</sub>Tm<sub>0.01</sub>)<sub>2</sub>O<sub>3</sub> phosphors exhibited good thermal stability with high thermal-quenching activation energies (∼0.45 eV for the former and ∼0.39 eV for the latter). However, the (Lu<sub>0.99</sub>Tm<sub>0.01</sub>)<sub>2</sub>O<sub>3</sub> phosphor presented abnormal thermal quenching effect.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104610"},"PeriodicalIF":4.2,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel interaction theory for the starch adsorption onto hematite surface 赤铁矿表面淀粉吸附的新型相互作用理论
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-02 DOI: 10.1016/j.apt.2024.104607
Qianqian Wang , Yanling Xu , Jan Zawała , Chen Liu , Wei Xiao , Siyuan Yang

Depressant starch (NS) was generally used in hematite flotation, while the adsorption mechanism of the macromolecular polymer onto mineral surfaces remained in question. In this study, novel detection approaches and computational chemistry methods were introduced to update the widely-accepted acid-base interaction theory. Microflotation tests confirm that the hematite flotation recovery was easily depressed by NS under the acid or alkaline conditions rather than the neutral condition. Zeta potential measurement shows that NS could change the zeta potential of hematite, while the shift amplitude ranked as alkaline > acid > neutral, indicating the most suitable pH range is the alkaline condition. XPS analysis reveals that NS could chemisorbed onto Fe atoms of hematite surface via C-O groups in the whole studied pH range. It was further verified using AFM tests, in which the NS has a stronger interaction force under the alkaline environment. MDS further indicates that the interaction energy between NS and the (0 0 1) hematite surface was three times greater than others under alkaline conditions. In general, the interaction force at the interface between the hematite surface and NS was a strong chemical adsorption at the alkaline conditions while there was weak chemisorption and hydrogen bonding under the neutral or acidic conditions.

赤铁矿浮选过程中通常会用到消沉淀粉(NS),但这种大分子聚合物在矿物表面的吸附机理仍是个问题。本研究引入了新的检测方法和计算化学方法,更新了被广泛接受的酸碱相互作用理论。微浮选试验证实,在酸性或碱性条件下,赤铁矿的浮选回收率容易受到 NS 的抑制,而不是在中性条件下。Zeta电位测量结果表明,NS能改变赤铁矿的Zeta电位,其移动幅度依次为碱性、酸性和中性,表明最适合的pH值范围是碱性条件。XPS 分析表明,在整个研究的 pH 值范围内,NS 可通过 C-O 基团化学吸附在赤铁矿表面的铁原子上。原子力显微镜测试进一步验证了这一点,即在碱性环境下,NS具有更强的相互作用力。MDS 进一步表明,在碱性条件下,NS 与(0 0 1)赤铁矿表面的相互作用能是其他物质的三倍。总的来说,在碱性条件下,赤铁矿表面与 NS 之间的界面相互作用力是一种强化学吸附力,而在中性或酸性条件下则是一种弱化学吸附力和氢键作用力。
{"title":"A novel interaction theory for the starch adsorption onto hematite surface","authors":"Qianqian Wang ,&nbsp;Yanling Xu ,&nbsp;Jan Zawała ,&nbsp;Chen Liu ,&nbsp;Wei Xiao ,&nbsp;Siyuan Yang","doi":"10.1016/j.apt.2024.104607","DOIUrl":"10.1016/j.apt.2024.104607","url":null,"abstract":"<div><p>Depressant starch (NS) was generally used in hematite flotation, while the adsorption mechanism of the macromolecular polymer onto mineral surfaces remained in question. In this study, novel detection approaches and computational chemistry methods were introduced to update the widely-accepted acid-base interaction theory. Microflotation tests confirm that the hematite flotation recovery was easily depressed by NS under the acid or alkaline conditions rather than the neutral condition. Zeta potential measurement shows that NS could change the zeta potential of hematite, while the shift amplitude ranked as alkaline &gt; acid &gt; neutral, indicating the most suitable pH range is the alkaline condition. XPS analysis reveals that NS could chemisorbed onto Fe atoms of hematite surface via C-O groups in the whole studied pH range. It was further verified using AFM tests, in which the NS has a stronger interaction force under the alkaline environment. MDS further indicates that the interaction energy between NS and the (0<!--> <!-->0<!--> <!-->1) hematite surface was three times greater than others under alkaline conditions. In general, the interaction force at the interface between the hematite surface and NS was a strong chemical adsorption at the alkaline conditions while there was weak chemisorption and hydrogen bonding under the neutral or acidic conditions.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104607"},"PeriodicalIF":4.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141951479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full title (Editorial Board Members) 全称(编辑委员会成员)
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-01 DOI: 10.1016/S0921-8831(24)00274-7
{"title":"Full title (Editorial Board Members)","authors":"","doi":"10.1016/S0921-8831(24)00274-7","DOIUrl":"10.1016/S0921-8831(24)00274-7","url":null,"abstract":"","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 8","pages":"Article 104598"},"PeriodicalIF":4.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0921883124002747/pdfft?md5=37b27f150bf8e729722c17cd2468a36e&pid=1-s2.0-S0921883124002747-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inside Front Cover (Aims & Scope, Editors) 封面内页(目标与范围,编辑)
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-01 DOI: 10.1016/S0921-8831(24)00273-5
{"title":"Inside Front Cover (Aims & Scope, Editors)","authors":"","doi":"10.1016/S0921-8831(24)00273-5","DOIUrl":"10.1016/S0921-8831(24)00273-5","url":null,"abstract":"","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 8","pages":"Article 104597"},"PeriodicalIF":4.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0921883124002735/pdfft?md5=8bcca85ef074ce91b48141c0f5f0e433&pid=1-s2.0-S0921883124002735-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141961572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance analysis of vertical stirred mill based on multi-coupling method 基于多耦合方法的立式搅拌磨性能分析
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-30 DOI: 10.1016/j.apt.2024.104603
Zhengbin Liu , Shuai Wang , Haoyan Zhang , Zeren Chen , Jianbo Guo , Shuwei Wu , Wei Guan , Pengshu Xie , Qingxue Huang

