首页 > 最新文献

IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference最新文献

英文 中文
Orientation-Insensitive Multi-Antenna Reader for Wireless Biomedical Applications. 用于无线生物医学应用的方向不敏感多天线读取器。
Nilan Udayanga, Yubin Lin, Manuel Monge

This paper presents a multi-antenna external reader system that enables orientation insensitive communication with implantable medical devices (IMDs) for wireless biomedical applications. The proposed system consists of a circular array with six loop antennas. The antenna placement and orientations are determined by analyzing the near-field magnetic field variations of the loop antenna. The proposed system is first simulated using HFSS electromagnetic simulation software. Our simulations show that the received power at the proposed external reader with six antennas only varies about 5 dB for any given orientation of the implanted antenna, which is highly significant compared to the 20-35 dB variation with a single external antenna. Here, we select the antenna which provides the largest coupling between the IMD to receive/transmit signals. A prototype of the proposed multi-antenna external reader is then implemented using custom-designed PCBs that interconnect loop antennas, transceiver ICs, and commercially-available circuit components. A custom PCB with a miniaturized loop antenna is used to emulate an implantable device. Based on measurement results, the received power in the external reader only varies about 3 dB when the miniaturized antenna rotates with respect to the x-axis. These measurements show good agreement with the simulated reader.

本文提出了一种多天线外部读取器系统,该系统可实现与植入式医疗设备(imd)的方向不敏感通信,用于无线生物医学应用。该系统由六个环形天线组成的圆形阵列组成。通过分析环形天线的近场磁场变化来确定天线的位置和方向。首先利用HFSS电磁仿真软件对系统进行了仿真。我们的仿真表明,对于植入天线的任何给定方向,所提出的带有六个天线的外部读取器的接收功率仅变化约5 dB,与单个外部天线的20-35 dB变化相比,这是非常显著的。在这里,我们选择在IMD之间提供最大耦合的天线来接收/发射信号。然后使用定制设计的pcb实现了所提出的多天线外部读取器的原型,这些pcb连接环路天线、收发器ic和商用电路组件。一个定制的PCB与小型化的环路天线被用来模拟植入式设备。根据测量结果,当小型化天线相对于x轴旋转时,外部读写器的接收功率仅变化约3db。这些测量结果与模拟阅读器显示出良好的一致性。
{"title":"Orientation-Insensitive Multi-Antenna Reader for Wireless Biomedical Applications.","authors":"Nilan Udayanga,&nbsp;Yubin Lin,&nbsp;Manuel Monge","doi":"10.1109/biocas49922.2021.9644998","DOIUrl":"https://doi.org/10.1109/biocas49922.2021.9644998","url":null,"abstract":"<p><p>This paper presents a multi-antenna external reader system that enables orientation insensitive communication with implantable medical devices (IMDs) for wireless biomedical applications. The proposed system consists of a circular array with six loop antennas. The antenna placement and orientations are determined by analyzing the near-field magnetic field variations of the loop antenna. The proposed system is first simulated using HFSS electromagnetic simulation software. Our simulations show that the received power at the proposed external reader with six antennas only varies about 5 dB for any given orientation of the implanted antenna, which is highly significant compared to the 20-35 dB variation with a single external antenna. Here, we select the antenna which provides the largest coupling between the IMD to receive/transmit signals. A prototype of the proposed multi-antenna external reader is then implemented using custom-designed PCBs that interconnect loop antennas, transceiver ICs, and commercially-available circuit components. A custom PCB with a miniaturized loop antenna is used to emulate an implantable device. Based on measurement results, the received power in the external reader only varies about 3 dB when the miniaturized antenna rotates with respect to the x-axis. These measurements show good agreement with the simulated reader.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939840/pdf/nihms-1741074.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40317547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Access Networking with Wireless Ultrasound-Powered Implants. 无线超声植入物的多接入网络。
Ting Chia Chang, Max Wang, Amin Arbabian

Multi-access networking with miniaturized wireless implantable devices can enable and advance closed-loop medical applications to deliver precise diagnosis and treatment. Using ultrasound (US) for wireless implant systems is an advantageous approach as US can beamform with high spatial resolution to efficiently power and address multiple implants in the network. To demonstrate these capabilities, we use wirelessly powered mm-sized implants with bidirectional communication links; uplink data communication measurements are performed using time, spatial, and frequency-division multiplexing schemes in tissue phantom. A 32-channel linear transmitter array and an external receiver are used as a base station to network with two implants that are placed 6.5 cm deep and spaced less than 1 cm apart. Successful wireless powering and uplink data communication around 100 kbps with a measured bit error rate below 10-4 are demonstrated for all three networking schemes, validating the multi-access networking feasibility of US wireless implant systems.

