The imperative development of a cutting-edge environmental gas sensor is essential to proficiently monitor and detect hazardous gases, ensuring comprehensive safety and awareness. Nanostructures developed from metal oxides are emerging as promising candidates for achieving superior performance in gas sensors. NO2 is one of the toxic gases that affects people as well as the environment so its detection is crucial. The present study investigates the gas sensing capability of copper oxide-based sensor for 5 ppm of NO2 gas at 100 °C. The sensing material was synthesized using a facile precipitation method and characterized by XRD, FE-SEM, UV-visible spectroscopy, photoluminescence spectroscopy, XPS and BET techniques. The developed material shows a response equal to 67.1% at optimal temperature towards 5 ppm NO2 gas. The sensor demonstrated an impressive detection limit of 300 ppb, along with a commendable percentage response of 5.2%. Under optimized conditions, the synthesized material demonstrated its high selectivity, as evidenced by the highest percentage response recorded for NO2 gas among NO2, NH3, CO, CO2 and H2S.
{"title":"Low ppm NO<sub>2</sub> detection through advanced ultrasensitive copper oxide gas sensor.","authors":"Smriti Sihag, Rita Dahiya, Suman Rani, Priyanka Berwal, Anushree Jatrana, Avnish Kumar Sisodiya, Ashutosh Sharma, Vinay Kumar","doi":"10.1186/s11671-024-04039-z","DOIUrl":"10.1186/s11671-024-04039-z","url":null,"abstract":"<p><p>The imperative development of a cutting-edge environmental gas sensor is essential to proficiently monitor and detect hazardous gases, ensuring comprehensive safety and awareness. Nanostructures developed from metal oxides are emerging as promising candidates for achieving superior performance in gas sensors. NO<sub>2</sub> is one of the toxic gases that affects people as well as the environment so its detection is crucial. The present study investigates the gas sensing capability of copper oxide-based sensor for 5 ppm of NO<sub>2</sub> gas at 100 °C. The sensing material was synthesized using a facile precipitation method and characterized by XRD, FE-SEM, UV-visible spectroscopy, photoluminescence spectroscopy, XPS and BET techniques. The developed material shows a response equal to 67.1% at optimal temperature towards 5 ppm NO<sub>2</sub> gas. The sensor demonstrated an impressive detection limit of 300 ppb, along with a commendable percentage response of 5.2%. Under optimized conditions, the synthesized material demonstrated its high selectivity, as evidenced by the highest percentage response recorded for NO<sub>2</sub> gas among NO<sub>2</sub>, NH<sub>3</sub>, CO, CO<sub>2</sub> and H<sub>2</sub>S.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"107"},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-22DOI: 10.1186/s11671-024-04052-2
Petra Elblová, Mariia Lunova, Alexandr Dejneka, Milan Jirsa, Oleg Lunov
In recent years, it has been recognized that mechanical forces play an important regulative role in living organisms and possess a direct impact on crucial cell functions, ranging from cell growth to maintenance of tissue homeostasis. Advancements in mechanobiology have revealed the profound impact of mechanical signals on diverse cellular responses that are cell type specific. Notably, numerous studies have elucidated the pivotal role of different mechanical cues as regulatory factors influencing various cellular processes, including cell spreading, locomotion, differentiation, and proliferation. Given these insights, it is unsurprising that the responses of cells regulated by physical forces are intricately linked to the modulation of nanoparticle uptake kinetics and processing. This complex interplay underscores the significance of understanding the mechanical microenvironment in shaping cellular behaviors and, consequently, influencing how cells interact with and process nanoparticles. Nevertheless, our knowledge on how localized physical forces affect the internalization and processing of nanoparticles by cells remains rather limited. A significant gap exists in the literature concerning a systematic analysis of how mechanical cues might bias the interactions between nanoparticles and cells. Hence, our aim in this review is to provide a comprehensive and critical analysis of the existing knowledge regarding the influence of mechanical cues on the complicated dynamics of cell-nanoparticle interactions. By addressing this gap, we would like to contribute to a detailed understanding of the role that mechanical forces play in shaping the complex interplay between cells and nanoparticles.