To improve vertical mill performance, a vertical stirred mill is used as the research object. Firstly, an electromechanical multi-body dynamic model (EMBD) of the vertical stirred mill is established, followed by the establishment of a discrete element method (DEM) analysis model of the grinding media, and then the DEM-EMBD coupling model is formed. The feasibility of the DEM-EMBD coupling model is verified through experiments. On this basis, the stress distribution state of the helical agitator is analysed based on the coupling method of the discrete element method and finite element method (DEM-EMBD-FEM). The DEM-EMBD coupling model can better reflect the dynamic characteristics of the vertical stirred mill by comparing it with the DEM model and the coupling method of discrete element method and computational fluid dynamics (DEM-CFD) respectively. Finally, the effects of vertical stirred mill structural parameters, operating parameters and grinding media size on mill performance are investigated by the DEM-EMBD and DEM-EMBD-FEM coupling models. The approach then provides insights into the structural design of vertical stirred mills, motor selection, and the welding process between the helical blades and screw.

为提高立磨性能,本文以立式搅拌磨为研究对象。首先建立立式搅拌磨的机电多体动力学模型(EMBD),然后建立研磨介质的离散元法(DEM)分析模型,最后形成 DEM-EMBD 耦合模型。通过实验验证了 DEM-EMBD 耦合模型的可行性。在此基础上,基于离散元法和有限元法的耦合方法(DEM-EMBD-FEM)分析了螺旋搅拌器的应力分布状态。通过与 DEM 模型和离散元法与计算流体力学耦合方法(DEM-CFD)的比较,DEM-EMBD 耦合模型能更好地反映立式搅拌磨的动态特性。最后,通过 DEM-EMBD 和 DEM-EMBD-FEM 耦合模型研究了立式搅拌磨的结构参数、运行参数和研磨介质粒度对磨机性能的影响。该方法为立式搅拌磨的结构设计、电机选择以及螺旋叶片和螺杆之间的焊接工艺提供了启示。
{"title":"Performance analysis of vertical stirred mill based on multi-coupling method","authors":"Zhengbin Liu ,&nbsp;Shuai Wang ,&nbsp;Haoyan Zhang ,&nbsp;Zeren Chen ,&nbsp;Jianbo Guo ,&nbsp;Shuwei Wu ,&nbsp;Wei Guan ,&nbsp;Pengshu Xie ,&nbsp;Qingxue Huang","doi":"10.1016/j.apt.2024.104603","DOIUrl":"10.1016/j.apt.2024.104603","url":null,"abstract":"<div><p>To improve vertical mill performance, a vertical stirred mill is used as the research object. Firstly, an electromechanical multi-body dynamic model (EMBD) of the vertical stirred mill is established, followed by the establishment of a discrete element method (DEM) analysis model of the grinding media, and then the DEM-EMBD coupling model is formed. The feasibility of the DEM-EMBD coupling model is verified through experiments. On this basis, the stress distribution state of the helical agitator is analysed based on the coupling method of the discrete element method and finite element method (DEM-EMBD-FEM). The DEM-EMBD coupling model can better reflect the dynamic characteristics of the vertical stirred mill by comparing it with the DEM model and the coupling method of discrete element method and computational fluid dynamics (DEM-CFD) respectively. Finally, the effects of vertical stirred mill structural parameters, operating parameters and grinding media size on mill performance are investigated by the DEM-EMBD and DEM-EMBD-FEM coupling models. The approach then provides insights into the structural design of vertical stirred mills, motor selection, and the welding process between the helical blades and screw.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104603"},"PeriodicalIF":4.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of computational model for description of magnetic drug targeting for cancer therapy: Modeling and validation 开发用于描述癌症治疗磁性药物靶向的计算模型:建模与验证
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-30 DOI: 10.1016/j.apt.2024.104577
Rami M. Alzhrani , Saad M. Alshahrani , Amal Abdullah Alrashidi

