Pub Date : 2024-10-04DOI: 10.1016/j.apt.2024.104682
Kun Song , Jin Wang , Hang Su , Miao Liu , Rucheng Wang , Liwen Hu , Weizao Liu , Xuewei Lv , Yuntao Xin
As a transition metal oxide, VO2 has excellent optical and electrical properties and is widely used in many fields. The production of VO2 by the reduction of NH4VO3 and V2O5 will inevitably produce ammonia–nitrogen wastewater and NH3 emission during the production of NH4VO3 and V2O5, which will cause serious environmental pollution and will increase economic costs. The large-scale and low-cost synthesis of VO2 still faces great challenges. In this paper, VO2(B) was successfully prepared by a one-step hydrothermal method using NaVO3 as the vanadium source and CH3CH2OH as the reducing agent, and the optimal conditions for vanadium precipitation are as follows: vanadium concentration = 30 g/L, CH3CH2OH dosage = 20 % (percentage of solution volume), initial pH = 1, reaction temperature = 220 °C, reaction time = 12 h. The vanadium precipitation efficiency under the optimal conditions could reach 98.93 %, and the purity of VO2(B) could reach 98.59 %. The precipitation products were characterized by XRD, TG, FTIR, XPS, and SEM-EDS. The mechanism of VO2(B) preparation by ethanol reduction was proposed. This process is characterized by green, clean, and high efficiency. At the same time, the vanadium precipitation effect and vanadium precipitation products of various alcohols were studied to provide technical and theoretical support for the preparation of VO2(B).
{"title":"An innovative process for clean ammonium-free vanadium precipitation and one-step preparation of vanadium dioxide based on hydrothermal enhancement of organic alcohols","authors":"Kun Song , Jin Wang , Hang Su , Miao Liu , Rucheng Wang , Liwen Hu , Weizao Liu , Xuewei Lv , Yuntao Xin","doi":"10.1016/j.apt.2024.104682","DOIUrl":"10.1016/j.apt.2024.104682","url":null,"abstract":"<div><div>As a transition metal oxide, VO<sub>2</sub> has excellent optical and electrical properties and is widely used in many fields. The production of VO<sub>2</sub> by the reduction of NH<sub>4</sub>VO<sub>3</sub> and V<sub>2</sub>O<sub>5</sub> will inevitably produce ammonia–nitrogen wastewater and NH<sub>3</sub> emission during the production of NH<sub>4</sub>VO<sub>3</sub> and V<sub>2</sub>O<sub>5</sub>, which will cause serious environmental pollution and will increase economic costs. The large-scale and low-cost synthesis of VO<sub>2</sub> still faces great challenges. In this paper, VO<sub>2</sub>(B) was successfully prepared by a one-step hydrothermal method using NaVO<sub>3</sub> as the vanadium source and CH<sub>3</sub>CH<sub>2</sub>OH as the reducing agent, and the optimal conditions for vanadium precipitation are as follows: vanadium concentration = 30 g/L, CH<sub>3</sub>CH<sub>2</sub>OH dosage = 20 % (percentage of solution volume), initial pH = 1, reaction temperature = 220 °C, reaction time = 12 h. The vanadium precipitation efficiency under the optimal conditions could reach 98.93 %, and the purity of VO<sub>2</sub>(B) could reach 98.59 %. The precipitation products were characterized by XRD, TG, FTIR, XPS, and SEM-EDS. The mechanism of VO<sub>2</sub>(B) preparation by ethanol reduction was proposed. This process is characterized by green, clean, and high efficiency. At the same time, the vanadium precipitation effect and vanadium precipitation products of various alcohols were studied to provide technical and theoretical support for the preparation of VO<sub>2</sub>(B).</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104682"},"PeriodicalIF":4.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1016/j.apt.2024.104678
Ayana Gotoh , Eriko Yamazoe , Takaaki Ito , Yoko Koide , Mayumi Yamada , Yasuhiro Shimada , Kohei Tahara
In this study, the impact of excipients on the quality of printlets manufactured using selective laser sintering (SLS) 3D printing was investigated. Various thermoplastic polymers, commonly used as pharmaceutical additives, and mannitol of different particle property grades, were used as excipients. SLS can produce complex structures and customize drug release rates; therefore, it can be used for personalized medicine. The significance of selecting suitable excipients, focusing on their powder flowability and printability, and their influence on the printlet properties was evaluated. An optimal amount of yellow iron oxide, a necessary laser-absorbing agent for printlet formation, was determined. Results revealed that excipients with optimal flow and shape characteristics considerably enhanced the printlet quality. The relation between the powder properties of excipients (internal friction angle, shear adhesion force, and flow function coefficient) and the SLS printing outcomes was evaluated using the powder shear cell test. The powder properties considerably affected the application of the powder layer using a spreader from the powder reservoir to the building platform. Moreover, the electron laser density impacted the printlet hardness. The as-fabricated printlets exhibited higher porosity and faster dissolution rates than traditional tablets, suggesting the potential advantages of using SLS in drug manufacturing.