{"title":"Impact of mechanical cues on key cell functions and cell-nanoparticle interactions.","authors":"Petra Elblová, Mariia Lunova, Alexandr Dejneka, Milan Jirsa, Oleg Lunov","doi":"10.1186/s11671-024-04052-2","DOIUrl":"10.1186/s11671-024-04052-2","url":null,"abstract":"<p><p>In recent years, it has been recognized that mechanical forces play an important regulative role in living organisms and possess a direct impact on crucial cell functions, ranging from cell growth to maintenance of tissue homeostasis. Advancements in mechanobiology have revealed the profound impact of mechanical signals on diverse cellular responses that are cell type specific. Notably, numerous studies have elucidated the pivotal role of different mechanical cues as regulatory factors influencing various cellular processes, including cell spreading, locomotion, differentiation, and proliferation. Given these insights, it is unsurprising that the responses of cells regulated by physical forces are intricately linked to the modulation of nanoparticle uptake kinetics and processing. This complex interplay underscores the significance of understanding the mechanical microenvironment in shaping cellular behaviors and, consequently, influencing how cells interact with and process nanoparticles. Nevertheless, our knowledge on how localized physical forces affect the internalization and processing of nanoparticles by cells remains rather limited. A significant gap exists in the literature concerning a systematic analysis of how mechanical cues might bias the interactions between nanoparticles and cells. Hence, our aim in this review is to provide a comprehensive and critical analysis of the existing knowledge regarding the influence of mechanical cues on the complicated dynamics of cell-nanoparticle interactions. By addressing this gap, we would like to contribute to a detailed understanding of the role that mechanical forces play in shaping the complex interplay between cells and nanoparticles.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"106"},"PeriodicalIF":0.0,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193707/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-22DOI: 10.1186/s11671-024-04040-6
Amira A AlHarethi, Qais Y Abdullah, Hala J AlJobory, AbdulRahman M Anam, Ramadan A Arafa, Khaled Y Farroh
Late blight, caused by Phytophthora infestans, is a major potato disease globally, leading to significant economic losses of $6.7 billion. To address this issue, we evaluated the antifungal activity of ZnO and CuO nanoparticles (NPs) against P. infestans for the first time in laboratory and greenhouse conditions. Nanoparticles were synthesized via a chemical precipitation method and characterized using various techniques. The XRD results revealed that the synthesized ZnO nanoparticles had a pure hexagonal wurtzite crystalline structure, whereas the CuO NPs had a monoclinic crystalline structure. TEM images confirmed the synthesis of quasi-spherical nanoparticles with an average size of 11.5 nm for ZnO NPs and 24.5 nm for CuO NPs. The UV-Vis Spectral Report showed peaks corresponding to ZnO NPs at 364 nm and 252 nm for CuO NPs.In an in vitro study, both ZnO and CuO NPs significantly (p < 0.05) inhibited the radial growth of P. infestans at all tested concentrations compared to the untreated control. The highest inhibitory effect of 100% was observed with ZnO and CuO NPs at 30 mg/L. A lower inhibition of 60.4% was observed with 10 mg/L CuO NPs. Under greenhouse conditions, 100 mg/L ZnO NPs was the most effective treatment for controlling potato late blight, with an efficacy of 71%. CuO NPs at 100 mg/L followed closely, with an efficacy of 69%. Based on these results, ZnO and CuO NPs are recommended as promising eco-friendly fungicides for the management and control of potato late blight after further research.
