首页 > 最新文献

Advanced Powder Technology最新文献

英文 中文
Study on preparation, magnetic properties and performance of electrochemical supercapacitor based on La2FeMnO6 double perovskite for energy storage applications and their charge storage mechanism 基于 La2FeMnO6 双包晶石的电化学超级电容器的制备、磁性能、性能及其储能机理研究
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-10 DOI: 10.1016/j.apt.2024.104618

La2FeMnO6 double perovskites with multifunctional properties have sparked attention in recent years. Nevertheless, there was no direct study elaborating its electrochemical properties for supercapacitor applications. Herein, La2FeMnO6 double perovskites were synthesized by the sol–gel method and their structural, morphological, vibrational, optical, magnetic, and electrochemical properties were determined. The X-ray diffraction along with Rietveld refinement showed a cubic structure with Pm-3m space group, and its randomly distributed quasi-spherical morphology was observed from its SEM image. The presence of multiple oxidation states of Mn and Fe in La2FeMnO6 was supported by the formation of double exchange interactions between Fe2+-O2−-Fe3+ and Mn3+-O2−-Mn4+. The mesoporous structure with 41.79813 m2/g surface area was estimated from the BET analysis. The electrochemical properties of La2FeMnO6 were determined using the three electrode setup, and the Cyclic Voltammetric curves possess a quasi-rectangular shape with a specific capacitance of about 10.9 mF g−1 at a current density of 0.5 mA g−1. Dunn’s method illustrate the electrode’s charge storage mechanism and it was determined that the diffusion-controlled process surpasses the capacitive processes at low scan rates. The cyclic stability demonstrated that 96 % of initial specific capacitance was retained even after 5000 cycles which implied the long-term stability and practical use of La2FeMnO6 double perovskites. The magnetic analysis showed the presence of ferromagnetic and anti-ferromagnetic interactions both in this system and they are short-range in nature.

近年来,具有多功能特性的 La2FeMnO6 双包晶石引起了人们的关注。然而,目前还没有直接研究阐述其在超级电容器应用中的电化学特性。本文采用溶胶-凝胶法合成了 La2FeMnO6 双包晶石,并测定了它们的结构、形态、振动、光学、磁学和电化学性能。X 射线衍射和里特维尔德细化结果表明其结构为立方体,空间群为 Pm-3m,从其扫描电镜图像中可以观察到其随机分布的准球形形态。Fe2+-O2--Fe3+ 和 Mn3+-O2--Mn4+ 之间形成的双交换相互作用支持了 La2FeMnO6 中 Mn 和 Fe 的多种氧化态。根据 BET 分析估算,介孔结构的比表面积为 41.79813 m2/g。采用三电极设置测定了 La2FeMnO6 的电化学特性,其循环伏安曲线呈准矩形,在 0.5 mA g-1 的电流密度下,比电容约为 10.9 mF g-1。邓恩方法说明了电极的电荷存储机制,并确定在低扫描速率下,扩散控制过程超过了电容过程。循环稳定性表明,即使经过 5000 次循环,仍能保持 96% 的初始比电容,这意味着 La2FeMnO6 双包晶石具有长期稳定性和实用性。磁性分析表明,该系统中存在铁磁性和反铁磁性相互作用,而且都是短程性质的。
{"title":"Study on preparation, magnetic properties and performance of electrochemical supercapacitor based on La2FeMnO6 double perovskite for energy storage applications and their charge storage mechanism","authors":"","doi":"10.1016/j.apt.2024.104618","DOIUrl":"10.1016/j.apt.2024.104618","url":null,"abstract":"<div><p>La<sub>2</sub>FeMnO<sub>6</sub> double perovskites with multifunctional properties have sparked attention in recent years. Nevertheless, there was no direct study elaborating its electrochemical properties for supercapacitor applications. Herein, La<sub>2</sub>FeMnO<sub>6</sub> double perovskites were synthesized by the sol–gel method and their structural, morphological, vibrational, optical, magnetic, and electrochemical properties were determined. The X-ray diffraction along with Rietveld refinement showed a cubic structure with Pm-3m space group, and its randomly distributed quasi-spherical morphology was observed from its SEM image. The presence of multiple oxidation states of Mn and Fe in La<sub>2</sub>FeMnO<sub>6</sub> was supported by the formation of double exchange interactions between Fe<sup>2+</sup>-O<sup>2−</sup>-Fe<sup>3+</sup> and Mn<sup>3+</sup>-O<sup>2−</sup>-Mn<sup>4+</sup>. The mesoporous structure with 41.79813 m<sup>2</sup>/g surface area was estimated from the BET analysis. The electrochemical properties of La<sub>2</sub>FeMnO<sub>6</sub> were determined using the three electrode setup, and the Cyclic Voltammetric curves possess a quasi-rectangular shape with a specific capacitance of about 10.9 mF g<sup>−1</sup> at a current density of 0.5 mA g<sup>−1</sup>. Dunn’s method illustrate the electrode’s charge storage mechanism and it was determined that the diffusion-controlled process surpasses the capacitive processes at low scan rates. The cyclic stability demonstrated that 96 % of initial specific capacitance was retained even after 5000 cycles which implied the long-term stability and practical use of La<sub>2</sub>FeMnO<sub>6</sub> double perovskites. The magnetic analysis showed the presence of ferromagnetic and anti-ferromagnetic interactions both in this system and they are short-range in nature.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulating study of atmospheric corrosion of Ni-advanced weathering steels in salinity environment: Formation and structure of magnetite rust particles prepared from FeCl2 solutions containing Ni2+ at neutral pH 镍高级耐候钢在盐度环境中的大气腐蚀模拟研究:在中性pH值下由含Ni2+的FeCl2溶液制备的磁铁矿锈颗粒的形成和结构
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-10 DOI: 10.1016/j.apt.2024.104605