{"title":"Effects of excipient properties on pharmaceutical printlet fabrication via selective laser sintering 3D printing","authors":"Ayana Gotoh , Eriko Yamazoe , Takaaki Ito , Yoko Koide , Mayumi Yamada , Yasuhiro Shimada , Kohei Tahara","doi":"10.1016/j.apt.2024.104678","DOIUrl":"10.1016/j.apt.2024.104678","url":null,"abstract":"<div><div>In this study, the impact of excipients on the quality of printlets manufactured using selective laser sintering (SLS) 3D printing was investigated. Various thermoplastic polymers, commonly used as pharmaceutical additives, and mannitol of different particle property grades, were used as excipients. SLS can produce complex structures and customize drug release rates; therefore, it can be used for personalized medicine. The significance of selecting suitable excipients, focusing on their powder flowability and printability, and their influence on the printlet properties was evaluated. An optimal amount of yellow iron oxide, a necessary laser-absorbing agent for printlet formation, was determined. Results revealed that excipients with optimal flow and shape characteristics considerably enhanced the printlet quality. The relation between the powder properties of excipients (internal friction angle, shear adhesion force, and flow function coefficient) and the SLS printing outcomes was evaluated using the powder shear cell test. The powder properties considerably affected the application of the powder layer using a spreader from the powder reservoir to the building platform. Moreover, the electron laser density impacted the printlet hardness. The as-fabricated printlets exhibited higher porosity and faster dissolution rates than traditional tablets, suggesting the potential advantages of using SLS in drug manufacturing.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104678"},"PeriodicalIF":4.2,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.apt.2024.104681
Xi Chen , Wenqi Zhong , Shuguang Liu , Theodore J. Heindel
Air injected into a fluidized bed through a perforated plate distributor may form individual jets above the distributor plate, which can have a significant impact on the gas–solid flow and heat/mass transfer in the dense phase region. Therefore, it is important to study the jetting characteristics in a fluidized bed, but the measurement of such jets is extremely challenging because of the opaque dense phase region. In this paper, an X-ray computed tomography (XCT) measurement system was constructed, and three-dimensional reconstruction software based on the cone beam filtered back projection algorithm (FDK) was implemented. A jet recognition and quantification algorithm was also developed and tested. Based on these methods, the influence of the jet velocity (Uj) and bed material size (dp) on the structure and shape of the jets was studied. The results show that when the jet velocity increases, the average jet length (L), jet maximum diameter (D), and jet volume (V) increase, while the average jet half angle (θ) fluctuates around a constant value. Under the same jet velocity (Uj), the average jet length (L), jet maximum diameter (D), and jet volume (V) are inversely proportional to the bed material size (dp), while the average jet half angle (θ) is directly proportional to the bed material size (dp). Finally, a correlation for jet length (L) in a fluidized bed is proposed. This study provides a new characterization method for jetting in a fluidized bed, and offers unique experimental data for CFD model validation in fluidized bed simulations.