带有微型无线植入式设备的多址网络可以实现和推进闭环医疗应用,以提供精确的诊断和治疗。在无线植入系统中使用超声是一种有利的方法,因为超声可以以高空间分辨率进行波束形成,从而有效地为网络中的多个植入物供电和寻址。为了证明这些能力,我们使用了无线供电的毫米大小的植入物,带有双向通信链路;上行数据通信测量使用时间、空间和频分复用方案在组织幻象中执行。一个32通道的线性发射器阵列和一个外部接收器被用作基站,两个植入物放置在6.5厘米深,间隔小于1厘米。在所有三种网络方案中,成功的无线供电和上行数据通信在100 kbps左右,测量误码率低于10-4,验证了美国无线植入系统多接入网络的可行性。
{"title":"Multi-Access Networking with Wireless Ultrasound-Powered Implants.","authors":"Ting Chia Chang,&nbsp;Max Wang,&nbsp;Amin Arbabian","doi":"10.1109/BIOCAS.2019.8919144","DOIUrl":"https://doi.org/10.1109/BIOCAS.2019.8919144","url":null,"abstract":"<p><p>Multi-access networking with miniaturized wireless implantable devices can enable and advance closed-loop medical applications to deliver precise diagnosis and treatment. Using ultrasound (US) for wireless implant systems is an advantageous approach as US can beamform with high spatial resolution to efficiently power and address multiple implants in the network. To demonstrate these capabilities, we use wirelessly powered mm-sized implants with bidirectional communication links; uplink data communication measurements are performed using time, spatial, and frequency-division multiplexing schemes in tissue phantom. A 32-channel linear transmitter array and an external receiver are used as a base station to network with two implants that are placed 6.5 cm deep and spaced less than 1 cm apart. Successful wireless powering and uplink data communication around 100 kbps with a measured bit error rate below 10<sup>-4</sup> are demonstrated for all three networking schemes, validating the multi-access networking feasibility of US wireless implant systems.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2019 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BIOCAS.2019.8919144","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37583978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Resting Tremor Detection in Parkinson's Disease with Machine Learning and Kalman Filtering. 用机器学习和卡尔曼滤波检测帕金森病患者的静息震颤。
Lin Yao, Peter Brown, Mahsa Shoaran

Adaptive deep brain stimulation (aDBS) is an emerging method to alleviate the side effects and improve the efficacy of conventional open-loop stimulation for movement disorders. However, current adaptive DBS techniques are primarily based on single-feature thresholding, precluding an optimized delivery of stimulation for precise control of motor symptoms. Here, we propose to use a machine learning approach for resting-state tremor detection from local field potentials (LFPs) recorded from subthalamic nucleus (STN) in 12 Parkinson's patients. We compare the performance of state-of-the-art classifiers and LFP-based biomarkers for tremor detection, showing that the high-frequency oscillations and Hjorth parameters achieve a high discriminative performance. In addition, using Kalman filtering in the feature space, we show that the tremor detection performance significantly improves (F(1,15)=32.16, p<0.0001). The proposed method holds great promise for efficient on-demand delivery of stimulation in Parkinson's disease.

