[This corrects the article DOI: 10.14252/foodsafetyfscj.D-21-00006.].
[This corrects the article DOI: 10.14252/foodsafetyfscj.D-21-00006.].
Food Safety Commission, Cabinet Office, Government of Japan (FSCJ) was established in 2003 and marked its 20th anniversary in 2023. FSCJ held a commemorative ceremony and symposium to celebrate its 20th anniversary at Mita conference hall (Mita, Minato-ku, Tokyo) on September 1st, 2023, which attracted a total of 164 on-site attendees including six media companies, as well as 460 online viewers. FSCJ Chairperson Dr. YAMAMOTO gave a summary of each session; Session 1 outlined the various future challenges against which risk assessment organizations must prepare. In Session 2, panelists shared information on the development of new evaluation methodologies and international collaborations in order to meet various global demands and issues. In Session 3, the FSCJ introduced its future initiatives and called for international collaboration in sharing information and expertise to address data gaps and emerging issues, to which all panelists expressed their support. The importance of personnel development to tackle these challenges was also raised. In concluding the seminar, Dr. YAMAMOTO expressed that the common understanding gained from this occasion was the most fruitful achievement, owing to the international colleagues who shared their thought-provoking presentations and insights.
Transgrafting, a grafting technique that uses both genetically modified (GM) and non-GM plants, is a novel plant breeding technology that can be used to improve the efficiency of crop cultivation without introducing foreign genes into the edible parts of non-GM plants. This technique can facilitate the acquisition of disease resistance and/or increased yield. However, the translocation of low-molecular-weight compounds, ribonucleic acid (RNA), and proteins through graft junctions raises a potential safety risk for food crops. Here, we used a transgenic tobacco plant expressing a firefly luciferase gene (LUC) to examine the translocation of the LUC protein beyond the graft junction in grafted plants. We observed the bi-directional translocation of LUC proteins in transgrafted tobacco plants, i.e., from the rootstock to scion and vice versa. Transcriptomic analysis revealed that transcripts of the LUC gene were undetectable in non-GM plant bodies, indicating that the LUC protein itself was translocated. Moreover, the movement of the LUC protein is an episodic (i.e., non-continuous) event, since non-GM samples showing high LUC activity were flanked by non-GM samples showing no apparent LUC activity. Translocation from the GM to non-GM part depends on the characteristics of GM plant bodies; here, the enhanced translocation of the LUC protein into the non-GM scion was observed when LUC-expressing rootstocks with hairy roots were used. Moreover, the quantity of translocated LUC protein was far below the level that is generally required to induce an allergenic response. Finally, since the LUC protein levels of plants used for transgrafting are moderate and the LUC protein itself is relatively unstable, further investigation is necessary regarding whether the newly expressed protein in GM plants is highly stable, easily translocated, and/or highly expressed.
Transgrafting, a grafting technique that uses both genetically modified (GM) and non-GM plants, is a novel plant breeding technology that can be used to improve the efficiency of crop cultivation without introducing foreign genes into the edible parts of non-GM plants. This technique can facilitate the acquisition of disease resistance and/or increased yield. However, the translocation of low-molecular-weight compounds, ribonucleic acid (RNA), and proteins through graft junctions raises a potential safety risk for food crops. Here, we used a transgenic tobacco plant expressing a firefly luciferase gene (LUC) to examine the translocation of the LUC protein beyond the graft junction in grafted plants. We observed the bi-directional translocation of LUC proteins in transgrafted tobacco plants, i.e., from the rootstock to scion and vice versa. Transcriptomic analysis revealed that transcripts of the LUC gene were undetectable in non-GM plant bodies, indicating that the LUC protein itself was translocated. Moreover, the movement of the LUC protein is an episodic (i.e., non-continuous) event, since non-GM samples showing high LUC activity were flanked by non-GM samples showing no apparent LUC activity. Translocation from the GM to non-GM part depends on the characteristics of GM plant bodies; here, the enhanced translocation of the LUC protein into the non-GM scion was observed when LUC-expressing rootstocks with hairy roots were used. Moreover, the quantity of translocated LUC protein was far below the level that is generally required to induce an allergenic response. Finally, since the LUC protein levels of plants used for transgrafting are moderate and the LUC protein itself is relatively unstable, further investigation is necessary regarding whether the newly expressed protein in GM plants is highly stable, easily translocated, and/or highly expressed.