{"title":"X-ray computed tomography (XCT) study of jetting in a fluidized bed: Measurement method development and single component fluidization","authors":"Xi Chen , Wenqi Zhong , Shuguang Liu , Theodore J. Heindel","doi":"10.1016/j.apt.2024.104681","DOIUrl":"10.1016/j.apt.2024.104681","url":null,"abstract":"<div><div>Air injected into a fluidized bed through a perforated plate distributor may form individual jets above the distributor plate, which can have a significant impact on the gas–solid flow and heat/mass transfer in the dense phase region. Therefore, it is important to study the jetting characteristics in a fluidized bed, but the measurement of such jets is extremely challenging because of the opaque dense phase region. In this paper, an X-ray computed tomography (XCT) measurement system was constructed, and three-dimensional reconstruction software based on the cone beam filtered back projection algorithm (FDK) was implemented. A jet recognition and quantification algorithm was also developed and tested. Based on these methods, the influence of the jet velocity (<em>U</em><sub>j</sub>) and bed material size (<em>d</em><sub>p</sub>) on the structure and shape of the jets was studied. The results show that when the jet velocity increases, the average jet length (<em>L</em>), jet maximum diameter (<em>D</em>), and jet volume (<em>V</em>) increase, while the average jet half angle (<em>θ</em>) fluctuates around a constant value. Under the same jet velocity (<em>U</em><sub>j</sub>), the average jet length (<em>L</em>), jet maximum diameter (<em>D</em>), and jet volume (<em>V</em>) are inversely proportional to the bed material size (<em>d</em><sub>p</sub>), while the average jet half angle (<em>θ</em>) is directly proportional to the bed material size (<em>d</em><sub>p</sub>). Finally, a correlation for jet length (<em>L</em>) in a fluidized bed is proposed. This study provides a new characterization method for jetting in a fluidized bed, and offers unique experimental data for CFD model validation in fluidized bed simulations.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104681"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.apt.2024.104685
Shihang Li , Muze Han , Bo Ren , Xingyue Chen , Shuda Hu , Liang Yuan , Fubao Zhou
This study proposes a novel method using an axial separator as a pre-dusting device for a cartridge filter. The structural parameters with optimum dust removal performance were studied, and on this basis the distribution of pressure and air velocity fields inside the separator was analyzed. When the diameter of the cylinder increased to a certain value, the generation of vortex nuclei was eliminated, further improving the separation efficiency. Considering the requirements of the cartridge filter on the resistance and separation efficiency of the pre-dust removal device, it is appropriate to use #IV or #V axial separator (cylinder diameter of 40 mm, cylinder length of 100 and 120 mm, respectively). These separators exhibit resistance values of 417 Pa and 303 Pa, and separation efficiencies of 67.6 % and 63.9 % respectively, with #IV demonstrating superior efficiency in capturing small-sized dust particles. The study identifies the optimal structure of the pre-dusting device, guiding its design and implementation to reduce the operational load on the cartridge filter, extend cleaning cycles, and improve service life.
{"title":"The effect of cylinder structure on the pre-dusting of axial separator","authors":"Shihang Li , Muze Han , Bo Ren , Xingyue Chen , Shuda Hu , Liang Yuan , Fubao Zhou","doi":"10.1016/j.apt.2024.104685","DOIUrl":"10.1016/j.apt.2024.104685","url":null,"abstract":"<div><div>This study proposes a novel method using an axial separator as a pre-dusting device for a cartridge filter. The structural parameters with optimum dust removal performance were studied, and on this basis the distribution of pressure and air velocity fields inside the separator was analyzed. When the diameter of the cylinder increased to a certain value, the generation of vortex nuclei was eliminated, further improving the separation efficiency. Considering the requirements of the cartridge filter on the resistance and separation efficiency of the pre-dust removal device, it is appropriate to use #IV or #V axial separator (cylinder diameter of 40 mm, cylinder length of 100 and 120 mm, respectively). These separators exhibit resistance values of 417 Pa and 303 Pa, and separation efficiencies of 67.6 % and 63.9 % respectively, with #IV demonstrating superior efficiency in capturing small-sized dust particles. The study identifies the optimal structure of the pre-dusting device, guiding its design and implementation to reduce the operational load on the cartridge filter, extend cleaning cycles, and improve service life.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104685"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1016/j.apt.2024.104680
Ruichao Tian , Jianlin Xie , Shuyan Wang , Xiaowei Li , Haoping Peng , Pengfei Yu , Yueming Guo
In the framework of kinetic theory of rough spheres (KTRS) model, a dynamic coefficient of restitution model is introduced to describe the collision behavior between wet rough particles in liquid. Based on the two-fluid model (TFM) combining kinetic theory of rough spheres, numerical simulations are conducted on the flow characteristic of rough particles and liquid in a pulsed fluidized bed. The simulation results are firstly validated against experimental data reported by Ehsani et al. Subsequently, the effects of pulsation flow on liquid–solid two-phase flow, particle collision and particle rotation behavior are studied. The results indicate that resonance fluidization occurs at a frequency of 1 Hz, which is approached to the natural frequency of the bed. Furthermore, the particle volume fraction increases with the pulsation amplitude at this frequency. Conversely, at a frequency of 36 Hz, the volume fraction exhibits the opposite trend with the pulsation amplitude. The interstitial fluid increases the dissipation of kinetic energy in particle collision, though its effect is much smaller than that caused by particle rotation.