适应性深部脑刺激(aDBS)是一种新兴的方法,可以减轻传统开环刺激对运动障碍的副作用并提高疗效。然而,当前的自适应DBS技术主要基于单特征阈值,排除了用于精确控制运动症状的刺激的优化递送。在这里,我们建议使用机器学习方法从12名帕金森病患者的丘脑底核(STN)记录的局部场电位(LFP)中检测静息状态震颤。我们比较了最先进的分类器和基于LFP的生物标记物在震颤检测中的性能,表明高频振荡和Hjorth参数具有较高的判别性能。此外,在特征空间中使用卡尔曼滤波,我们表明震颤检测性能显著提高(F(1,15)=32.16,p
{"title":"Resting Tremor Detection in Parkinson's Disease with Machine Learning and Kalman Filtering.","authors":"Lin Yao, Peter Brown, Mahsa Shoaran","doi":"10.1109/BIOCAS.2018.8584721","DOIUrl":"10.1109/BIOCAS.2018.8584721","url":null,"abstract":"<p><p>Adaptive deep brain stimulation (aDBS) is an emerging method to alleviate the side effects and improve the efficacy of conventional open-loop stimulation for movement disorders. However, current adaptive DBS techniques are primarily based on single-feature thresholding, precluding an optimized delivery of stimulation for precise control of motor symptoms. Here, we propose to use a machine learning approach for resting-state tremor detection from local field potentials (LFPs) recorded from subthalamic nucleus (STN) in 12 Parkinson's patients. We compare the performance of state-of-the-art classifiers and LFP-based biomarkers for tremor detection, showing that the high-frequency oscillations and Hjorth parameters achieve a high discriminative performance. In addition, using Kalman filtering in the feature space, we show that the tremor detection performance significantly improves (F<sub>(1,15)</sub>=32.16, p<0.0001). The proposed method holds great promise for efficient on-demand delivery of stimulation in Parkinson's disease.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2018 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6645988/pdf/EMS83479.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41222264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-mode Microelectrode Array Featuring 20k Electrodes and High SNR for Extracellular Recording of Neural Networks. 双模微电极阵列,具有20k电极和高信噪比,用于神经网络的细胞外记录。
Xinyue Yuan, Vishalini Emmenegger, Marie Engelene J Obien, Andreas Hierlemann, Urs Frey

In recent electrophysiological studies, CMOS-based high-density microelectrode arrays (HD-MEA) have been widely used for studies of both in-vitro and in-vivo neuronal signals and network behavior. Yet, an open issue in MEA design concerns the tradeoff between signal-to-noise ratio (SNR) and number of readout channels. Here we present a new HD-MEA design in 0.18 μm CMOS technology, consisting of 19,584 electrodes at a pitch of 18.0 μm. By combing two readout structures, namely active-pixel-sensor (APS) and switch-matrix (SM) on a single chip, the dual-mode HD-MEA is capable of recording simultaneously from the entire array and achieving high signal-to-noise-ratio recordings on a subset of electrodes. The APS readout circuits feature a noise level of 10.9 μVrms for the action potential band (300 Hz - 5 kHz), while the noise level for the switch-matrix readout is 3.1 μVrms.

