[This corrects the article DOI: 10.1093/function/zqac027.].
In patients with rhabdomyolysis, the overwhelming release of myoglobin into the circulation is the primary cause of kidney injury. Myoglobin causes direct kidney injury as well as severe renal vasoconstriction. An increase in renal vascular resistance (RVR) results in renal blood flow (RBF) and glomerular filtration rate (GFR) reduction, tubular injury, and acute kidney injury (AKI). The mechanisms that underlie rhabdomyolysis-induced AKI are not fully understood but may involve the local production of vasoactive mediators in the kidney. Studies have shown that myoglobin stimulates endothelin-1 (ET-1) production in glomerular mesangial cells. Circulating ET-1 is also increased in rats subjected to glycerol-induced rhabdomyolysis. However, the upstream mechanisms of ET-1 production and downstream effectors of ET-1 actions in rhabdomyolysis-induced AKI remain unclear. Vasoactive ET-1 is generated by ET converting enzyme 1 (ECE-1)-induced proteolytic processing of inactive big ET to biologically active peptides. The downstream ion channel effectors of ET-1-induced vasoregulation include the transient receptor potential cation channel, subfamily C member 3 (TRPC3). This study demonstrates that glycerol-induced rhabdomyolysis in Wistar rats promotes ECE-1-dependent ET-1 production, RVR increase, GFR decrease, and AKI. Rhabdomyolysis-induced increases in RVR and AKI in the rats were attenuated by post-injury pharmacological inhibition of ECE-1, ET receptors, and TRPC3 channels. CRISPR/Cas9-mediated knockout of TRPC3 channels attenuated ET-1-induced renal vascular reactivity and rhabdomyolysis-induced AKI. These findings suggest that ECE-1-driven ET-1 production and downstream activation of TRPC3-dependent renal vasoconstriction contribute to rhabdomyolysis-induced AKI. Hence, post-injury inhibition of ET-1-mediated renal vasoregulation may provide therapeutic targets for rhabdomyolysis-induced AKI.
When exercising humans increase their oxygen uptake (V̇O2) 20-fold above rest the numbers are staggering: Each minute the O2 transport system - lungs, cardiovascular, active muscles - transports and utilizes 161 sextillion (10 21) O2 molecules. Leg extension exercise increases the quadriceps muscles' blood flow 100-times; transporting 17 sextillion O2 molecules per kilogram per minute from microcirculation (capillaries) to mitochondria powering their cellular energetics. Within these muscles, the capillary network constitutes a prodigious blood-tissue interface essential to exchange O2 and carbon dioxide requisite for muscle function. In disease, microcirculatory dysfunction underlies the pathophysiology of heart failure, diabetes, hypertension, pulmonary disease, sepsis, stroke and senile dementia. Effective therapeutic countermeasure design demands knowledge of microvascular/capillary function in health to recognize and combat pathological dysfunction. Dated concepts of skeletal muscle capillary (from the Latin capillus meaning 'hair') function prevail despite rigorous data-supported contemporary models; hindering progress in the field for future and current students, researchers and clinicians. Following closely the 100th anniversary of August Krogh's 1920 Nobel Prize for capillary function this Evidence Review presents an anatomical and physiological development of this dynamic field: Constructing a scientifically defensible platform for our current understanding of microcirculatory physiological function in supporting blood-mitochondrial O2 transport. New developments include: 1. Putative roles of red blood cell aquaporin and rhesus channels in determining tissue O2 diffusion. 2. Recent discoveries regarding intramyocyte O2 transport. 3. Developing a comprehensive capillary functional model for muscle O2 delivery-to-V̇O2 matching. 4. Use of kinetics analysis to discriminate control mechanisms from collateral or pathological phenomena.
While the suprachiasmatic nucleus (SCN) controls 24-h rhythms in breathing, including minute ventilation (VE), the mechanisms by which the SCN drives these daily changes are not well understood. Moreover, the extent to which the circadian clock regulates hypercapnic and hypoxic ventilatory chemoreflexes is unknown. We hypothesized that the SCN regulates daily breathing and chemoreflex rhythms by synchronizing the molecular circadian clock of cells. We used whole-body plethysmography to assess ventilatory function in transgenic BMAL1 knockout (KO) mice to determine the role of the molecular clock in regulating daily rhythms in ventilation and chemoreflex. Unlike their wild-type littermates, BMAL1 KO mice exhibited a blunted daily rhythm in VE and failed to demonstrate daily variation in the hypoxic ventilatory response (HVR) or hypercapnic ventilatory response (HCVR). To determine if the observed phenotype was mediated by the molecular clock of key respiratory cells, we then assessed ventilatory rhythms in BMAL1fl/fl; Phox2bCre/+ mice, which lack BMAL1 in all Phox2b-expressing chemoreceptor cells (hereafter called BKOP). BKOP mice lacked daily variation in HVR, similar to BMAL1 KO mice. However, unlike BMAL1 KO mice, BKOP mice exhibited circadian variations in VE and HCVR comparable to controls. These data indicate that the SCN regulates daily rhythms in VE, HVR, and HCVR, in part, through the synchronization of the molecular clock. Moreover, the molecular clock of Phox2b-expressing cells is specifically necessary for daily variation in the hypoxic chemoreflex. These findings suggest that disruption of circadian biology may undermine respiratory homeostasis, which, in turn, may have clinical implications for respiratory disease.