{"title":"Zinc oxide and copper oxide nanoparticles as a potential solution for controlling Phytophthora infestans, the late blight disease of potatoes.","authors":"Amira A AlHarethi, Qais Y Abdullah, Hala J AlJobory, AbdulRahman M Anam, Ramadan A Arafa, Khaled Y Farroh","doi":"10.1186/s11671-024-04040-6","DOIUrl":"10.1186/s11671-024-04040-6","url":null,"abstract":"<p><p>Late blight, caused by Phytophthora infestans, is a major potato disease globally, leading to significant economic losses of $6.7 billion. To address this issue, we evaluated the antifungal activity of ZnO and CuO nanoparticles (NPs) against P. infestans for the first time in laboratory and greenhouse conditions. Nanoparticles were synthesized via a chemical precipitation method and characterized using various techniques. The XRD results revealed that the synthesized ZnO nanoparticles had a pure hexagonal wurtzite crystalline structure, whereas the CuO NPs had a monoclinic crystalline structure. TEM images confirmed the synthesis of quasi-spherical nanoparticles with an average size of 11.5 nm for ZnO NPs and 24.5 nm for CuO NPs. The UV-Vis Spectral Report showed peaks corresponding to ZnO NPs at 364 nm and 252 nm for CuO NPs.In an in vitro study, both ZnO and CuO NPs significantly (p < 0.05) inhibited the radial growth of P. infestans at all tested concentrations compared to the untreated control. The highest inhibitory effect of 100% was observed with ZnO and CuO NPs at 30 mg/L. A lower inhibition of 60.4% was observed with 10 mg/L CuO NPs. Under greenhouse conditions, 100 mg/L ZnO NPs was the most effective treatment for controlling potato late blight, with an efficacy of 71%. CuO NPs at 100 mg/L followed closely, with an efficacy of 69%. Based on these results, ZnO and CuO NPs are recommended as promising eco-friendly fungicides for the management and control of potato late blight after further research.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"105"},"PeriodicalIF":0.0,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141441201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Graphene-based nanomaterials (graphene, graphene oxide, reduced graphene oxide, graphene quantum dots, graphene-based nanocomposites, etc.) are emerging as an extremely important class of nanomaterials primarily because of their unique and advantageous physical, chemical, biological, and optoelectronic aspects. These features have resulted in uses across diverse areas of scientific research. Among all other applications, they are found to be particularly useful in designing highly sensitive biosensors. Numerous studies have established their efficacy in sensing pathogens and other biomolecules allowing for the rapid diagnosis of various diseases. Considering the growing importance and popularity of graphene-based materials for biosensing applications, this review aims to provide the readers with a summary of the recent progress in the concerned domain and highlights the challenges associated with the synthesis and application of these multifunctional materials.
{"title":"Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors.","authors":"Arabinda Baruah, Rachita Newar, Saikat Das, Nitul Kalita, Masood Nath, Priya Ghosh, Sampath Chinnam, Hemen Sarma, Mahesh Narayan","doi":"10.1186/s11671-024-04032-6","DOIUrl":"10.1186/s11671-024-04032-6","url":null,"abstract":"<p><p>Graphene-based nanomaterials (graphene, graphene oxide, reduced graphene oxide, graphene quantum dots, graphene-based nanocomposites, etc.) are emerging as an extremely important class of nanomaterials primarily because of their unique and advantageous physical, chemical, biological, and optoelectronic aspects. These features have resulted in uses across diverse areas of scientific research. Among all other applications, they are found to be particularly useful in designing highly sensitive biosensors. Numerous studies have established their efficacy in sensing pathogens and other biomolecules allowing for the rapid diagnosis of various diseases. Considering the growing importance and popularity of graphene-based materials for biosensing applications, this review aims to provide the readers with a summary of the recent progress in the concerned domain and highlights the challenges associated with the synthesis and application of these multifunctional materials.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"103"},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11183028/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1186/s11671-024-04045-1
Hezhuang Liu, Yixuan Huang, Jiang Wu
Advancements in nanofabrication technology have greatly facilitated research on nanostructures and their associated properties. Among these structures, subwavelength components have emerged as promising candidates for ultra-compact optical elements, can potentially supplant conventional optical components and enable the realization of compact and efficient optical devices. Spectral analysis within the infrared spectrum offers a wealth of information for monitoring crop health, industrial processes, and target identification. However, conventional spectrometers are typically bulky and expensive, driving an increasing demand for cost-effective spectral sensors. Here we investigate three distinct subwavelength grating structures designed to function as narrowband filters within the short-wavelength infrared (SWIR) range. Through simple adjustments to the period of grating strips, these filters selectively transmit light across a wide wavelength range from 1100 to 1700 nm with transmission exceeding 70% and full width at half maximum (FWHM) down to 6 nm. Based on a simple design, the results present great potential of subwavelength grating filters for multiband integration and developing ultra-compact spectral sensors.