Computation of blood flow containing ferrofluid would be useful for analysis of drug carrier motion for cancer therapy. A thorough understanding nanoparticles behavior is challenging and needs to be addressed by developing sophisticated theoretical methods. A hybrid modeling for analysis of blood motion containing ferrofluid was implemented via mechanistic modeling combined with artificial intelligence. The system of analysis also considered external magnetic force for control of nanoparticles motion in the blood vessel. This research focuses on the analysis of velocity field based on a dataset consisting of variables x(m), y(m), and U(m/s). The objective is to develop accurate predictive models using Gaussian Process Regression (GPR), Kernel ridge regression (KRR), and Polynomial Regression (PR). The Dragonfly Algorithm (DA) was employed for hyper-parameter optimizing. The results demonstrate the performance of these models in relation to R2 score, RMSE, and MAE. The GPR model achieves the highest score of 0.99603 in terms of R2, indicating excellent predictive accuracy. It also exhibits the lowest RMSE of 7.1443x10^-3 and MAE of 5.35436 x10^-3, suggesting minimal deviations between the expected and predicted velocity values. The PR model also has a significant performance with an R2 test score of 0.99348, RMSE of 9.1376 x10^-3, and MAE of 7.22828 x10^-3. The aforementioned results underscore the effectiveness of these models in accurately forecasting velocity based on the provided input variables.

对含有铁流体的血流进行计算有助于分析用于癌症治疗的药物载体的运动。透彻理解纳米粒子的行为具有挑战性,需要通过开发复杂的理论方法来解决。通过机理建模与人工智能相结合,实现了分析含有铁流体的血液运动的混合建模。分析系统还考虑了控制纳米粒子在血管中运动的外部磁力。这项研究的重点是根据由变量 x(m)、y(m)和 U(m/s)组成的数据集分析速度场。目标是利用高斯过程回归(GPR)、核岭回归(KRR)和多项式回归(PR)建立精确的预测模型。超参数优化采用了蜻蜓算法(DA)。结果显示了这些模型在 R2 分数、RMSE 和 MAE 方面的性能。GPR 模型的 R2 得分最高,为 0.99603,表明其预测准确性极佳。它还显示出最低的 RMSE(7.1443x10^-3)和 MAE(5.35436 x10^-3),表明预期速度值和预测速度值之间的偏差极小。PR 模型的 R2 检验得分为 0.99348,RMSE 为 9.1376 x10^-3,MAE 为 7.22828 x10^-3,同样表现出色。上述结果凸显了这些模型在根据所提供的输入变量准确预测速度方面的有效性。
{"title":"Development of computational model for description of magnetic drug targeting for cancer therapy: Modeling and validation","authors":"Rami M. Alzhrani ,&nbsp;Saad M. Alshahrani ,&nbsp;Amal Abdullah Alrashidi","doi":"10.1016/j.apt.2024.104577","DOIUrl":"10.1016/j.apt.2024.104577","url":null,"abstract":"<div><p>Computation of blood flow containing ferrofluid would be useful for analysis of drug carrier motion for cancer therapy. A thorough understanding nanoparticles behavior is challenging and needs to be addressed by developing sophisticated theoretical methods. A hybrid modeling for analysis of blood motion containing ferrofluid was implemented via mechanistic modeling combined with artificial intelligence. The system of analysis also considered external magnetic force for control of nanoparticles motion in the blood vessel. This research focuses on the analysis of velocity field based on a dataset consisting of variables x(m), y(m), and U(m/s). The objective is to develop accurate predictive models using Gaussian Process Regression (GPR), Kernel ridge regression (KRR), and Polynomial Regression (PR). The Dragonfly Algorithm (DA) was employed for hyper-parameter optimizing. The results demonstrate the performance of these models in relation to R<sup>2</sup> score, RMSE, and MAE. The GPR model achieves the highest score of 0.99603 in terms of R<sup>2</sup>, indicating excellent predictive accuracy. It also exhibits the lowest RMSE of 7.1443x10^-3 and MAE of 5.35436 x10^-3, suggesting minimal deviations between the expected and predicted velocity values. The PR model also has a significant performance with an R<sup>2</sup> test score of 0.99348, RMSE of 9.1376 x10^-3, and MAE of 7.22828 x10^-3. The aforementioned results underscore the effectiveness of these models in accurately forecasting velocity based on the provided input variables.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104577"},"PeriodicalIF":4.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing flotation separation of fine-grained cassiterite and calcite with cetylpyridine bromide as a dispersant 用溴化十六烷基吡啶作为分散剂提高细粒锡石和方解石的浮选分离效果
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-30 DOI: 10.1016/j.apt.2024.104606
Jinwen Li , Jinfang Lv , Lingyu Kong , Longqian Ni , Longwei Qin