在最近的电生理学研究中,基于CMOS的高密度微电极阵列(HD-MEA)已被广泛用于体外和体内神经元信号和网络行为的研究。然而,MEA设计中的一个悬而未决的问题涉及信噪比(SNR)和读出通道数量之间的权衡。在这里,我们提出了一种采用0.18μm CMOS技术的新型HD-MEA设计,由间距为18.0μm的19584个电极组成。通过在单个芯片上结合两种读出结构,即有源像素传感器(APS)和开关矩阵(SM),双模HD-MEA能够同时从整个阵列进行记录,并在电极子集上实现高信噪比记录。APS读出电路在动作电位带(300 Hz-5 kHz)的噪声电平为10.9μVrms,而开关矩阵读出的噪声电平则为3.1μVrms。
{"title":"Dual-mode Microelectrode Array Featuring 20k Electrodes and High SNR for Extracellular Recording of Neural Networks.","authors":"Xinyue Yuan, Vishalini Emmenegger, Marie Engelene J Obien, Andreas Hierlemann, Urs Frey","doi":"10.1109/BIOCAS.2018.8584735","DOIUrl":"10.1109/BIOCAS.2018.8584735","url":null,"abstract":"<p><p>In recent electrophysiological studies, CMOS-based high-density microelectrode arrays (HD-MEA) have been widely used for studies of both <i>in-vitro</i> and <i>in-vivo</i> neuronal signals and network behavior. Yet, an open issue in MEA design concerns the tradeoff between signal-to-noise ratio (SNR) and number of readout channels. Here we present a new HD-MEA design in 0.18 μm CMOS technology, consisting of 19,584 electrodes at a pitch of 18.0 μm. By combing two readout structures, namely active-pixel-sensor (APS) and switch-matrix (SM) on a single chip, the dual-mode HD-MEA is capable of recording simultaneously from the entire array and achieving high signal-to-noise-ratio recordings on a subset of electrodes. The APS readout circuits feature a noise level of 10.9 μV<sub>rms</sub> for the action potential band (300 Hz - 5 kHz), while the noise level for the switch-matrix readout is 3.1 μV<sub>rms</sub>.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2018 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6616037/pdf/EMS83410.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37408251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Real Time Hough Transform Architecture Useable inside a WCE 一个可在WCE内部使用的实时霍夫转换架构
Orlando Chuquimia, A. Pinna, X. Dray, B. Granado
{"title":"A Real Time Hough Transform Architecture Useable inside a WCE","authors":"Orlando Chuquimia, A. Pinna, X. Dray, B. Granado","doi":"10.1109/BIOCAS.2019.8919052","DOIUrl":"https://doi.org/10.1109/BIOCAS.2019.8919052","url":null,"abstract":"","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83030857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-cost, Implantable Wireless Sensor Platform for Neuromodulation Research. 用于神经调制研究的低成本、可植入式无线传感器平台。
Ian McAdams, Hannah Kenyon, Dennis Bourbeau, Margot S Damaser, Christian Zorman, Steve J A Majerus

The role of peripheral nerves in regulating major organ function in health and disease is not well understood. Elucidating the relationships between biomarkers and neural activity during conditions free form anesthesia is essential to advancing future investigations of autonomic organ control and improving precision for neuromodulation treatment approaches. Here we present a simple, customizable, off-the-shelf component sensor platform to meet research needs for studying different organs under conscious, free movement. The platform consists of a small, rechargeable coin-cell battery, an energy-harvesting IC, a low-power microcontroller, a low-power pressure transducer, customizable number of electrodes with a common anode, inductive recharge input, and OOK inductive transmission. A case study demonstrating a bladder implant for long-term monitoring is presented, utilizing a novel, non-hermetic encapsulation approach. The customized platform uses two sleep modes to minimize battery loading, exhibiting a maximum time-averaged current draw of 125 micro-amps during sensing and transmission, with a quiescent current draw of 95 nano-amps into the microcontroller.

人们对外周神经在健康和疾病时调节主要器官功能的作用还不甚了解。阐明在无麻醉状态下生物标志物与神经活动之间的关系,对于推进未来的自律神经器官控制研究和提高神经调控治疗方法的精确性至关重要。在此,我们介绍一种简单、可定制的现成组件传感器平台,以满足在有意识的自由运动状态下研究不同器官的研究需求。该平台由小型可充电纽扣电池、能量收集集成电路、低功耗微控制器、低功耗压力传感器、可定制数量的共阳极电极、感应充电输入和 OOK 感应传输组成。本报告介绍了一个案例研究,展示了一种用于长期监测的膀胱植入物,该植入物采用了一种新颖的非密封封装方法。定制平台采用两种睡眠模式,最大限度地降低了电池负荷,在传感和传输过程中的最大时均电流为 125 微安,微控制器的静态电流为 95 纳安。
{"title":"Low-cost, Implantable Wireless Sensor Platform for Neuromodulation Research.","authors":"Ian McAdams, Hannah Kenyon, Dennis Bourbeau, Margot S Damaser, Christian Zorman, Steve J A Majerus","doi":"10.1109/BIOCAS.2018.8584729","DOIUrl":"10.1109/BIOCAS.2018.8584729","url":null,"abstract":"<p><p>The role of peripheral nerves in regulating major organ function in health and disease is not well understood. Elucidating the relationships between biomarkers and neural activity during conditions free form anesthesia is essential to advancing future investigations of autonomic organ control and improving precision for neuromodulation treatment approaches. Here we present a simple, customizable, off-the-shelf component sensor platform to meet research needs for studying different organs under conscious, free movement. The platform consists of a small, rechargeable coin-cell battery, an energy-harvesting IC, a low-power microcontroller, a low-power pressure transducer, customizable number of electrodes with a common anode, inductive recharge input, and OOK inductive transmission. A case study demonstrating a bladder implant for long-term monitoring is presented, utilizing a novel, non-hermetic encapsulation approach. The customized platform uses two sleep modes to minimize battery loading, exhibiting a maximum time-averaged current draw of 125 micro-amps during sensing and transmission, with a quiescent current draw of 95 nano-amps into the microcontroller.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2018 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020620/pdf/nihms-1068038.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37648860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acquisition of Bioelectrical Signals with Small Electrodes. 用小电极采集生物电信号。
Vijay Viswam, Marie Obien, Urs Frey, Felix Franke, Andreas Hierlemann