In order to elucidate the role of alloying Ni in Ni-advanced weathering steels on the formation of Fe3O4 (magnetite) rust particles by atmospheric corrosion in salinity environment, aqueous FeCl2 solutions containing various amounts of NiCl2 were aged under bubbling the air at 50 °C for 24 h. The atomic ratio Ni/Fe of the solution was 0 – 0.2 and the solution pH before aging was about 7 over the whole Ni/Fe ratios. Aging for 3 h generated the Green rust(Cl-) ([Fe3IIFeIII(OH)8]+[Cl·nH2O]-) as a precursor of Fe3O4. Added Ni2+ was incorporated into Green rust(Cl-) to form Ni2+-substituted Green rust(Cl-) ([Fe3-xIINixIIFeIII(OH)8]+[Cl·nH2O]-]), resulting in enhancement of crystallization of this material. After aging for 24 h, the Ni2+-substituted Green rust(Cl-) formed at Ni/Fe = 0 – 0.08 was mainly transformed into spherical Fe3O4 particles. The crystallization and particle growth of Fe3O4 were promoted on elevating Ni/Fe ratio. At Ni/Fe ≥ 0.12, Fe3O4 formation was suddenly impeded to generate rod-shaped α-FeOOH particles, of which the material possesses more stable crystal structure than Fe3O4. These results suggest that alloying Ni in Ni-advanced weathering steels accelerates the formation of stable rust layer composed of Fe3O4 and/or α-FeOOH particles by atmospheric corrosion in salinity environment such as coastal and marine zones to contribute to the formation of the protective rust particle layer.

为了阐明镍高级耐候钢中的合金镍对盐度环境下大气腐蚀形成 Fe3O4(磁铁矿)锈颗粒的作用,将含有不同量镍的 FeCl2 水溶液在 50 ℃ 的气泡下老化 24 h。老化 3 小时后生成的绿锈(Cl-)([Fe3IIFeIII(OH)8]+[Cl-nH2O]-)是 Fe3O4 的前体。加入的 Ni2+ 与绿锈(Cl-)结合,形成 Ni2+ 取代的绿锈(Cl-)([Fe3-xIINixIIFeIII(OH)8]+[Cl-nH2O]-]),从而提高了该材料的结晶度。老化 24 小时后,Ni/Fe = 0 - 0.08 时形成的 Ni2+ 取代绿锈(Cl-)主要转化为球形 Fe3O4 颗粒。镍/铁比率升高会促进 Fe3O4 的结晶和颗粒生长。当 Ni/Fe ≥ 0.12 时,Fe3O4 的形成突然受阻,生成棒状的 α-FeOOH 颗粒,这种材料具有比 Fe3O4 更稳定的晶体结构。这些结果表明,在沿海和海洋区域等盐度环境中,镍高级耐候钢中的合金化镍可加速形成由 Fe3O4 和/或 α-FeOOH 颗粒组成的稳定锈层,从而促进保护性锈粒层的形成。
{"title":"Simulating study of atmospheric corrosion of Ni-advanced weathering steels in salinity environment: Formation and structure of magnetite rust particles prepared from FeCl2 solutions containing Ni2+ at neutral pH","authors":"","doi":"10.1016/j.apt.2024.104605","DOIUrl":"10.1016/j.apt.2024.104605","url":null,"abstract":"<div><p>In order to elucidate the role of alloying Ni in Ni-advanced weathering steels on the formation of Fe<sub>3</sub>O<sub>4</sub> (magnetite) rust particles by atmospheric corrosion in salinity environment, aqueous FeCl<sub>2</sub> solutions containing various amounts of NiCl<sub>2</sub> were aged under bubbling the air at 50 °C for 24 h. The atomic ratio Ni/Fe of the solution was 0 – 0.2 and the solution pH before aging was about 7 over the whole Ni/Fe ratios. Aging for 3 h generated the Green rust(Cl<sup>-</sup>) ([Fe<sub>3</sub><sup>II</sup>Fe<sup>III</sup>(OH)<sub>8</sub>]<sup>+</sup>[Cl·<em>n</em>H<sub>2</sub>O]<sup>-</sup>) as a precursor of Fe<sub>3</sub>O<sub>4</sub>. Added Ni<sup>2+</sup> was incorporated into Green rust(Cl<sup>-</sup>) to form Ni<sup>2+</sup>-substituted Green rust(Cl<sup>-</sup>) ([Fe<sub>3-x</sub><sup>II</sup>Ni<sub>x</sub><sup>II</sup>Fe<sup>III</sup>(OH)<sub>8</sub>]<sup>+</sup>[Cl·<em>n</em>H<sub>2</sub>O]<sup>-</sup>]), resulting in enhancement of crystallization of this material. After aging for 24 h, the Ni<sup>2+</sup>-substituted Green rust(Cl<sup>-</sup>) formed at Ni/Fe = 0 – 0.08 was mainly transformed into spherical Fe<sub>3</sub>O<sub>4</sub> particles. The crystallization and particle growth of Fe<sub>3</sub>O<sub>4</sub> were promoted on elevating Ni/Fe ratio. At Ni/Fe ≥ 0.12, Fe<sub>3</sub>O<sub>4</sub> formation was suddenly impeded to generate rod-shaped α-FeOOH particles, of which the material possesses more stable crystal structure than Fe<sub>3</sub>O<sub>4</sub>. These results suggest that alloying Ni in Ni-advanced weathering steels accelerates the formation of stable rust layer composed of Fe<sub>3</sub>O<sub>4</sub> and/or α-FeOOH particles by atmospheric corrosion in salinity environment such as coastal and marine zones to contribute to the formation of the protective rust particle layer.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141964235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wear evolution of the mantle liner and its effect on the crushing characteristics of a lab-scale cone crusher: A numerical study 锰钢衬板的磨损演变及其对实验室规模圆锥破碎机破碎特性的影响:数值研究
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-09 DOI: 10.1016/j.apt.2024.104614