Food Safety Commission, Cabinet Office, Government of Japan (FSCJ) was established in 2003 and marked its 20th anniversary in 2023. FSCJ held a commemorative ceremony and symposium to celebrate its 20th anniversary at Mita conference hall (Mita, Minato-ku, Tokyo) on September 1st, 2023, which attracted a total of 164 on-site attendees including six media companies, as well as 460 online viewers. FSCJ Chairperson Dr. YAMAMOTO gave a summary of each session; Session 1 outlined the various future challenges against which risk assessment organizations must prepare. In Session 2, panelists shared information on the development of new evaluation methodologies and international collaborations in order to meet various global demands and issues. In Session 3, the FSCJ introduced its future initiatives and called for international collaboration in sharing information and expertise to address data gaps and emerging issues, to which all panelists expressed their support. The importance of personnel development to tackle these challenges was also raised. In concluding the seminar, Dr. YAMAMOTO expressed that the common understanding gained from this occasion was the most fruitful achievement, owing to the international colleagues who shared their thought-provoking presentations and insights.
Foodborne pathogens, such as Staphylococcus aureus and Salmonella spp., develop antimicrobial resistance (AMR) over time, resulting in compromised food safety. Therefore, this study aimed to determine the prevalence, compliance against Malaysia's veterinary standing procedure directive (APTVM 16 (c): 1/2011): Appendix 713), and antimicrobial resistance (AMR) profiles of S. aureus and Salmonella spp., in raw poultry meat, poultry meat products, and poultry-based ready-to-eat (RTE) foods. Here, 699 raw poultry meat and meat products samples were obtained from selected hazard analysis critical control points (HACCP)-certified poultry meat-processing plants. Additionally, 377 samples of poultry-based RTE meals were collected from dine-in establishments and hospital catering facilities in Klang Valley, Malaysia. Salmonella spp. and S. aureus were present in 2.1% and 2.8% of the analyzed samples, respectively. Salmonella spp isolated from raw poultry meat and its products displayed resistance to ampicillin (100%), chloramphenicol (87.0%), cefuroxime (60.9%), cefazolin (56.5%), and kanamycin (52.2%). Similarly, S. aureus isolated from raw poultry meat, its products, and poultry-based RTE foods exhibited resistance against tetracycline, chloramphenicol, penicillin, ciprofloxacin, trimethoprim, kanamycin, and cefoxitin. The multi-antibiotic resistance (MAR) demonstrated by these foodborne pathogens makes their prevalence disconcerting. This highlights the need for more stringent monitoring and enduring sanitary and hygiene practices in HACCP establishments to prevent foodborne infections and potential transmission of AMR bacteria.
Food Safety Commission of Japan (FSCJ) conducted a risk assessment of cyphenothrin (CAS No. 39515-40-7), a pyrethroid insecticide, intended to be used to exterminate cockroaches in piggeries. This was based on documents of pigsty sprays containing the active substance d∙d-T-Cyphenothrin submitted, and risk assessment reports of EPA (Environmental Protection Agency) and others. The data of d-T80-Cyphenothrin and d∙d-T-Cyphenothrin, with different abundance ratios of the eight optical isomers composing both cyphenothrins, were used for the evaluation. The data used in the assessment include pharmacokinetics (rats), residues (rats), genotoxicity, acute toxicity (mice and rats), subacute toxicity (mice, rats and dogs), chronic toxicity/carcinogenicity (mice, rats and dogs), reproductive toxicity (rats and rabbits), neurotoxicity (rats), general pharmacology and others. In the various genotoxicity tests, no genotoxicity of d-T80-Cyphenothrin were observed on living organisms. d∙d-T-Cyphenothrin was not expected to cause genotoxity from the results of d-T80-Cyphenothrin studies. FSCJ thus recognized it to be possible to specify an acceptable daily intake (ADI). The lowest no-observed-adverse-effect level (NOAEL) obtained from all the studies was 3 mg/kg bw per day. This value was based on the following effects of administration using d-T80-Cyphenothrin in dogs: Vomiting in a 13-week subacute toxicity study in males and females, and vomiting and redness of the oral mucous membranes in a 52-week chronic toxicity study in males. Addition of the safety factor 2 was appropriate based on the fact that the toxicity of d∙d-T-Cyphenothrin was slightly stronger than that of d-T80-Cyphenothrin. FSCJ thus specified an acceptable daily intake (ADI) of 0.015 mg/kg bw per day after applying a safety factor of 200 to the NOAEL.