Calcite is a common gangue mineral in tin ore, which seriously affects the flotation of fine-grained cassiterite. The enhanced flotation separation of fine-grained cassiterite and calcite with cetylpyridine bromide (CPB) as a dispersant were investigated in the study. The CPB significantly improved the flotation separation efficiency of fine-grained cassiterite and calcite, and it exhibited an excellent dispersion effect and relieved the coating phenomenon of calcite particles on the surface of cassiterite particles. The CPB changed the surface potential of cassiterite from negative value to positive value when the pH was in the range of 3.4–11.5. However, regardless of treatment with CPB, the surface potential of calcite was positive when the pH was below 11.5. The O on the surface of cassiterite reacted with CPB, promoting the chemical adsorption of CPB on the surface of cassiterite. There was weak physical adsorption between CPB and calcite. The covering between cassiterite and calcite without CPB was mainly dependent on van der Waals interaction energy and electrostatic interaction energy. When CPB was in the presence, cassiterite and calcite were repelled by the hydrophobic interaction energy and electrostatic interaction energy.

方解石是锡矿中常见的一种夹杂矿物,严重影响细粒锡石的浮选。本研究考察了以溴化十六烷基吡啶(CPB)为分散剂提高细粒锡石和方解石浮选分离效果的情况。CPB明显提高了细粒锡石和方解石的浮选分离效率,并表现出良好的分散效果,缓解了方解石颗粒在锡石颗粒表面的包覆现象。当 pH 值在 3.4-11.5 范围内时,CPB 使锡石的表面电位由负值变为正值。然而,无论使用何种氯化石蜡处理,当 pH 值低于 11.5 时,方解石的表面电位均为正值。方解石表面的 O 与氯化石蜡发生反应,促进了氯化石蜡在方解石表面的化学吸附。CPB 与方解石之间的物理吸附作用很弱。在没有 CPB 的情况下,锡石和方解石之间的覆盖主要取决于范德华相互作用能和静电相互作用能。有氯化石蜡存在时,锡石和方解石在疏水作用能和静电作用能的作用下被排斥。
{"title":"Enhancing flotation separation of fine-grained cassiterite and calcite with cetylpyridine bromide as a dispersant","authors":"Jinwen Li ,&nbsp;Jinfang Lv ,&nbsp;Lingyu Kong ,&nbsp;Longqian Ni ,&nbsp;Longwei Qin","doi":"10.1016/j.apt.2024.104606","DOIUrl":"10.1016/j.apt.2024.104606","url":null,"abstract":"<div><p>Calcite is a common gangue mineral in tin ore, which seriously affects the flotation of fine-grained cassiterite. The enhanced flotation separation of fine-grained cassiterite and calcite with cetylpyridine bromide (CPB) as a dispersant were investigated in the study. The CPB significantly improved the flotation separation efficiency of fine-grained cassiterite and calcite, and it exhibited an excellent dispersion effect and relieved the coating phenomenon of calcite particles on the surface of cassiterite particles. The CPB changed the surface potential of cassiterite from negative value to positive value when the pH was in the range of 3.4–11.5. However, regardless of treatment with CPB, the surface potential of calcite was positive when the pH was below 11.5. The O on the surface of cassiterite reacted with CPB, promoting the chemical adsorption of CPB on the surface of cassiterite. There was weak physical adsorption between CPB and calcite. The covering between cassiterite and calcite without CPB was mainly dependent on van der Waals interaction energy and electrostatic interaction energy. When CPB was in the presence, cassiterite and calcite were repelled by the hydrophobic interaction energy and electrostatic interaction energy.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104606"},"PeriodicalIF":4.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of carboxymethyl chitosan on selective flotation separation of smithsonite from calcite with sodium oleate 羧甲基壳聚糖对利用油酸钠从方解石中选择性浮选分离铁燧岩的影响
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-07-30 DOI: 10.1016/j.apt.2024.104604
Anmei Yu , Zhan Ding , Jiaqiao Yuan , Pan Yu , Li Chen , Yijie Zhang , Shuming Wen , Shaojun Bai