Understanding the evolution of wear caused by the relative motion between the mantle liner and the concave liner in a cone crusher provides useful insights into the wear and crushing mechanism, which helps industries optimize operating parameters to reduce production costs. This work analyzed wear formation and evolution on the mantle liner using the discrete element method (DEM) with Archard models, in which the effects of operating parameters on wear depth and crushing performance under different wear conditions were investigated. Meanwhile, the response surface method (RSM) was employed to minimize the wear of the mantle liner and improve the crushing characteristics of the cone crusher. Results show that the evolution trend of the wear depth accords with the compressive force, and the extension of the wear area is consistent with the rotating direction of the mantle liner. Changes in the crushing chamber volume caused by operating parameters (except for the eccentric speed) and in the crushing chamber volume ratio caused by different meta-particle sizes can significantly cause different wear depths. And with the increase of the wear depth, the throughput, crushing rate, and power draw all decrease. Additionally, the presence of small-hard meta-particles leads to more severe wear.

了解圆锥破碎机锰钢衬板和凹衬板之间的相对运动所引起的磨损演变,有助于深入了解磨损和破碎机理,从而帮助工业企业优化运行参数,降低生产成本。本研究采用离散元法(DEM)和 Archard 模型分析了锰钵衬板的磨损形成和演变,研究了不同磨损条件下运行参数对磨损深度和破碎性能的影响。同时,采用响应面法(RSM)最大程度地减少了锰钵衬板的磨损,改善了圆锥破碎机的破碎特性。结果表明,磨损深度的演变趋势与压紧力一致,磨损区域的扩展与锰钵衬板的旋转方向一致。运行参数(偏心转速除外)引起的破碎腔容积变化以及不同元颗粒尺寸引起的破碎腔容积比变化会显著导致不同的磨损深度。随着磨损深度的增加,吞吐量、破碎率和功率消耗都会降低。此外,小硬元颗粒的存在会导致更严重的磨损。
{"title":"Wear evolution of the mantle liner and its effect on the crushing characteristics of a lab-scale cone crusher: A numerical study","authors":"","doi":"10.1016/j.apt.2024.104614","DOIUrl":"10.1016/j.apt.2024.104614","url":null,"abstract":"<div><p>Understanding the evolution of wear caused by the relative motion between the mantle liner and the concave liner in a cone crusher provides useful insights into the wear and crushing mechanism, which helps industries optimize operating parameters to reduce production costs. This work analyzed wear formation and evolution on the mantle liner using the discrete element method (DEM) with Archard models, in which the effects of operating parameters on wear depth and crushing performance under different wear conditions were investigated. Meanwhile, the response surface method (RSM) was employed to minimize the wear of the mantle liner and improve the crushing characteristics of the cone crusher. Results show that the evolution trend of the wear depth accords with the compressive force, and the extension of the wear area is consistent with the rotating direction of the mantle liner. Changes in the crushing chamber volume caused by operating parameters (except for the eccentric speed) and in the crushing chamber volume ratio caused by different <em>meta</em>-particle sizes can significantly cause different wear depths. And with the increase of the wear depth, the throughput, crushing rate, and power draw all decrease. Additionally, the presence of small-hard <em>meta</em>-particles leads to more severe wear.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of coating layer homogeneity of cathode particles on lithium ion battery performance 正极颗粒涂层均匀性对锂离子电池性能的影响
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-07 DOI: 10.1016/j.apt.2024.104608

Ensuring the stability of cathodes under high voltage (>4.3 V vs. Li/Li + ) necessitates particle-scale surface protection. Research varies on the optimal structure, and systematic studies on the impact of nanoscale coating coverage on cathode particle surfaces and stability are lacking. This study presents a quantitative analysis of coating homogeneity dependency on cathode particles and their stability under high voltage conditions. A metal alkoxide precursor-based coating methodology was used, manipulating the coating structure by understanding the pH dependence of the zeta potential for core particles and altering the precursor evaporation rate. Ta-substituted Li7La3Zr2O12 was chosen as the coating material on Li(Ni1/3,Co1/3,Mn1/3)O2 cathode particles, varying the coating structure while maintaining the same coating concentration. Coating structure was verified using X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Results showed that cathode particles with more homogeneous coatings exhibited significantly improved cycle stability and lower charge transfer resistance at potentials above 3.9 V. Optimizing coating homogeneity can significantly enhance battery performance, offering insights for more efficient lithium-ion batteries.

