U. Robert, S. Etuk, S. Ekong, O. Agbasi, Nsikak Ekpenyong, Samuel Sunday Akpan, Eme Aniefiok Umana
Abstract Coconut husk is generated yearly as waste in large quantities but majorly under-utilized. Also, as a result of high embodied carbon, cement production is one of the largest contributors to construction sector carbon footprint. Since accumulation of unmanaged agro-waste like coconut husk has an increased environmental concern due to its pollution effect, recycling it into sustainable construction materials is a viable solution for future generation. In this study, experiments were performed to investigate the influence of coconut husk ash nanomaterial (CHAN) inclusion on electrical characteristics of plain cement paste (BCP) and mortar (CSM) samples at curing ages of 7 and 28 days. The results showed increase in electrical resistivity, thermal constant, and activation energy with curing duration for heating and cooling cycles of BCP and CSM. With inclusion of CHAN, the developed cement paste (CAP) and mortar (CASM) possessed lower values in all cases compared to their counterparts. Also, during heating at 28 days, both the CAP and CASM exhibited decrease in thermal constant. Though electrical resistance of all the samples varied inversely with temperature, CAP and CASM were found to possess greater potentials to make building structures intrinsically smart. Hence, in addition to solving disposal problems, utilization of coconut husks as described herein could enhance development of safe, inexpensive, and sustainable buildings that have large temperature sensing volume.
{"title":"Electrical Characteristics of Dry Cement – Based Composites Modified with Coconut Husk Ash Nanomaterial","authors":"U. Robert, S. Etuk, S. Ekong, O. Agbasi, Nsikak Ekpenyong, Samuel Sunday Akpan, Eme Aniefiok Umana","doi":"10.2478/adms-2022-0008","DOIUrl":"https://doi.org/10.2478/adms-2022-0008","url":null,"abstract":"Abstract Coconut husk is generated yearly as waste in large quantities but majorly under-utilized. Also, as a result of high embodied carbon, cement production is one of the largest contributors to construction sector carbon footprint. Since accumulation of unmanaged agro-waste like coconut husk has an increased environmental concern due to its pollution effect, recycling it into sustainable construction materials is a viable solution for future generation. In this study, experiments were performed to investigate the influence of coconut husk ash nanomaterial (CHAN) inclusion on electrical characteristics of plain cement paste (BCP) and mortar (CSM) samples at curing ages of 7 and 28 days. The results showed increase in electrical resistivity, thermal constant, and activation energy with curing duration for heating and cooling cycles of BCP and CSM. With inclusion of CHAN, the developed cement paste (CAP) and mortar (CASM) possessed lower values in all cases compared to their counterparts. Also, during heating at 28 days, both the CAP and CASM exhibited decrease in thermal constant. Though electrical resistance of all the samples varied inversely with temperature, CAP and CASM were found to possess greater potentials to make building structures intrinsically smart. Hence, in addition to solving disposal problems, utilization of coconut husks as described herein could enhance development of safe, inexpensive, and sustainable buildings that have large temperature sensing volume.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87153946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In this study, S235JR structural steel samples in uncoated condition and coated (shop-primer) in different thicknesses were welded by MAG (Metal Active Gas) welding method, and the effects of these applications on the mechanical and microstructure properties of the material were investigated. In the experimental studies, the first specimen group were used without any sandblasting and coating application, the second group specimens were sandblasted at Sa 2 ½ degree, and 25 µm, 50 µm, and 75 µm coatings were applied to the specimens in the other group. Surface conditions and coating thicknesses were selected as the variable parameters. With the examination of the radiography films, it was observed that the surface conditions affected the welded joint. As a result of the study, it was observed that altered coating thicknesses caused defects in the welding zone. It was determined that the coating thickness partially affected the mechanical properties, and the highest hardness values occurred in the weld zone in all samples. Relatively low values were obtained in tensile, bending and Charpy impact tests performed on sample groups with 75 µm coating thickness. The results were verified by the surface fracture, SEM, and EDS studies.