{"title":"Exploring the efficacy of subwavelength gratings as short-wavelength infrared filters.","authors":"Hezhuang Liu, Yixuan Huang, Jiang Wu","doi":"10.1186/s11671-024-04045-1","DOIUrl":"10.1186/s11671-024-04045-1","url":null,"abstract":"<p><p>Advancements in nanofabrication technology have greatly facilitated research on nanostructures and their associated properties. Among these structures, subwavelength components have emerged as promising candidates for ultra-compact optical elements, can potentially supplant conventional optical components and enable the realization of compact and efficient optical devices. Spectral analysis within the infrared spectrum offers a wealth of information for monitoring crop health, industrial processes, and target identification. However, conventional spectrometers are typically bulky and expensive, driving an increasing demand for cost-effective spectral sensors. Here we investigate three distinct subwavelength grating structures designed to function as narrowband filters within the short-wavelength infrared (SWIR) range. Through simple adjustments to the period of grating strips, these filters selectively transmit light across a wide wavelength range from 1100 to 1700 nm with transmission exceeding 70% and full width at half maximum (FWHM) down to 6 nm. Based on a simple design, the results present great potential of subwavelength grating filters for multiband integration and developing ultra-compact spectral sensors.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"104"},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11183007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, a 3 × 3 blue micro-LED array with a pixel size of 10 × 10 μm2 and a pitch of 15 μm was fabricated on an epilayer grown on a sapphire substrate using metalorganic chemical vapor deposition technology. The fabrication process involved photolithography, wet and dry etching, E-beam evaporation, and ion implantation technology. Arsenic multi-energy implantation was utilized to replace the mesa etching for electrical isolation, where the implantation depth increased with the average energy. Different ion depth profiles had varying effects on electrical properties, such as forward current and leakage currents, potentially causing damage to the n-GaN layer and increasing the series resistance of the LEDs. As the implantation depth increased, the light output power and peak external quantum efficiency of the LEDs also increased, improving from 5.33 to 9.82%. However, the efficiency droop also increased from 46.3 to 48.6%.
{"title":"Study on different isolation technology on the performance of blue micro-LEDs array applications.","authors":"Shao-Hua Lin, Yu-Yun Lo, Yu-Hsuan Hsu, Chien-Chung Lin, Hsiao-Wen Zan, Yi-Hsin Lin, Dong-Sing Wuu, Ching-Lien Hsiao, Ray-Hua Horng","doi":"10.1186/s11671-024-04047-z","DOIUrl":"10.1186/s11671-024-04047-z","url":null,"abstract":"<p><p>In this study, a 3 × 3 blue micro-LED array with a pixel size of 10 × 10 μm<sup>2</sup> and a pitch of 15 μm was fabricated on an epilayer grown on a sapphire substrate using metalorganic chemical vapor deposition technology. The fabrication process involved photolithography, wet and dry etching, E-beam evaporation, and ion implantation technology. Arsenic multi-energy implantation was utilized to replace the mesa etching for electrical isolation, where the implantation depth increased with the average energy. Different ion depth profiles had varying effects on electrical properties, such as forward current and leakage currents, potentially causing damage to the n-GaN layer and increasing the series resistance of the LEDs. As the implantation depth increased, the light output power and peak external quantum efficiency of the LEDs also increased, improving from 5.33 to 9.82%. However, the efficiency droop also increased from 46.3 to 48.6%.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"102"},"PeriodicalIF":0.