要确保阴极在高电压(4.3 V vs. Li/Li +)下的稳定性,就必须对颗粒表面进行保护。有关最佳结构的研究各不相同,而有关纳米级涂层覆盖率对阴极颗粒表面和稳定性影响的系统性研究则十分缺乏。本研究定量分析了涂层均匀性对阴极颗粒的依赖性及其在高压条件下的稳定性。研究采用了一种基于金属氧化物前驱体的镀膜方法,通过了解核心颗粒 zeta 电位的 pH 依赖性和改变前驱体蒸发速率来操纵镀膜结构。选择 Ta 取代的 Li7La3Zr2O12 作为 Li(Ni1/3,Co1/3,Mn1/3)O2 阴极粒子的涂层材料,在保持相同涂层浓度的情况下改变涂层结构。使用 X 射线荧光 (XRF)、X 射线光电子能谱 (XPS) 和电化学阻抗能谱 (EIS) 验证了涂层结构。结果表明,涂层更均匀的正极颗粒在电位高于 3.9 V 时的循环稳定性明显提高,电荷转移电阻更低。
{"title":"Effects of coating layer homogeneity of cathode particles on lithium ion battery performance","authors":"","doi":"10.1016/j.apt.2024.104608","DOIUrl":"10.1016/j.apt.2024.104608","url":null,"abstract":"<div><p>Ensuring the stability of cathodes under high voltage (&gt;4.3 V vs. Li/Li + ) necessitates particle-scale surface protection. Research varies on the optimal structure, and systematic studies on the impact of nanoscale coating coverage on cathode particle surfaces and stability are lacking. This study presents a quantitative analysis of coating homogeneity dependency on cathode particles and their stability under high voltage conditions. A metal alkoxide precursor-based coating methodology was used, manipulating the coating structure by understanding the pH dependence of the zeta potential for core particles and altering the precursor evaporation rate. Ta-substituted Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> was chosen as the coating material on Li(Ni<sub>1/3</sub>,Co<sub>1/3</sub>,Mn<sub>1/3</sub>)O<sub>2</sub> cathode particles, varying the coating structure while maintaining the same coating concentration. Coating structure was verified using X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Results showed that cathode particles with more homogeneous coatings exhibited significantly improved cycle stability and lower charge transfer resistance at potentials above 3.9 V. Optimizing coating homogeneity can significantly enhance battery performance, offering insights for more efficient lithium-ion batteries.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092188312400284X/pdfft?md5=bb4a69ae9e8b1e6e345539168199dd7b&pid=1-s2.0-S092188312400284X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interfacial structure design of FeSiB-based amorphous soft magnetic composites for excellent thermal stability and electromagnetic performance 设计基于 FeSiB 的非晶软磁复合材料的界面结构,实现优异的热稳定性和电磁性能
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-07 DOI: 10.1016/j.apt.2024.104620

Narrow process window of stress relieving annealing limits the development of amorphous soft magnetic composites (SMCs) with excellent combined electromagnetic performance. In addition, flaky amorphous powder is difficult to be uniformly coated by insulation layer due to the edge effect. To address these issues, the FeSiBCCr fine amorphous powder is introduced into the SMC based on flaky FeSiB amorphous powder. On the one hand, the 12 wt% addition of FeSiBCCr powder improves the thermal stability and enhances the annealing temperature by ∼ 20 ℃, broadening the annealing window of SMCs. On the other hand, the fine spherical FeSiBCCr amorphous powder can improve the electrical resistivity of SMC and act as a filler for large-size flaky FeSiB amorphous powder. The improved annealing temperature and the microstructure modification are beneficial to improving the combined electromagnetic properties of amorphous SMCs, including permeability, direct current bias performance and core loss. As a result, the FeSiB SMCs with 12 wt% FeSiBCCr addition possess the high effective permeability μe of 46.5 at 100 kHz, high percent effective permeability %μe of 74.5 % at 100 kHz and 100 Oe, and low total core loss of 222 kW/m3 at 100 kHz and 50 mT. This work proposes a potential strategy for the industry to fabricate the SMCs with high combined electromagnetic performance.

应力消除退火的工艺窗口狭窄,限制了具有优异综合电磁性能的非晶软磁复合材料(SMC)的发展。此外,由于边缘效应,片状非晶粉末很难被绝缘层均匀包覆。为解决这些问题,在片状 FeSiB 非晶粉末的基础上,在 SMC 中引入了 FeSiBCCr 细非晶粉末。一方面,添加 12 wt% 的 FeSiBCCr 粉末提高了热稳定性,使退火温度提高了 ∼ 20 ℃,拓宽了 SMC 的退火窗口。另一方面,细小的球形 FeSiBCCr 非晶粉末可提高 SMC 的电阻率,并可作为大尺寸片状 FeSiB 非晶粉末的填充物。退火温度的提高和微观结构的改变有利于改善非晶 SMC 的综合电磁特性,包括磁导率、直流偏压性能和磁芯损耗。因此,添加了 12 wt% FeSiBCCr 的 FeSiB SMC 在 100 kHz 时具有 46.5 的高有效磁导率μe,在 100 kHz 和 100 Oe 时具有 74.5% 的高百分比有效磁导率%μe,在 100 kHz 和 50 mT 时具有 222 kW/m3 的低总磁芯损耗。这项研究为业界提出了一种制造具有高综合电磁性能的 SMC 的潜在策略。
{"title":"Interfacial structure design of FeSiB-based amorphous soft magnetic composites for excellent thermal stability and electromagnetic performance","authors":"","doi":"10.1016/j.apt.2024.104620","DOIUrl":"10.1016/j.apt.2024.104620","url":null,"abstract":"<div><p>Narrow process window of stress relieving annealing limits the development of amorphous soft magnetic composites (SMCs) with excellent combined electromagnetic performance. In addition, flaky amorphous powder is difficult to be uniformly coated by insulation layer due to the edge effect. To address these issues, the FeSiBCCr fine amorphous powder is introduced into the SMC based on flaky FeSiB amorphous powder. On the one hand, the 12 wt% addition of FeSiBCCr powder improves the thermal stability and enhances the annealing temperature by ∼ 20 ℃, broadening the annealing window of SMCs. On the other hand, the fine spherical FeSiBCCr amorphous powder can improve the electrical resistivity of SMC and act as a filler for large-size flaky FeSiB amorphous powder. The improved annealing temperature and the microstructure modification are beneficial to improving the combined electromagnetic properties of amorphous SMCs, including permeability, direct current bias performance and core loss. As a result, the FeSiB SMCs with 12 wt% FeSiBCCr addition possess the high effective permeability <em>μ</em><sub>e</sub> of 46.5 at 100 kHz, high percent effective permeability %<em>μ</em><sub>e</sub> of 74.5 % at 100 kHz and 100 Oe, and low total core loss of 222 kW/m<sup>3</sup> at 100 kHz and 50 mT. This work proposes a potential strategy for the industry to fabricate the SMCs with high combined electromagnetic performance.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compaction and re-crushing characteristics of sandstone granules with different gradations under cyclic loading 不同级配砂岩颗粒在循环加载下的压实和再破碎特性
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-07 DOI: 10.1016/j.apt.2024.104611