{"title":"3D CFD simulation of wet rough particles hydrodynamics in a pulsed fluidized bed using kinetic theory of rough spheres model","authors":"Ruichao Tian , Jianlin Xie , Shuyan Wang , Xiaowei Li , Haoping Peng , Pengfei Yu , Yueming Guo","doi":"10.1016/j.apt.2024.104680","DOIUrl":"10.1016/j.apt.2024.104680","url":null,"abstract":"<div><div>In the framework of kinetic theory of rough spheres (KTRS) model, a dynamic coefficient of restitution model is introduced to describe the collision behavior between wet rough particles in liquid. Based on the two-fluid model (TFM) combining kinetic theory of rough spheres, numerical simulations are conducted on the flow characteristic of rough particles and liquid in a pulsed fluidized bed. The simulation results are firstly validated against experimental data reported by Ehsani et al. Subsequently, the effects of pulsation flow on liquid–solid two-phase flow, particle collision and particle rotation behavior are studied. The results indicate that resonance fluidization occurs at a frequency of 1 Hz, which is approached to the natural frequency of the bed. Furthermore, the particle volume fraction increases with the pulsation amplitude at this frequency. Conversely, at a frequency of 36 Hz, the volume fraction exhibits the opposite trend with the pulsation amplitude. The interstitial fluid increases the dissipation of kinetic energy in particle collision, though its effect is much smaller than that caused by particle rotation.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104680"},"PeriodicalIF":4.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1016/j.apt.2024.104648
Zekai Chen , Chenyi Yuan , Weiman Hong , Rong Xie , Liangliang Zhou , Yangbiao Li , Zhenhua Chen
Mechanical dry particle coating, coating fine particles in waterless environment, possesses great potential to prepare colon-targeting composite particles of natural products. However, host and guest particles physical properties may impact its surface coverage efficiency. This study selected 10 natural products and 4 colon-targeting excipients as host and guest particles, respectively, and characterized 13 physical properties. Using planetary ball mill, 40 composite particles were prepared and evaluated for SEM, infrared features, and in vitro release. Grey relation analysis, served as the core method, identified critical materials attributes of host and guest particle physical properties affecting the surface coverage and colon-targeting of composite particles. Results indicated that only 9 composite particles achieved favorable surface coverage and in vitro colon-targeting, like guar gum coated total saponins of Pulsatilla with respective surface area coverage and maximum cumulative drug release in colon of 76.71 % and 83.55 %, and revealed the prerequisite of well-covered structure of composite particle for colon-targeting. Identified critical material attributes, including particle size and specific surface area, etc., affected surface coverage efficiency through influencing interparticle forces for adhesion, particularly in van der Waals forces. Moreover, guest particle with favorable hydrophobicity may form a hydrophobic layer, preventing host particles from dissolving under well-covered structure.
{"title":"Exploration of the formative mechanisms of colon-targeting composite particles of natural products prepared via mechanical dry particle coating","authors":"Zekai Chen , Chenyi Yuan , Weiman Hong , Rong Xie , Liangliang Zhou , Yangbiao Li , Zhenhua Chen","doi":"10.1016/j.apt.2024.104648","DOIUrl":"10.1016/j.apt.2024.104648","url":null,"abstract":"<div><div>Mechanical dry particle coating, coating fine particles in waterless environment, possesses great potential to prepare colon-targeting composite particles of natural products. However, host and guest particles physical properties may impact its surface coverage efficiency. This study selected 10 natural products and 4 colon-targeting excipients as host and guest particles, respectively, and characterized 13 physical properties. Using planetary ball mill, 40 composite particles were prepared and evaluated for SEM, infrared features, and in vitro release. Grey relation analysis, served as the core method, identified critical materials attributes of host and guest particle physical properties affecting the surface coverage and colon-targeting of composite particles. Results indicated that only 9 composite particles achieved favorable surface coverage and in vitro colon-targeting, like guar gum coated total saponins of Pulsatilla with respective surface area coverage and maximum cumulative drug release in colon of 76.71 % and 83.55 %, and revealed the prerequisite of well-covered structure of composite particle for colon-targeting. Identified critical material attributes, including particle size and specific surface area, etc., affected surface coverage efficiency through influencing interparticle forces for adhesion, particularly in van der Waals forces. Moreover, guest particle with favorable hydrophobicity may form a hydrophobic layer, preventing host particles from dissolving under well-covered structure.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104648"},"PeriodicalIF":4.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.apt.2024.104664