Although the mechanisms of recording bioelectrical signals from different types of electrogenic cells (neurons, cardiac cells etc.) by means of planar metal electrodes have been extensively studied, the recording characteristics and conditions for very small electrode sizes are not yet established. Here, we present a combined experimental and computational approach to elucidate, how the electrode size influences the recorded signals, and how inherent properties of the electrode, such as impedance, noise, and transmission characteristics shape the signal. We demonstrate that good quality recordings can be achieved with electrode diameters of less than 10 µm, provided that impedance reduction measures have been implemented and provided that a set of requirements for signal amplification has been met.

虽然通过平面金属电极从不同类型的电原细胞(神经元、心脏细胞等)记录生物电信号的机制已得到广泛研究,但极小尺寸电极的记录特性和条件尚未确定。在此,我们提出了一种实验和计算相结合的方法,以阐明电极尺寸如何影响记录信号,以及电极的固有特性(如阻抗、噪声和传输特性)如何影响信号。我们证明,只要采取减少阻抗的措施,并满足信号放大的一系列要求,直径小于 10 微米的电极也能实现高质量的记录。
{"title":"Acquisition of Bioelectrical Signals with Small Electrodes.","authors":"Vijay Viswam, Marie Obien, Urs Frey, Felix Franke, Andreas Hierlemann","doi":"10.1109/BIOCAS.2017.8325216","DOIUrl":"10.1109/BIOCAS.2017.8325216","url":null,"abstract":"<p><p>Although the mechanisms of recording bioelectrical signals from different types of electrogenic cells (neurons, cardiac cells etc.) by means of planar metal electrodes have been extensively studied, the recording characteristics and conditions for very small electrode sizes are not yet established. Here, we present a combined experimental and computational approach to elucidate, how the electrode size influences the recorded signals, and how inherent properties of the electrode, such as impedance, noise, and transmission characteristics shape the signal. We demonstrate that good quality recordings can be achieved with electrode diameters of less than 10 µm, provided that impedance reduction measures have been implemented and provided that a set of requirements for signal amplification has been met.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2017 ","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5958997/pdf/emss-77673.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36115054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impedance-based detection of Schistosoma mansoni larvae viability for drug screening. 基于阻抗法检测曼氏血吸虫幼虫活力的药物筛选。
Mario M Modena, Ketki Chawla, Flavio Lombardo, Sebastian C Bürgel, Gordana Panic, Jennifer Keiser, Andreas Hierlemann

Human schistosomiasis is a neglected tropical disease caused by trematodes, affecting almost 250 million people worldwide. For the past 30 years, treatment has relied on the large-scale administration of praziquantel. However, concerns regarding the appearance of drug-resistance parasites require efforts in identifying novel classes of suitable drugs against schistosomiasis. The current drug screening system is manual, slow and subjective. We present here a microfluidic platform capable of detecting changes in viability of Schistosoma mansoni larvae (Newly Transformed Schistosomula, NTS). This platform could serve as a pre-screening tool for the identification of drug candidates. It is composed of a pair of coplanar electrodes integrated in a microfluidic channel for the detection and quantification of NTS motility. Comparison of viability detection by using our platform with the standard visual evaluation shows that our method is able to reliably detect viable and non-viable NTS at high sensitivity, also in case of low-motility parasites, while enabling a 10 fold decrease in sample consumption.