Under the influence of multiple mining of coal seams, the granules structure formed by the mixing of different grain sizes exists in the collapse zone, and its compaction and re-crushing characteristics become a factor influencing the deformation and movement of the overlying rock layer. Therefore, the characteristics of sandstone granules with different gradations under cyclic loading were investigated in this manuscript. It is shown that the strain of sandstone granules increases with the increase of gradation index n, the dissipation energy of particle movement and crushing shows an increasing trend, and its porosity decreases with the increase of axial stress as a whole. At the early stage of stress loading, the high-gradation sandstone granules have high compression space and crushing potential due to larger size particles, the porosity declines the fastest, the compression modulus increases sharply, and the sandstone granules is compacted rapidly at this stage. When the stress exceeds a certain range, the energy density changes and the porosity reduction of the higher-gradation granules increases, and the larger size particles in the higher-gradations granules samples are broken down into small-size particles. At the same time, the amount of energy density changes and porosity attenuation of the high-gradations sandstone granules increases, the compressive modulus increases again at this stage, the position of the granules particles moves and the distribution is re-distributed, and the granules particles are more compact after the re-distribution, which corresponds to the higher re-distribution of the high-gradations granules samples. Under the external disturbance load, the sandstone granules show the characteristics of “three stages”: pore compression period, elastic deformation period, and crushing and reorganization period. The results of this study can provide theoretical support for revealing the deformation and movement mechanism of the rock mass in the collapse zone under multiple mining.

在煤层多次开采的影响下,塌陷区存在不同粒度混合形成的颗粒结构,其压实和再破碎特性成为影响上覆岩层变形和移动的因素。因此,本手稿研究了不同级配砂岩颗粒在循环荷载作用下的特征。结果表明,砂岩颗粒的应变随级配指数 n 的增大而增大,颗粒运动和破碎的耗散能呈增大趋势,其孔隙率随轴向应力的增大而整体减小。在应力加载初期,高级配砂岩颗粒由于粒径较大,具有较高的压缩空间和破碎潜能,孔隙率下降最快,压缩模量急剧增大,该阶段砂岩颗粒被快速压实。当应力超过一定范围时,能量密度发生变化,较高级配颗粒的孔隙率下降速度加快,较高级配颗粒样品中的较大尺寸颗粒被破碎成小尺寸颗粒。同时,高分级砂岩颗粒的能量密度变化量和孔隙率衰减量增大,此阶段压缩模量再次增大,颗粒位置移动,重新分布,重新分布后的颗粒颗粒更加紧密,这与高分级颗粒样品的高重新分布相对应。在外部扰动荷载作用下,砂岩颗粒呈现出孔隙压缩期、弹性变形期、破碎重组期的 "三期 "特征。该研究结果可为揭示多次开采下塌陷区岩体的变形和运动机理提供理论支持。
{"title":"Compaction and re-crushing characteristics of sandstone granules with different gradations under cyclic loading","authors":"","doi":"10.1016/j.apt.2024.104611","DOIUrl":"10.1016/j.apt.2024.104611","url":null,"abstract":"<div><p>Under the influence of multiple mining of coal seams, the granules structure formed by the mixing of different grain sizes exists in the collapse zone, and its compaction and re-crushing characteristics become a factor influencing the deformation and movement of the overlying rock layer. Therefore, the characteristics of sandstone granules with different gradations under cyclic loading were investigated in this manuscript. It is shown that the strain of sandstone granules increases with the increase of gradation index <em>n</em>, the dissipation energy of particle movement and crushing shows an increasing trend, and its porosity decreases with the increase of axial stress as a whole. At the early stage of stress loading, the high-gradation sandstone granules have high compression space and crushing potential due to larger size particles, the porosity declines the fastest, the compression modulus increases sharply, and the sandstone granules is compacted rapidly at this stage. When the stress exceeds a certain range, the energy density changes and the porosity reduction of the higher-gradation granules increases, and the larger size particles in the higher-gradations granules samples are broken down into small-size particles. At the same time, the amount of energy density changes and porosity attenuation of the high-gradations sandstone granules increases, the compressive modulus increases again at this stage, the position of the granules particles moves and the distribution is re-distributed, and the granules particles are more compact after the re-distribution, which corresponds to the higher re-distribution of the high-gradations granules samples. Under the external disturbance load, the sandstone granules show the characteristics of “three stages”: pore compression period, elastic deformation period, and crushing and reorganization period. The results of this study can provide theoretical support for revealing the deformation and movement mechanism of the rock mass in the collapse zone under multiple mining.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tribocatalytic activity of poled BaCuxTi1-xO3-x nanofibers for degradation of organic dye 抛光 BaCuxTi1-xO3-x 纳米纤维降解有机染料的摩擦催化活性
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-06 DOI: 10.1016/j.apt.2024.104612