Addressing the persistent challenge of separating smithsonite from calcite using flotation method, this study explores the impact of carboxymethyl chitosan (CMCS) on selective separation using sodium oleate (NaOL) assisted flotation. Results indicated a substantial reduction in calcite recovery to 2.25 % with the addition of 40 mg/L CMCS at pH 9, while recovery of smithsonite remained essentially unchanged at 94.78 %. Moreover, we found that using CMCS as the depressant can effectively separate smithsonite from calcite, based on the flotation testing results with artificially mixed minerals. Contact angle tests results showed that CMCS can significantly lower the surface hydrophobicity of calcite without any negative effect on that of smithsonite when using NaOL as a collector. TOC, FTIR, AFM, and ToF-SIMS analyses demonstrated stronger adsorption of CMCS on the surface of calcite compared to smithsonite. XPS data, solution chemical analysis and DFT revealed interaction between –COO- in CMCS with Ca sites on the surface of calcite because of the electrostatic adsorption and chemical adsorption, forming −COOCa. It leaded to shielding effects on the NaOL adsorption stemming, which makes NaOL more adsorbed on smithsonite surface.

针对利用浮选法分离铁燧岩和方解石这一长期存在的难题,本研究探讨了羧甲基壳聚糖(CMCS)对利用油酸钠(NaOL)辅助浮选法进行选择性分离的影响。结果表明,在 pH 值为 9 的条件下,添加 40 毫克/升的 CMCS 后,方解石的回收率大幅降低至 2.25%,而铁石棉的回收率基本保持不变,仍为 94.78%。此外,根据人工混合矿物的浮选测试结果,我们发现使用 CMCS 作为抑制剂可以有效地将铁燧石与方解石分离开来。接触角测试结果表明,当使用 NaOL 作为捕收剂时,CMCS 可以显著降低方解石的表面疏水性,而对铁石棉的表面疏水性没有任何负面影响。TOC、傅立叶变换红外光谱、原子力显微镜和 ToF-SIMS 分析表明,与铁石棉相比,CMCS 在方解石表面的吸附力更强。XPS 数据、溶液化学分析和 DFT 显示,由于静电吸附和化学吸附作用,CMCS 中的 -COO- 与方解石表面的 Ca 位点相互作用,形成 -COOCa。这对 NaOL 的吸附产生了屏蔽效应,使 NaOL 更多地被吸附在方解石表面。
{"title":"Influence of carboxymethyl chitosan on selective flotation separation of smithsonite from calcite with sodium oleate","authors":"Anmei Yu ,&nbsp;Zhan Ding ,&nbsp;Jiaqiao Yuan ,&nbsp;Pan Yu ,&nbsp;Li Chen ,&nbsp;Yijie Zhang ,&nbsp;Shuming Wen ,&nbsp;Shaojun Bai","doi":"10.1016/j.apt.2024.104604","DOIUrl":"10.1016/j.apt.2024.104604","url":null,"abstract":"<div><p>Addressing the persistent challenge of separating smithsonite from calcite using flotation method, this study explores the impact of carboxymethyl chitosan (CMCS) on selective separation using sodium oleate (NaOL) assisted flotation. Results indicated a substantial reduction in calcite recovery to 2.25 % with the addition of 40 mg/L CMCS at pH 9, while recovery of smithsonite remained essentially unchanged at 94.78 %. Moreover, we found that using CMCS as the depressant can effectively separate smithsonite from calcite, based on the flotation testing results with artificially mixed minerals. Contact angle tests results showed that CMCS can significantly lower the surface hydrophobicity of calcite without any negative effect on that of smithsonite when using NaOL as a collector. TOC, FTIR, AFM, and ToF-SIMS analyses demonstrated stronger adsorption of CMCS on the surface of calcite compared to smithsonite. XPS data, solution chemical analysis and DFT revealed interaction between –COO- in CMCS with Ca sites on the surface of calcite because of the electrostatic adsorption and chemical adsorption, forming −COOCa. It leaded to shielding effects on the NaOL adsorption stemming, which makes NaOL more adsorbed on smithsonite surface.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 9","pages":"Article 104604"},"PeriodicalIF":4.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Powder Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1