人类血吸虫病是由吸虫引起的一种被忽视的热带病,影响全世界近2.5亿人。在过去的30年里,治疗依赖于吡喹酮的大规模使用。然而,对耐药寄生虫出现的担忧要求努力确定适合血吸虫病的新型药物。目前的药物筛选系统是人工的、缓慢的和主观的。我们在这里提出了一个微流控平台,能够检测曼氏血吸虫幼虫(新转化血吸虫,NTS)活力的变化。该平台可作为候选药物鉴定的预筛选工具。它由一对集成在微流体通道中的共面电极组成,用于检测和量化NTS运动。使用我们的平台进行活力检测与标准视觉评估的比较表明,我们的方法能够以高灵敏度可靠地检测活的和非活的NTS,也适用于低运动寄生虫,同时使样品消耗减少10倍。
{"title":"Impedance-based detection of <i>Schistosoma mansoni</i> larvae viability for drug screening.","authors":"Mario M Modena, Ketki Chawla, Flavio Lombardo, Sebastian C Bürgel, Gordana Panic, Jennifer Keiser, Andreas Hierlemann","doi":"10.1109/BIOCAS.2017.8325227","DOIUrl":"10.1109/BIOCAS.2017.8325227","url":null,"abstract":"<p><p>Human schistosomiasis is a neglected tropical disease caused by trematodes, affecting almost 250 million people worldwide. For the past 30 years, treatment has relied on the large-scale administration of praziquantel. However, concerns regarding the appearance of drug-resistance parasites require efforts in identifying novel classes of suitable drugs against schistosomiasis. The current drug screening system is manual, slow and subjective. We present here a microfluidic platform capable of detecting changes in viability of <i>Schistosoma mansoni</i> larvae (Newly Transformed Schistosomula, NTS). This platform could serve as a pre-screening tool for the identification of drug candidates. It is composed of a pair of coplanar electrodes integrated in a microfluidic channel for the detection and quantification of NTS motility. Comparison of viability detection by using our platform with the standard visual evaluation shows that our method is able to reliably detect viable and non-viable NTS at high sensitivity, also in case of low-motility parasites, while enabling a 10 fold decrease in sample consumption.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2017 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116545/pdf/EMS106924.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39138459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted Transcutaneous Electrical Nerve Stimulation for Phantom Limb Sensory Feedback. 针对幻肢感觉反馈的经皮神经电刺激。
Luke Osborn, Matthew Fifer, Courtney Moran, Joseph Betthauser, Robert Armiger, Rahul Kaliki, Nitish Thakor

In this work, we investigated the use of noninvasive, targeted transcutaneous electrical nerve stimulation (TENS) of peripheral nerves to provide sensory feedback to two amputees, one with targeted sensory reinnervation (TSR) and one without TSR. A major step in developing a closed-loop prosthesis is providing the sense of touch back to the amputee user. We investigated the effect of targeted nerve stimulation amplitude, pulse width, and frequency on stimulation perception. We discovered that both subjects were able to reliably detect stimulation patterns with pulses less than 1 ms. We utilized the psychophysical results to produce a subject specific stimulation pattern using a leaky integrate and fire (LIF) neuron model from force sensors on a prosthetic hand during a grasping task. For the first time, we show that TENS is able to provide graded sensory feedback at multiple sites in both TSR and non-TSR amputees while using behavioral results to tune a neuromorphic stimulation pattern driven by a force sensor output from a prosthetic hand.