BaCuxTi1-xO3-x (x = 0, 0.01, 0.02, 0.03, 0.04) nanofibers were synthesized via the hydrothermal method and subsequently subjected to poling. The impact of composition on their tribocatalytic performance and the underlying catalytic mechanism were investigated. After 100 min, all poled BaCuxTi1-xO3-x nanofibers exhibited superior tribocatalytic efficiency compared to pure BaTiO3, with BaCu0.02Ti0.98O2.98 poled nanofibers achieving a degradation rate of up to 80 % for RhB solution. This is because the increased conductivity and reduced carrier recombination rate which were caused by a 0.02 Cu doping, smaller grain size and poling effect. Control experiments confirmed that both stirring and the presence of a catalyst are essential prerequisites for tribocatalysis. Furthermore, the universality, selectivity, stability, and main active group O2 of poled BaCuxTi1-xO3-x (x = 0, 0.01, 0.02, 0.03, 0.04) nanofibers were verified. Lastly, although the tribocatalytic efficiency presented in this paper does not match that of piezoelectric catalysis, the latter requires ultrasonic conditions that are challenging to find naturally. As a result, tribocatalysis offers greater potential for practical applications.

通过水热法合成了 BaCuxTi1-xO3-x (x = 0, 0.01, 0.02, 0.03, 0.04) 纳米纤维,随后对其进行了极化处理。研究了成分对其摩擦催化性能的影响及其催化机理。100 分钟后,与纯 BaTiO3 相比,所有抛光的 BaCuxTi1-xO3-x 纳米纤维都表现出更高的摩擦催化效率,其中抛光的 BaCu0.02Ti0.98O2.98 纳米纤维对 RhB 溶液的降解率高达 80%。这是因为 0.02 的铜掺杂、较小的晶粒尺寸和极化效应提高了导电性并降低了载流子重组率。对照实验证实,搅拌和催化剂的存在是摩擦催化的基本前提。此外,还验证了抛光 BaCuxTi1-xO3-x (x = 0、0.01、0.02、0.03、0.04)纳米纤维的普遍性、选择性、稳定性和主要活性基团 O2-。最后,虽然本文中介绍的摩擦催化效率与压电催化的效率不尽相同,但后者需要超声波条件,而自然条件很难找到。因此,摩擦催化在实际应用中具有更大的潜力。
{"title":"Tribocatalytic activity of poled BaCuxTi1-xO3-x nanofibers for degradation of organic dye","authors":"","doi":"10.1016/j.apt.2024.104612","DOIUrl":"10.1016/j.apt.2024.104612","url":null,"abstract":"<div><p>BaCu<sub>x</sub>Ti<sub>1-x</sub>O<sub>3-x</sub> (x = 0, 0.01, 0.02, 0.03, 0.04) nanofibers were synthesized via the hydrothermal method and subsequently subjected to poling. The impact of composition on their tribocatalytic performance and the underlying catalytic mechanism were investigated. After 100 min, all poled BaCu<sub>x</sub>Ti<sub>1-x</sub>O<sub>3-x</sub> nanofibers exhibited superior tribocatalytic efficiency compared to pure BaTiO<sub>3</sub>, with BaCu<sub>0.02</sub>Ti<sub>0.98</sub>O<sub>2.98</sub> poled nanofibers achieving a degradation rate of up to 80 % for RhB solution. This is because the increased conductivity and reduced carrier recombination rate which were caused by a 0.02 Cu doping, smaller grain size and poling effect. Control experiments confirmed that both stirring and the presence of a catalyst are essential prerequisites for tribocatalysis. Furthermore, the universality, selectivity, stability, and main active group <sup><img></sup>O<sub>2</sub><sup>–</sup> of poled BaCu<sub>x</sub>Ti<sub>1-x</sub>O<sub>3-x</sub> (x = 0, 0.01, 0.02, 0.03, 0.04) nanofibers were verified. Lastly, although the tribocatalytic efficiency presented in this paper does not match that of piezoelectric catalysis, the latter requires ultrasonic conditions that are challenging to find naturally. As a result, tribocatalysis offers greater potential for practical applications.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The distribution of Y2O3 during selective laser melting of IN625/Y2O3 core-shell powders 选择性激光熔融 IN625/Y2O3 核壳粉末过程中 Y2O3 的分布
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-06 DOI: 10.1016/j.apt.2024.104609

Selective laser melting (SLM) of metal-oxide hybrid powder is currently a cost-effective approach for fabricating oxide-dispersion-strengthened alloys. The distribution behavior of oxide during the SLM process has significant effects on the performance of the final components. In this work, Y2O3 strengthened IN625 superalloys were fabricated by selective laser melting using IN625 powder coated by 1 wt% and 3 wt% Y2O3. The hybrid powder prepared by the resonant mixing method present the good flowability. Due to the high melting point of Y2O3 powder and its harmful effect on the wettability between the melt track and the formed surface, the required laser energy density for successful SLM-fabrication of the hybrid powder should be high. The distribution characteristics of Y2O3 during the SLM process and the corresponding evolution mechanism were analyzed. It was found that severe loss of Y2O3 occurred during SLM process, resulting from Y2O3 slag on the top surface of the built specimen, Y2O3 adhered to spatter particles falling into the recycling powder, and Y2O3 plume blown into the machine filter by the gas flow. The more Y2O3 coated on the metal powder, the more Y2O3 lost during SLM. The molten pool with keyhole mode is favorable to reduce Y2O3 loss compared to the conduction mode.