Jiali Chen, Peng Gao, Jie Liu, Yimin Zhu
Scheelite and calcite was firstly separated by new depressant Poly(sodium 4-styrenesulfonate) (PSS) with NaOL system. The recovery of scheelite was 87.18 % and the recovery of calcite was 5.57 % in single flotation experiments, the recovery and grade of WO3 was 70.53 % and 61.08 % respectively in artificial mixed ore flotation under the optimal conditions of 10 mg/L NaOL, 10 mg/L PSS and pH of 8. Contact angle measurements, atomic force microscope (AFM) analysis, zeta potential analysis, fourier transforming infrared spectra (FT-IR) analysis and X-ray photoelectron spectroscopy (XPS) analysis were performed to uncover the reaction mechanism. The results showed that PSS could not adsorbed on scheelite by chemical reaction, and PSS had no impact on the further adsorption of NaOL onto the scheelite surface. Therefore, scheelite could still keep a high recovery with PSS. However, PSS could be strongly adsorbed on calcite by chemisorption between the Ca site of calcite and O site of PSS, which increased the hydrophilia of calcite and imped the further adsorption of NaOL. Therefore, it could selectively depress the flotation of calcite.
{"title":"Flotation separation scheelite from calcite by using a novel depressant of Poly(sodium 4-styrenesulfonate)","authors":"Jiali Chen, Peng Gao, Jie Liu, Yimin Zhu","doi":"10.1016/j.apt.2024.104664","DOIUrl":"10.1016/j.apt.2024.104664","url":null,"abstract":"<div><div>Scheelite and calcite was firstly separated by new depressant Poly(sodium 4-styrenesulfonate) (PSS) with NaOL system. The recovery of scheelite was 87.18 % and the recovery of calcite was 5.57 % in single flotation experiments, the recovery and grade of WO<sub>3</sub> was 70.53 % and 61.08 % respectively in artificial mixed ore flotation under the optimal conditions of 10 mg/L NaOL, 10 mg/L PSS and pH of 8. Contact angle measurements, atomic force microscope (AFM) analysis, zeta potential analysis, fourier transforming infrared spectra (FT-IR) analysis and X-ray photoelectron spectroscopy (XPS) analysis were performed to uncover the reaction mechanism. The results showed that PSS could not adsorbed on scheelite by chemical reaction, and PSS had no impact on the further adsorption of NaOL onto the scheelite surface. Therefore, scheelite could still keep a high recovery with PSS. However, PSS could be strongly adsorbed on calcite by chemisorption between the Ca site of calcite and O site of PSS, which increased the hydrophilia of calcite and imped the further adsorption of NaOL. Therefore, it could selectively depress the flotation of calcite.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104664"},"PeriodicalIF":4.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-27DOI: 10.1016/j.apt.2024.104672
Rajashree Panda , Mitrabhanu Behera , Mahesha Hegde , R. Arun Kumar , R.K. Padhi , Anuradha M. Ashok , Neeraj Kumar Mishra , Kaushal Kumar
This investigation underscores the structural, optical and temperature-dependent photoluminescence characteristics of CaAl4O7:Dy3+-doped phosphor synthesized via microwave-assisted combustion synthesis route for the first time. The sample crystallizes in monoclinic structure affirmed by XRD analysis. Morphological behaviour was conducted via SEM analysis. The existence of functional groups was validated through FTIR study. Bandgap of the optimized sample was established as 4.11 eV from the UV–VIS absorbance spectra. The emission spectra possessed characteristic peaks of Dy3+ ion around 485 nm (blue), 576 nm (yellow) upon suitable excitation at 347 nm. The concentration of Dy3+ ion at x = 0.03 was established to be optimal. The CIE chromaticity co-ordinate of (x = 0.347, y = 0.427), correlated color temperature of 5109 K and color purity of 32.87 % were inferred. The PL decay time for CaAl4O7:Dy3+(x = 0.03) phosphor was obtained as 0.31 ms. Excellent thermal stability of the sample was established from the temperature-dependent PL analysis. To assess the lighting ability of the phosphor, phosphor-in-glass (P-i-G) material was fabricated. Superior luminous efficacy (428 lm/W) and luminous efficiency (62.66 %) were established for the fabricated P-i-G. The outcome vividly declares the potency of the CaAl4O7:Dy3+phosphor as a promising contender for n-UV excited phosphors for wLED applications.