摘要:采用MAG (Metal Active Gas)焊接方法,对未涂覆和涂覆不同厚度的S235JR结构钢试样进行了焊接,研究了不同涂覆条件对材料力学性能和显微组织性能的影响。在实验研究中,第一组试样不进行喷砂和涂层处理,第二组试样进行Sa 2.5度喷砂处理,另一组试样分别进行25µm、50µm和75µm涂层处理。选择表面条件和涂层厚度作为可变参数。通过对射线照相底片的检查,可以观察到表面状况对焊接接头的影响。研究结果表明,涂层厚度的改变会导致焊接区出现缺陷。结果表明,涂层厚度对合金的力学性能有一定的影响,且硬度值均出现在焊缝区。在涂层厚度为75µm的样品组上进行的拉伸、弯曲和Charpy冲击试验中获得的数值相对较低。结果通过表面断裂、扫描电镜和能谱分析得到了验证。
{"title":"Effect of Shop-Primer Coating on S235JR Steel on MAG Weldability","authors":"Cemil Çetinkaya, Ali Akay, U. Arabaci, U. Özdemir","doi":"10.2478/adms-2022-0007","DOIUrl":"https://doi.org/10.2478/adms-2022-0007","url":null,"abstract":"Abstract In this study, S235JR structural steel samples in uncoated condition and coated (shop-primer) in different thicknesses were welded by MAG (Metal Active Gas) welding method, and the effects of these applications on the mechanical and microstructure properties of the material were investigated. In the experimental studies, the first specimen group were used without any sandblasting and coating application, the second group specimens were sandblasted at Sa 2 ½ degree, and 25 µm, 50 µm, and 75 µm coatings were applied to the specimens in the other group. Surface conditions and coating thicknesses were selected as the variable parameters. With the examination of the radiography films, it was observed that the surface conditions affected the welded joint. As a result of the study, it was observed that altered coating thicknesses caused defects in the welding zone. It was determined that the coating thickness partially affected the mechanical properties, and the highest hardness values occurred in the weld zone in all samples. Relatively low values were obtained in tensile, bending and Charpy impact tests performed on sample groups with 75 µm coating thickness. The results were verified by the surface fracture, SEM, and EDS studies.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80130302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This work reports a study of corrosion lifetime of transparent electrodes deposited on the microscopic glass substrate. A procedure was developed for obtaining the transparent electrode by spray method. The corrosion lifetime variation in the presence of 1.5 M NaOH medium chemically degraded at room temperature before and after gamma irradiation was determined by measuring the evolution of the structure, electrical and optical characteristics. The mean values of transmittance up to 25 month before and after irradiation were calculated 91% ±6% and 96±7%, respectively. The average value of resistivity after corrosion and age time after γ-irradiation was 0.016±9% Ω.cm and 0.017± 4% at 1.0 kHz. No significant changes observed for 27 hr corrosion and 25 month age time of the transparent electrodes in NaOH solution.