金属氧化物混合粉末的选择性激光熔融(SLM)是目前制造氧化物分散强化合金的一种经济有效的方法。在 SLM 过程中,氧化物的分布行为对最终部件的性能有重大影响。在这项工作中,使用涂有 1 wt% 和 3 wt% Y2O3 的 IN625 粉末,通过选择性激光熔融制造了 Y2O3 强化 IN625 超合金。共振混合法制备的混合粉末具有良好的流动性。由于 Y2O3 粉末的熔点较高,且其对熔体轨道和成型表面之间的润湿性有不利影响,因此要成功地用 SLM 制造混合粉末,所需的激光能量密度必须较高。研究分析了 Y2O3 在 SLM 过程中的分布特征以及相应的演变机制。研究发现,在 SLM 过程中,Y2O3 损失严重,这主要是由于 Y2O3 熔渣附着在制备好的试样顶面上,Y2O3 附着在溅射颗粒上落入回收粉末中,以及 Y2O3 烟羽被气流吹入机器过滤器。金属粉末上附着的 Y2O3 越多,SLM 过程中损失的 Y2O3 就越多。与传导模式相比,带锁孔模式的熔池有利于减少 Y2O3 的损失。
{"title":"The distribution of Y2O3 during selective laser melting of IN625/Y2O3 core-shell powders","authors":"","doi":"10.1016/j.apt.2024.104609","DOIUrl":"10.1016/j.apt.2024.104609","url":null,"abstract":"<div><p>Selective laser melting (SLM) of metal-oxide hybrid powder is currently a cost-effective approach for fabricating oxide-dispersion-strengthened alloys. The distribution behavior of oxide during the SLM process has significant effects on the performance of the final components. In this work, Y<sub>2</sub>O<sub>3</sub> strengthened IN625 superalloys were fabricated by selective laser melting using IN625 powder coated by 1 wt% and 3 wt% Y<sub>2</sub>O<sub>3</sub>. The hybrid powder prepared by the resonant mixing method present the good flowability. Due to the high melting point of Y<sub>2</sub>O<sub>3</sub> powder and its harmful effect on the wettability between the melt track and the formed surface, the required laser energy density for successful SLM-fabrication of the hybrid powder should be high. The distribution characteristics of Y<sub>2</sub>O<sub>3</sub> during the SLM process and the corresponding evolution mechanism were analyzed. It was found that severe loss of Y<sub>2</sub>O<sub>3</sub> occurred during SLM process, resulting from Y<sub>2</sub>O<sub>3</sub> slag on the top surface of the built specimen, Y<sub>2</sub>O<sub>3</sub> adhered to spatter particles falling into the recycling powder, and Y<sub>2</sub>O<sub>3</sub> plume blown into the machine filter by the gas flow. The more Y<sub>2</sub>O<sub>3</sub> coated on the metal powder, the more Y<sub>2</sub>O<sub>3</sub> lost during SLM. The molten pool with keyhole mode is favorable to reduce Y<sub>2</sub>O<sub>3</sub> loss compared to the conduction mode.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141962940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A time-domain nuclear magnetic resonance (TD-NMR) as a tool to characterize affinity between partially hydrophobic silica nanoparticles and ethanol/hexane mixtures 将时域核磁共振(TD-NMR)作为表征部分疏水性二氧化硅纳米颗粒与乙醇/正己烷混合物之间亲和力的工具
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-05 DOI: 10.1016/j.apt.2024.104593

Affinity between partially hydrophobic silica nanoparticles and organic solvents (ethanol and hexane) as dispersing medium has been characterized with change in the relaxation time obtained by a time-domain nuclear magnetic resonance (TD-NMR). Different chain lengths (denoted as C3, C6, and C12) were utilized as surface modifiers for the particles and the modification ratio was controlled. For ethanol, the longer chain length and higher modification ratio showed the higher affinity while for hexane, vice versa even though a quite poor affinity appeared in whole conditions. We hypothesize that the ethanol molecules could be attracted to residual silanol groups among long-chain length-functional groups. In order to prove, affinity of the partially hydrophobic silica nanoparticles with ethanol/hexane mixture has been investigated. In the range from 60 to 80 vol% of hexane, relaxation time of the C12-modified silica nanoparticles (modification ratio was 1.4 /nm2) quickly decreased. When the residual silanol was additionally modified with C3, the corresponding decrease disappeared. The TD-NMR has an effective tool to detect the change in the surface affinity of the partially hydrophobic nanoparticles even if they showed the same hydrophobicity.