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, the synthesis of oxidized holey graphene with the chemical formula C2O has been reported (J. Am. Chem. Soc. 2024, 146, 4532). We herein employed a combination of density functional theory (DFT) and machine learning interatomic potential (MLIP) calculations to investigate the electronic, optical, mechanical and thermal properties of the C2O monolayer, and compared our findings with those of its C2N counterpart. Our analysis shows that while the C2N monolayer exhibits delocalized π-conjugation and shows a 2.47 eV direct-gap semiconducting behavior, the C2O counterpart exhibits an indirect gap of 3.47 eV. We found that while the C2N monolayer exhibits strong absorption in the visible spectrum, the initial absorption peaks in the C2O lattice occur at around 5 eV, falling within the UV spectrum. Notably, we found that the C2O nanosheet presents significantly higher tensile strength compared to its C2N counterpart. MLIP-based calculations show that at room temperature, the C2O nanosheet can exhibit remarkably high tensile strength and lattice thermal conductivity of 42 GPa and 129 W/mK, respectively. The combined insights from DFT and MLIP-based results provide a comprehensive understanding of the electronic and optical properties of C2O nanosheets, suggesting them as mechanically robust and highly thermally conductive wide bandgap semiconductors.
{"title":"Remarkably high tensile strength and lattice thermal conductivity in wide band gap oxidized holey graphene C<sub>2</sub>O nanosheet.","authors":"Fazel Shojaei, Qinghua Zhang, Xiaoying Zhuang, Bohayra Mortazavi","doi":"10.1186/s11671-024-04046-0","DOIUrl":"10.1186/s11671-024-04046-0","url":null,"abstract":"<p><p>Recently, the synthesis of oxidized holey graphene with the chemical formula C<sub>2</sub>O has been reported (J. Am. Chem. Soc. 2024, 146, 4532). We herein employed a combination of density functional theory (DFT) and machine learning interatomic potential (MLIP) calculations to investigate the electronic, optical, mechanical and thermal properties of the C<sub>2</sub>O monolayer, and compared our findings with those of its C<sub>2</sub>N counterpart. Our analysis shows that while the C<sub>2</sub>N monolayer exhibits delocalized π-conjugation and shows a 2.47 eV direct-gap semiconducting behavior, the C<sub>2</sub>O counterpart exhibits an indirect gap of 3.47 eV. We found that while the C<sub>2</sub>N monolayer exhibits strong absorption in the visible spectrum, the initial absorption peaks in the C<sub>2</sub>O lattice occur at around 5 eV, falling within the UV spectrum. Notably, we found that the C<sub>2</sub>O nanosheet presents significantly higher tensile strength compared to its C<sub>2</sub>N counterpart. MLIP-based calculations show that at room temperature, the C<sub>2</sub>O nanosheet can exhibit remarkably high tensile strength and lattice thermal conductivity of 42 GPa and 129 W/mK, respectively. The combined insights from DFT and MLIP-based results provide a comprehensive understanding of the electronic and optical properties of C<sub>2</sub>O nanosheets, suggesting them as mechanically robust and highly thermally conductive wide bandgap semiconductors.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"99"},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166619/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1186/s11671-024-04043-3
Syed Imdadul Hossain, Diellza Bajrami, Nazan Altun, Margherita Izzi, Cosima Damiana Calvano, Maria Chiara Sportelli, Luigi Gentile, Rosaria Anna Picca, Pelayo Gonzalez, Boris Mizaikoff, Nicola Cioffi
In this work, we demonstrate that a simple argentometric titration is a scalable, fast, green and robust approach for producing AgCl/antibiotic hybrid antimicrobial materials. We titrated AgNO3 into tetracycline hydrochloride (TCH) aqueous solution, thus forming AgCl/TCH in a one-step procedure. Furthermore, we investigated the one-pot synthesis of triply synergistic super-nanoantimicrobials, combining an inorganic source of Ag+ ions (AgCl), a disinfecting agent (benzyl-dimethyl-hexadecyl-ammonium chloride, BAC) and a molecular antibiotic (tetracycline hydrochloride, TCH). Conventional antimicrobial tests, industrial biofilm detection protocols, and in situ IR-ATR microbial biofilm monitoring, have been adapted to understand the performance of the synthesized super-nanoantimicrobial. The resulting hybrid AgCl/BAC/TCH nanoantimicrobials are found to be synergistically active in eradicating Salmonella enterica and Lentilactobacillus parabuchneri bacteria and biofilms. This study paves the way for the development of a new class of super-efficient nanoantimicrobials that combine relatively low amounts of multiple active species into a single (nano)formulation, thus preventing the development of antimicrobial resistance towards a single active principle.