{"title":"Development of thermally stable, single-phased CaAl4O7:Dy3+ phosphor and a study on their down-conversion features for lighting applications","authors":"Rajashree Panda , Mitrabhanu Behera , Mahesha Hegde , R. Arun Kumar , R.K. Padhi , Anuradha M. Ashok , Neeraj Kumar Mishra , Kaushal Kumar","doi":"10.1016/j.apt.2024.104672","DOIUrl":"10.1016/j.apt.2024.104672","url":null,"abstract":"<div><div>This investigation underscores the structural, optical and temperature-dependent photoluminescence characteristics of CaAl<sub>4</sub>O<sub>7</sub>:Dy<sup>3+</sup>-doped phosphor synthesized via microwave-assisted combustion synthesis route for the first time. The sample crystallizes in monoclinic structure affirmed by XRD analysis. Morphological behaviour was conducted via SEM analysis. The existence of functional groups was validated through FTIR study. Bandgap of the optimized sample was established as 4.11 eV from the UV–VIS absorbance spectra. The emission spectra possessed characteristic peaks of Dy<sup>3+</sup> ion around 485 nm (blue), 576 nm (yellow) upon suitable excitation at 347 nm. The concentration of Dy<sup>3+</sup> ion at <em>x</em> = 0.03 was established to be optimal. The CIE chromaticity co-ordinate of (x = 0.347, y = 0.427), correlated color temperature of 5109 K and color purity of 32.87 % were inferred. The PL decay time for CaAl<sub>4</sub>O<sub>7</sub>:Dy<sup>3+</sup>(<em>x</em> = 0.03) phosphor was obtained as 0.31 ms. Excellent thermal stability of the sample was established from the temperature-dependent PL analysis. To assess the lighting ability of the phosphor, phosphor-in-glass (P-i-G) material was fabricated. Superior luminous efficacy (428 lm/W) and luminous efficiency (62.66 %) were established for the fabricated P-i-G. The outcome vividly declares the potency of the CaAl<sub>4</sub>O<sub>7</sub>:Dy<sup>3+</sup>phosphor as a promising contender for n-UV excited phosphors for wLED applications.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104672"},"PeriodicalIF":4.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142327723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.apt.2024.104684
Teng Cheng, Jinxiang Wei, Hongwei Yu, Mingqing Tao, Minghao Mu, Bo Wang
Using a heat exchanger to cool high humidity flue gas can create a supersaturated water vapor environment, allowing fine particles to grow into large droplets by heterogeneous vapor condensation, which is conductive to the removal of fine particles by traditional equipment. However, due to the limited condensable vapor obtained by cooling, this technology can only be used in the flue gas with low particle concentration. In this study, atomization droplets were added before the heat exchanger to improve the effect of heterogeneous vapor condensation at high particle concentration, and then coupled with a cyclone separator, which was used for the deep treatment of the flue gas after the wet dedusting system. The particle removal characteristics were investigated through laboratory experiments and bypass experiments in a metallurgical company. The experimental results show that the application of atomization-heterogeneous condensation reduced the particles concentration after cyclone by 74.2 % compared with that of single heterogeneous condensation. Temperature-drop and atomized volume affected the removal of particles with size < 2 μm and > 2 μm, respectively. The industrial flue gas bypass experiment indicated that the system had strong adaptability to fluctuating conditions. When the inlet particle concentration did not exceed 2000 mg/Nm3, the outlet particle concentration can be maintained within 20 mg/Nm3.