通过时域核磁共振(TD-NMR)获得的弛豫时间的变化,表征了部分疏水性二氧化硅纳米粒子与作为分散介质的有机溶剂(乙醇和正己烷)之间的亲和性。利用不同的链长(表示为 C3、C6 和 C12)作为颗粒的表面改性剂,并控制改性比例。对于乙醇来说,链长越长、改性比例越高,亲和力就越强;而对于正己烷来说,尽管在整个条件下亲和力都很差,但亲和力也越强。我们推测乙醇分子可能被长链长度官能团中的残余硅醇基团所吸引。为了证明这一点,我们研究了部分疏水性二氧化硅纳米粒子与乙醇/正己烷混合物的亲和性。在己烷含量为 60% 至 80% 的范围内,C12 改性纳米二氧化硅(改性比为 1.4 /nm2)的弛豫时间迅速缩短。当残留的硅烷醇被 C3 额外修饰时,相应的减少消失了。TD-NMR 是检测部分疏水性纳米粒子表面亲和性变化的有效工具,即使它们的疏水性相同。
{"title":"A time-domain nuclear magnetic resonance (TD-NMR) as a tool to characterize affinity between partially hydrophobic silica nanoparticles and ethanol/hexane mixtures","authors":"","doi":"10.1016/j.apt.2024.104593","DOIUrl":"10.1016/j.apt.2024.104593","url":null,"abstract":"<div><p>Affinity between partially hydrophobic silica nanoparticles and organic solvents (ethanol and hexane) as dispersing medium has been characterized with change in the relaxation time obtained by a time-domain nuclear magnetic resonance (TD-NMR). Different chain lengths (denoted as C3, C6, and C12) were utilized as surface modifiers for the particles and the modification ratio was controlled. For ethanol, the longer chain length and higher modification ratio showed the higher affinity while for hexane, vice versa even though a quite poor affinity appeared in whole conditions. We hypothesize that the ethanol molecules could be attracted to residual silanol groups among long-chain length-functional groups. In order to prove, affinity of the partially hydrophobic silica nanoparticles with ethanol/hexane mixture has been investigated. In the range from 60 to 80 vol% of hexane, relaxation time of the C12-modified silica nanoparticles (modification ratio was 1.4 /nm<sup>2</sup>) quickly decreased. When the residual silanol was additionally modified with C3, the corresponding decrease disappeared. The TD-NMR has an effective tool to detect the change in the surface affinity of the partially hydrophobic nanoparticles even if they showed the same hydrophobicity.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parametric and non-parametric evaluation of conversion of number-based particle size distribution to mass-based distribution 将基于数量的粒度分布转换为基于质量的分布的参数和非参数评估
IF 4.2 2区 工程技术 Q2 ENGINEERING, CHEMICAL Pub Date : 2024-08-03 DOI: 10.1016/j.apt.2024.104594

Interest in applying non-parametric methods to analyze particle size distribution (PSD) is growing. Previous studies have demonstrated the effectiveness of the bootstrap method in evaluating percentile values and confidence intervals for number-based PSD data. In this study, the application of the method to mass-based (volume-based) distribution was extended. The performance of the parametric method, which uses the Hatch-Choate equation for lognormal distribution, was compared with that of the non-parametric method in evaluating mass-based distribution data converted from number-based distribution. The superior performance of the parametric method underscores the importance of prior distribution function knowledge. For non-parametric methods, “real repeat” simulations involving 5000 repetitions of individual samplings were conducted as a reference for the bootstrap method. It was found that there exists a critical sample size, beyond which larger samples are necessary to accurately represent the population through non-parametric analysis. This critical size requires that the maximum size in the dataset exceeds the target size (e.g., the 90th percentile value) for direct evaluation of existing data. When the sample size range surpasses the critical size, bootstrap provides a good approximation to the “real repeat” experiments. Therefore, it is essential to have a diagnostic strategy to determine whether the sample size is sufficiently large for non-parametric analysis. A simple method using multi-scale bootstrap is proposed in this regard.

人们对应用非参数方法分析粒度分布(PSD)的兴趣与日俱增。之前的研究已经证明了自举法在评估基于数量的 PSD 数据的百分位值和置信区间方面的有效性。在本研究中,该方法的应用扩展到了基于质量(体积)的分布。使用对数正态分布的 Hatch-Choate 方程的参数法与非参数法在评估从基于数字的分布转换而来的基于质量的分布数据时的性能进行了比较。参数法的优越性能突出了先验分布函数知识的重要性。对于非参数方法,我们进行了包含 5000 次单个采样重复的 "真实重复 "模拟,作为 bootstrap 方法的参考。结果发现,存在一个临界样本量,超过这个临界样本量,就需要更大的样本量才能通过非参数分析准确地代表总体。这个临界规模要求数据集中的最大规模超过直接评估现有数据的目标规模(如第 90 百分位值)。当样本大小范围超过临界大小时,bootstrap 就能很好地接近 "真实重复 "实验。因此,必须有一个诊断策略来确定样本量是否足够大,以便进行非参数分析。为此,我们提出了一种使用多尺度引导法的简单方法。
{"title":"Parametric and non-parametric evaluation of conversion of number-based particle size distribution to mass-based distribution","authors":"","doi":"10.1016/j.apt.2024.104594","DOIUrl":"10.1016/j.apt.2024.104594","url":null,"abstract":"<div><p>Interest in applying non-parametric methods to analyze particle size distribution (PSD) is growing. Previous studies have demonstrated the effectiveness of the bootstrap method in evaluating percentile values and confidence intervals for number-based PSD data. In this study, the application of the method to mass-based (volume-based) distribution was extended. The performance of the parametric method, which uses the Hatch-Choate equation for lognormal distribution, was compared with that of the non-parametric method in evaluating mass-based distribution data converted from number-based distribution. The superior performance of the parametric method underscores the importance of prior distribution function knowledge. For non-parametric methods, “real repeat” simulations involving 5000 repetitions of individual samplings were conducted as a reference for the bootstrap method. It was found that there exists a critical sample size, beyond which larger samples are necessary to accurately represent the population through non-parametric analysis. This critical size requires that the maximum size in the dataset exceeds the target size (e.g., the 90th percentile value) for direct evaluation of existing data. When the sample size range surpasses the critical size, bootstrap provides a good approximation to the “real repeat” experiments. Therefore, it is essential to have a diagnostic strategy to determine whether the sample size is sufficiently large for non-parametric analysis. A simple method using multi-scale bootstrap is proposed in this regard.</p></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S092188312400270X/pdfft?md5=4c04d30467bc9bafc10635a5e42637e8&pid=1-s2.0-S092188312400270X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Powder Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1