{"title":"Development of super nanoantimicrobials combining AgCl, tetracycline and benzalkonium chloride.","authors":"Syed Imdadul Hossain, Diellza Bajrami, Nazan Altun, Margherita Izzi, Cosima Damiana Calvano, Maria Chiara Sportelli, Luigi Gentile, Rosaria Anna Picca, Pelayo Gonzalez, Boris Mizaikoff, Nicola Cioffi","doi":"10.1186/s11671-024-04043-3","DOIUrl":"10.1186/s11671-024-04043-3","url":null,"abstract":"<p><p>In this work, we demonstrate that a simple argentometric titration is a scalable, fast, green and robust approach for producing AgCl/antibiotic hybrid antimicrobial materials. We titrated AgNO<sub>3</sub> into tetracycline hydrochloride (TCH) aqueous solution, thus forming AgCl/TCH in a one-step procedure. Furthermore, we investigated the one-pot synthesis of triply synergistic super-nanoantimicrobials, combining an inorganic source of Ag<sup>+</sup> ions (AgCl), a disinfecting agent (benzyl-dimethyl-hexadecyl-ammonium chloride, BAC) and a molecular antibiotic (tetracycline hydrochloride, TCH). Conventional antimicrobial tests, industrial biofilm detection protocols, and in situ IR-ATR microbial biofilm monitoring, have been adapted to understand the performance of the synthesized super-nanoantimicrobial. The resulting hybrid AgCl/BAC/TCH nanoantimicrobials are found to be synergistically active in eradicating Salmonella enterica and Lentilactobacillus parabuchneri bacteria and biofilms. This study paves the way for the development of a new class of super-efficient nanoantimicrobials that combine relatively low amounts of multiple active species into a single (nano)formulation, thus preventing the development of antimicrobial resistance towards a single active principle.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"100"},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166621/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1186/s11671-024-04042-4
Priyanka Singh, Ivan Mijakovic
The continuous evolution and significance of green resources-based nanomaterials have spurred the exploration of sustainable sources for nanoparticle production. Green synthesis routes offer eco-friendly methodologies, ensuring nanoparticle stability and monodispersity, enhancing their efficiency for various applications. Notably, the thick biological corona layer surrounding nanoparticles (NPs) synthesized through green routes contributes to their unique properties. Consequently, there has been a surge in the development of NPs synthesis methods utilizing medicinal plants and diverse agricultural and waste resources. This study highlights the sustainable potential of barley grains for the synthesis of gold nanoparticles (Barley-AuNPs) and silver nanoparticles (Barley-AgNPs) as an environmentally friendly alternative, followed by NPs characterizations and their application against pathogenic bacteria: Escherichia coli UTI 89 and Pseudomonas aeruginosa PAO1. The rapid synthesis of Barley-AuNPs within 20 min and Barley-AgNPs within 30 min at 90 °C underscores the efficiency of barley as a green precursor. Characterization through advanced techniques, including SEM, TEM, EDS, AFM, DLS, FT-IR, MALDI-TOF, and sp-ICPMS, reveals the 20-25 nm size for Barley-AuNPs, while Barley-AgNPs demonstrate 2-10 nm size with spherical monodispersity. A notable contribution lies in the stability of these NPs over extended periods, attributed to a thick biological corona layer. This corona layer, which enhances stability, also influences the antimicrobial activity of Barley-AgNPs, presenting an intriguing trade-off. The antimicrobial investigations highlight the significant potential of Barley-AgNPs, with distinct minimum bactericidal concentrations (MBC) against P. aeruginosa and E. coli at 8 µg/mL. Overall, this research pioneers the use of barley grains for nanoparticle synthesis and unveils these nanoparticles' unique characteristics and potential antibacterial applications, contributing to the evolving landscape of sustainable nanotechnology.