{"title":"Improving the removal of fine particles in cyclone using heterogeneous vapor condensation enhanced by atomization","authors":"Teng Cheng, Jinxiang Wei, Hongwei Yu, Mingqing Tao, Minghao Mu, Bo Wang","doi":"10.1016/j.apt.2024.104684","DOIUrl":"10.1016/j.apt.2024.104684","url":null,"abstract":"<div><div>Using a heat exchanger to cool high humidity flue gas can create a supersaturated water vapor environment, allowing fine particles to grow into large droplets by heterogeneous vapor condensation, which is conductive to the removal of fine particles by traditional equipment. However, due to the limited condensable vapor obtained by cooling, this technology can only be used in the flue gas with low particle concentration. In this study, atomization droplets were added before the heat exchanger to improve the effect of heterogeneous vapor condensation at high particle concentration, and then coupled with a cyclone separator, which was used for the deep treatment of the flue gas after the wet dedusting system. The particle removal characteristics were investigated through laboratory experiments and bypass experiments in a metallurgical company. The experimental results show that the application of atomization-heterogeneous condensation reduced the particles concentration after cyclone by 74.2 % compared with that of single heterogeneous condensation. Temperature-drop and atomized volume affected the removal of particles with size < 2 μm and > 2 μm, respectively. The industrial flue gas bypass experiment indicated that the system had strong adaptability to fluctuating conditions. When the inlet particle concentration did not exceed 2000 mg/Nm<sup>3</sup>, the outlet particle concentration can be maintained within 20 mg/Nm<sup>3</sup>.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104684"},"PeriodicalIF":4.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.apt.2024.104683
S.K. Nikhil , Gopika Rajeev Nair , Abinash Das , Sebin Devasia , Ranjith G. Nair
The present work proposes a strategic approach of using Fe doping to form a mixed-phase TiO2 direct Z-scheme catalyst at low onset temperature. The doping-induced modifications are explained from the experimental and theoretical viewpoint. Fe-doped Z-scheme-based mixed-phase TiO2 at optimal calcination temperature (TiFe-400) exhibits maximum photon absorption and reduces charge carrier recombination, enhancing photocatalytic and PEC performance. TiFe-400 has the highest rate constant for the degradation of MB (0.084 min−1 under solar irradiation) and showed exceptional photooxidation current (0.8 mA, 1.3 V vs Ag/AgCl). The Z-scheme formation significantly inhibits the recombination of photocarriers, resulting in a directed migration of charge carriers to the high redox potential mixed-phase TiO2. This migration is validated by identifying the primary reactive species participating in the photocatalytic process. This work, demonstrating both experimental and theoretical approaches, may provide valuable insight into designing stable and inexpensive catalysts for dual applications on an industrial scale.
本研究提出了一种利用铁掺杂在低起始温度下形成混合相 TiO2 直接 Z 型催化剂的战略方法。从实验和理论角度解释了掺杂引起的改性。在最佳煅烧温度(TiFe-400)下,掺杂铁的 Z 型混合相 TiO2 表现出最大的光子吸收率,并减少了电荷载流子的重组,从而提高了光催化和 PEC 性能。TiFe-400 具有最高的甲基溴降解速率常数(在太阳光照射下为 0.084 min-1),并显示出优异的光氧化电流(0.8 mA,1.3 V 对 Ag/AgCl)。Z 型结构的形成极大地抑制了光载流子的重组,导致电荷载流子向高氧化还原电位的混合相 TiO2 定向迁移。这种迁移通过识别参与光催化过程的主要反应物得到了验证。这项工作同时展示了实验和理论方法,可为设计稳定、廉价的催化剂以实现工业规模的双重应用提供有价值的见解。
{"title":"An experimental and theoretical validation of dual role of Fe on improving the photocatalytic performance of doped mixed phase titania","authors":"S.K. Nikhil , Gopika Rajeev Nair , Abinash Das , Sebin Devasia , Ranjith G. Nair","doi":"10.1016/j.apt.2024.104683","DOIUrl":"10.1016/j.apt.2024.104683","url":null,"abstract":"<div><div>The present work proposes a strategic approach of using Fe doping to form a mixed-phase TiO<sub>2</sub> direct Z-scheme catalyst at low onset temperature. The doping-induced modifications are explained from the experimental and theoretical viewpoint. Fe-doped Z-scheme-based mixed-phase TiO<sub>2</sub> at optimal calcination temperature (TiFe-400) exhibits maximum photon absorption and reduces charge carrier recombination, enhancing photocatalytic and PEC performance. TiFe-400 has the highest rate constant for the degradation of MB (0.084 min<sup>−1</sup> under solar irradiation) and showed exceptional photooxidation current (0.8 mA, 1.3 V vs Ag/AgCl). The Z-scheme formation significantly inhibits the recombination of photocarriers, resulting in a directed migration of charge carriers to the high redox potential mixed-phase TiO<sub>2</sub>. This migration is validated by identifying the primary reactive species participating in the photocatalytic process. This work, demonstrating both experimental and theoretical approaches, may provide valuable insight into designing stable and inexpensive catalysts for dual applications on an industrial scale.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 11","pages":"Article 104683"},"PeriodicalIF":4.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}