在这项工作中,我们研究了使用非侵入性、有针对性的经皮神经电刺激(TENS)为两名截肢者提供感觉反馈,其中一名截肢者接受了有针对性的感觉再支配(TSR),另一名截肢者没有接受TSR。开发闭环假肢的一个重要步骤是为截肢者提供触觉反馈。我们研究了靶向神经刺激幅度、脉宽和频率对刺激感知的影响。我们发现,两名受试者都能可靠地检测到脉冲小于 1 毫秒的刺激模式。我们利用心理物理结果,通过假手上的力传感器,在抓握任务中使用漏整合和发射(LIF)神经元模型生成了特定受试者的刺激模式。我们首次展示了 TENS 能够在 TSR 和非 TSR 截肢者的多个部位提供分级感觉反馈,同时利用行为结果调整由假手的力传感器输出驱动的神经形态刺激模式。
{"title":"Targeted Transcutaneous Electrical Nerve Stimulation for Phantom Limb Sensory Feedback.","authors":"Luke Osborn, Matthew Fifer, Courtney Moran, Joseph Betthauser, Robert Armiger, Rahul Kaliki, Nitish Thakor","doi":"10.1109/biocas.2017.8325200","DOIUrl":"10.1109/biocas.2017.8325200","url":null,"abstract":"<p><p>In this work, we investigated the use of noninvasive, targeted transcutaneous electrical nerve stimulation (TENS) of peripheral nerves to provide sensory feedback to two amputees, one with targeted sensory reinnervation (TSR) and one without TSR. A major step in developing a closed-loop prosthesis is providing the sense of touch back to the amputee user. We investigated the effect of targeted nerve stimulation amplitude, pulse width, and frequency on stimulation perception. We discovered that both subjects were able to reliably detect stimulation patterns with pulses less than 1 ms. We utilized the psychophysical results to produce a subject specific stimulation pattern using a leaky integrate and fire (LIF) neuron model from force sensors on a prosthetic hand during a grasping task. For the first time, we show that TENS is able to provide graded sensory feedback at multiple sites in both TSR and non-TSR amputees while using behavioral results to tune a neuromorphic stimulation pattern driven by a force sensor output from a prosthetic hand.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2017 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068407/pdf/nihms-1692461.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38908008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A true full-duplex 32-channel 0.135cm3 neural interface 一个真正的全双工32通道0.135cm3神经接口
Dejan Rozgić, Vahagn Hokhikyan, Wenlong Jiang, Sina Basir-Kazeruni, H. Chandrakumar, Weiyu Leng, D. Markovic
We propose a novel neuromodulation (NM) interface with true 100mV pp linear input range that enables concurrent neural sensing and stimulation. It includes a flexible 4-driver-to-32-contact stimulator that can deliver up to 3.1mA per driver (total 12.4mA) and a 32-channel sensing unit. This 32-channel interface meets design requirements of human-quality implants at unprecedented electronic miniaturization (20x reduction) as compared to prior art. It offers major new clinical perspectives: always-on sensing for enhanced closed-loop therapy, multi-channel arbitrary stimulation waveforms with user-friendly programming, and a high spatial resolution neural interface for precise target localization.
我们提出了一种新颖的神经调节(NM)接口,具有真正的100mV pp线性输入范围,可以同时实现神经传感和刺激。它包括一个灵活的4驱动器到32触点刺激器,每个驱动器可提供高达3.1mA(总12.4mA)和一个32通道传感单元。与现有技术相比,这种32通道接口以前所未有的电子小型化(缩小20倍)满足人体质量植入物的设计要求。它提供了主要的新临床前景:用于增强闭环治疗的始终在线传感,具有用户友好编程的多通道任意刺激波形,以及用于精确定位目标的高空间分辨率神经接口。
{"title":"A true full-duplex 32-channel 0.135cm3 neural interface","authors":"Dejan Rozgić, Vahagn Hokhikyan, Wenlong Jiang, Sina Basir-Kazeruni, H. Chandrakumar, Weiyu Leng, D. Markovic","doi":"10.1109/BIOCAS.2017.8325193","DOIUrl":"https://doi.org/10.1109/BIOCAS.2017.8325193","url":null,"abstract":"We propose a novel neuromodulation (NM) interface with true 100mV pp linear input range that enables concurrent neural sensing and stimulation. It includes a flexible 4-driver-to-32-contact stimulator that can deliver up to 3.1mA per driver (total 12.4mA) and a 32-channel sensing unit. This 32-channel interface meets design requirements of human-quality implants at unprecedented electronic miniaturization (20x reduction) as compared to prior art. It offers major new clinical perspectives: always-on sensing for enhanced closed-loop therapy, multi-channel arbitrary stimulation waveforms with user-friendly programming, and a high spatial resolution neural interface for precise target localization.","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"24 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81719454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
期刊
IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1