{"title":"Harnessing barley grains for green synthesis of gold and silver nanoparticles with antibacterial potential.","authors":"Priyanka Singh, Ivan Mijakovic","doi":"10.1186/s11671-024-04042-4","DOIUrl":"10.1186/s11671-024-04042-4","url":null,"abstract":"<p><p>The continuous evolution and significance of green resources-based nanomaterials have spurred the exploration of sustainable sources for nanoparticle production. Green synthesis routes offer eco-friendly methodologies, ensuring nanoparticle stability and monodispersity, enhancing their efficiency for various applications. Notably, the thick biological corona layer surrounding nanoparticles (NPs) synthesized through green routes contributes to their unique properties. Consequently, there has been a surge in the development of NPs synthesis methods utilizing medicinal plants and diverse agricultural and waste resources. This study highlights the sustainable potential of barley grains for the synthesis of gold nanoparticles (Barley-AuNPs) and silver nanoparticles (Barley-AgNPs) as an environmentally friendly alternative, followed by NPs characterizations and their application against pathogenic bacteria: Escherichia coli UTI 89 and Pseudomonas aeruginosa PAO1. The rapid synthesis of Barley-AuNPs within 20 min and Barley-AgNPs within 30 min at 90 °C underscores the efficiency of barley as a green precursor. Characterization through advanced techniques, including SEM, TEM, EDS, AFM, DLS, FT-IR, MALDI-TOF, and sp-ICPMS, reveals the 20-25 nm size for Barley-AuNPs, while Barley-AgNPs demonstrate 2-10 nm size with spherical monodispersity. A notable contribution lies in the stability of these NPs over extended periods, attributed to a thick biological corona layer. This corona layer, which enhances stability, also influences the antimicrobial activity of Barley-AgNPs, presenting an intriguing trade-off. The antimicrobial investigations highlight the significant potential of Barley-AgNPs, with distinct minimum bactericidal concentrations (MBC) against P. aeruginosa and E. coli at 8 µg/mL. Overall, this research pioneers the use of barley grains for nanoparticle synthesis and unveils these nanoparticles' unique characteristics and potential antibacterial applications, contributing to the evolving landscape of sustainable nanotechnology.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"101"},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166622/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1186/s11671-024-04035-3
Isaac C Gilfeather, Harold W Pearson-Nadal, Jessica M Andriolo, Jack L Skinner
Applications of electrospinning (ES) range from fabrication of biomedical devices and tissue regeneration scaffolds to light manipulation and energy conversion, and even to deposition of materials that act as growth platforms for nanoscale catalysis. One major limitation to wide adoption of ES is stochastic fiber deposition resulting from the chaotic motion of the polymer stream as is approaches the deposition surface. In the past, fabrication of structures or materials with precisely determined mesoscale morphology has been accomplished through modification of electrode shape, use of multi-dimensional electrodes or pins, deposition onto weaving looms, hand-held electrospinning devices that allow the user to guide deposition, or electric field manipulation by lensing elements or apertures. In this work, we demonstrate an ES system that contains multiple high voltage power supplies that are independently controlled through a control algorithm implemented in LabVIEW. The end result is what we term "multiplex ES" where multiple independently controlled high-voltage signals are combined by the ES fiber to result in unique deposition control. COMSOL Multiphysics® software was used to model the electric field produced in this novel ES system. Using the multi-power supply system, we demonstrate fabrication of woven fiber materials that do not require complex deposition surfaces. Time-varied sinusoidal wave inputs were used to create electrospun torus shapes. The outer diameter of the tori was found, through parametric analysis, to be rather insensitive to frequency used during deposition, while inner diameter was inversely related to frequency, resulting in overall width of the tori increasing with frequency. Multiplex ES has a high-frequency cutoff based on the time response of the high voltage electrical circuit. These time constants were measured and minimized through the addition of parallel resistors that decreased impedance of the system and improved the high-frequency cutoff by up to 63%.