Grafting has been widely applied in agricultural production in order to utilize agriculturally valuable traits. The use of genetically modified (GM) plants for grafting with non-GM crops will soon be implemented to generate chimeric plants (transgrafting)*, and the non-GM edible portions thus obtained could fall outside of the current legal regulations. A number of metabolites and macromolecules are reciprocally exchanged between scion and rootstock, affecting the crop properties as food. Accordingly, the potential risks associated with grafting, particularly those related to transgrafting with GM plants, should be carefully evaluated based on scientific evidence. In this study, we prepared a hetero-transgraft line composed of non-GM tomato scion and GM-tobacco rootstock expressing firefly luciferase. We also prepared a homograft line (both rootstock and scion are from non-GM tomato) and a heterograft line (non-GM tobacco rootstock and non-GM tomato scion). The non-GM tomato fruits were harvested from these grafted lines and subjected to comprehensive characterization by multi-omics analysis. Proteomic analysis detected tobacco-derived proteins from both heterograft and hetero-transgraft lines, suggesting protein transfer from the tobacco rootstock to the tomato fruits. No allergenicity information is available for these two tobacco-derived proteins. The transcript levels of the genes encoding two allergenic tomato intrinsic proteins (Sola l 4.0101 and Sola l 4.0201) decreased in the heterograft and hetero-transgraft lines. Several differences were observed in the metabolic profiles, including α-tomatine and nicotine. The accumulation of tobacco-derived nicotine in the tomato fruits of both heterograft and hetero-transgraft lines indicated that the transfer of unfavorable metabolites from rootstock to scion should be assessed as a food safety concern. Further investigations are needed to clarify whether variable environmental conditions and growth periods may influence the qualities of the non-GM edible parts produced by such transgrafted plants.
Food Safety Commission of Japan (FSCJ) conducted a safety assessment on a food additive: flavoring "Valencene", which is produced using Rhodobacter sphaeroides 168 strain based on documents mainly submitted by the applicant. Safety of the inserted genes including toxicity and allergenicity of the proteins produced from the inserted genes, recombinant and host protein residues, and others were evaluated based on the guideline. In the evaluations no risk due to use of recombinant technology was found in the bio-production of "Valencene". From the identified chemical structures, toxicological findings and also estimated intakes of non-active ingredients detected in "Valencene", none of safety issues were expected for them. From the above evaluations, FSCJ concluded that no concern relevant to human health is raised on the food additive, "Valencene" produced using Rhodobacter sphaeroides 168 strain.
We investigated the time-dependent acrylamide formation in mung bean sprouts during stir-frying under high and medium heat conditions. The acrylamide concentration range detected using the 3-mercaptobenzoic acid derivatization LC-MS/MS method was from below 29 ng/g [limit of detection (LOD)] to 6,900 ng/g. We also investigated the acrylamide levels in mung bean sprouts cooked using four methods while retaining their fresh firm texture using the thiosalicyclic acid derivatization LC-MS/MS method. The acrylamide concentration in microwave oven-cooked sprouts was below 16 ng/g (LOD). The samples cooked by stir-frying, parching, or boiling contained an acrylamide concentration above the LOD but below 42 ng/g [limit of quantification (LOQ)], except for one replicate of a stir-fried sample, whose acrylamide concentration was 42 ng/g. Bean sprouts are popular affordable vegetables, and when stir-fried, their acrylamide concentration is assumed to strongly affect the exposure of the Japanese population to acrylamide. Because the acrylamide concentration range of fried bean sprouts is as broad as mentioned above, the selection of a representative concentration value is difficult. A precise survey and data about acrylamide formation in relation to the bean sprout components before heating, their changes occurring during storage, and the cooking methods and conditions used are needed to estimate the exposure of the Japanese to acrylamide. Here, we showed that rinsing the sprouts before frying and frying them for a short time while mixing them well, while retaining the fresh firm texture to avoid burning and shriveling the sprouts is effective in decreasing the amount of acrylamide formed.