电纺丝(ES)的应用范围很广,从制造生物医学设备和组织再生支架,到光操纵和能量转换,甚至到沉积作为纳米级催化生长平台的材料。影响 ES 广泛应用的一个主要限制因素是聚合物流在接近沉积表面时的混乱运动所导致的随机纤维沉积。过去,通过改变电极形状、使用多维电极或插针、在织布机上沉积、允许用户引导沉积的手持式电纺丝设备或通过透镜元件或孔径操纵电场,可以制造出具有精确定位的中尺度形态的结构或材料。在这项工作中,我们展示了一个 ES 系统,该系统包含多个高压电源,可通过 LabVIEW 中实施的控制算法进行独立控制。最终结果就是我们所说的 "多路复用 ES",即 ES 光纤将多个独立控制的高压信号组合在一起,从而实现独特的沉积控制。我们使用 COMSOL Multiphysics® 软件对这种新型 ES 系统中产生的电场进行建模。利用多电源系统,我们演示了无需复杂沉积表面的编织纤维材料的制造。时变正弦波输入用于制造电纺丝环形状。通过参数分析发现,环状体的外径对沉积过程中使用的频率并不敏感,而内径则与频率成反比,导致环状体的整体宽度随频率增加而增加。Multiplex ES 具有基于高压电路时间响应的高频截止。通过测量这些时间常数,并通过增加并联电阻器使其最小化,从而降低了系统阻抗,并将高频截止率提高了 63%。
{"title":"Highly controlled multiplex electrospinning.","authors":"Isaac C Gilfeather, Harold W Pearson-Nadal, Jessica M Andriolo, Jack L Skinner","doi":"10.1186/s11671-024-04035-3","DOIUrl":"10.1186/s11671-024-04035-3","url":null,"abstract":"<p><p>Applications of electrospinning (ES) range from fabrication of biomedical devices and tissue regeneration scaffolds to light manipulation and energy conversion, and even to deposition of materials that act as growth platforms for nanoscale catalysis. One major limitation to wide adoption of ES is stochastic fiber deposition resulting from the chaotic motion of the polymer stream as is approaches the deposition surface. In the past, fabrication of structures or materials with precisely determined mesoscale morphology has been accomplished through modification of electrode shape, use of multi-dimensional electrodes or pins, deposition onto weaving looms, hand-held electrospinning devices that allow the user to guide deposition, or electric field manipulation by lensing elements or apertures. In this work, we demonstrate an ES system that contains multiple high voltage power supplies that are independently controlled through a control algorithm implemented in LabVIEW. The end result is what we term \"multiplex ES\" where multiple independently controlled high-voltage signals are combined by the ES fiber to result in unique deposition control. COMSOL Multiphysics® software was used to model the electric field produced in this novel ES system. Using the multi-power supply system, we demonstrate fabrication of woven fiber materials that do not require complex deposition surfaces. Time-varied sinusoidal wave inputs were used to create electrospun torus shapes. The outer diameter of the tori was found, through parametric analysis, to be rather insensitive to frequency used during deposition, while inner diameter was inversely related to frequency, resulting in overall width of the tori increasing with frequency. Multiplex ES has a high-frequency cutoff based on the time response of the high voltage electrical circuit. These time constants were measured and minimized through the addition of parallel resistors that decreased impedance of the system and improved the high-frequency cutoff by up to 63%.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"98"},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11156818/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}