摘要本文报道了沉积在微观玻璃基板上的透明电极的腐蚀寿命的研究。提出了一种喷雾法制备透明电极的方法。通过测量结构、电学和光学特性的演变,确定了在室温下化学降解的1.5 M NaOH介质存在前后的腐蚀寿命变化。照射前后25个月的平均透光率分别为91%±6%和96±7%。腐蚀后电阻率和γ辐照时效时间的平均值为0.016±9% Ω。0.017±4%在1.0 kHz。在NaOH溶液中腐蚀27小时和时效25个月,透明电极无明显变化。
{"title":"Corrosion of Transparent Electrodes Study","authors":"A. Maged, L. A. M. Nada","doi":"10.2478/adms-2022-0005","DOIUrl":"https://doi.org/10.2478/adms-2022-0005","url":null,"abstract":"Abstract This work reports a study of corrosion lifetime of transparent electrodes deposited on the microscopic glass substrate. A procedure was developed for obtaining the transparent electrode by spray method. The corrosion lifetime variation in the presence of 1.5 M NaOH medium chemically degraded at room temperature before and after gamma irradiation was determined by measuring the evolution of the structure, electrical and optical characteristics. The mean values of transmittance up to 25 month before and after irradiation were calculated 91% ±6% and 96±7%, respectively. The average value of resistivity after corrosion and age time after γ-irradiation was 0.016±9% Ω.cm and 0.017± 4% at 1.0 kHz. No significant changes observed for 27 hr corrosion and 25 month age time of the transparent electrodes in NaOH solution.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89251055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. F. Kılıçaslan, Saad Ibrahim Elburni, Yasin Yilmaz, M. Akkaş
Abstract Main aim of this study is to examine change of microstructural and the mechanical properties of Al-7075 alloy depending on B content added with different proportions. Rapid solidification process used to produce the alloys was carried out with a single roll melt spinner via a wheel with a rotational speed of 25 m/s. For the microstructural characterization of the alloys, a scanning electron microscope and X-ray diffraction analyzes were used. According to obtained results, it can be said that B addition led to modification of dimensions and shapes of both α−Al and intermetallic phases occurred, it reduced average grain size from 0.45 μm to 0.34 μm in the microstructure. The B addition also led to dramatically increase in microhardness of the Al-7075 alloy. The microhardness of the alloy with 0.4 wt. % B is 0.19 GPa, this is clearly one times higher than that of the alloy without B addition. The microhardness of the alloy with 1 wt. % B is 0.21 GPa, this is also slightly higher than that of the alloy with 0.4 wt. % B.
{"title":"Effects of B Addition on the Microstructure and Microhardness of Melt-Spun Al-7075 Alloy","authors":"M. F. Kılıçaslan, Saad Ibrahim Elburni, Yasin Yilmaz, M. Akkaş","doi":"10.2478/adms-2022-0004","DOIUrl":"https://doi.org/10.2478/adms-2022-0004","url":null,"abstract":"Abstract Main aim of this study is to examine change of microstructural and the mechanical properties of Al-7075 alloy depending on B content added with different proportions. Rapid solidification process used to produce the alloys was carried out with a single roll melt spinner via a wheel with a rotational speed of 25 m/s. For the microstructural characterization of the alloys, a scanning electron microscope and X-ray diffraction analyzes were used. According to obtained results, it can be said that B addition led to modification of dimensions and shapes of both α−Al and intermetallic phases occurred, it reduced average grain size from 0.45 μm to 0.34 μm in the microstructure. The B addition also led to dramatically increase in microhardness of the Al-7075 alloy. The microhardness of the alloy with 0.4 wt. % B is 0.19 GPa, this is clearly one times higher than that of the alloy without B addition. The microhardness of the alloy with 1 wt. % B is 0.21 GPa, this is also slightly higher than that of the alloy with 0.4 wt. % B.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78515146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The purpose of this paper is to develop a framework for managing wastes resulting from the tire rubber valorization waste of quarry sand mortar. A research methodology was developed to achieve the abovementioned main objective. To create a framework for use of crumb rubber in the production of quarry sand mortars, with adequate physical and mechanical properties to be used in a variety of construction applications. Testing included strength and thermal conductivity properties of the various mixture composition subjected to varying by 5%. 10%. 15% and 20% by quarry sand substitution. The internal microstructure, and phase composition of all mixture mortars, were investigated using scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS). The results show that increasing incorporation rate of additives significantly improves thermophysical properties of based materials, the hardened properties of the various mortars made are analyzed and compared, the experimental results revealed that; the addition of crumb rubber waste in the quarry sand mortar is beneficial for physical properties (Mv) mass loss, The results of mechanics strength of the rubber based quarry mortar studied are also significantly reduced.The addition of 5% to 20% rubber crumb in matrix and the replacement of sand by 20% of rubber in quarry mortar record the low thermal conductivity properties including that appropriate QS and CR levels may change the pattern of quarry sand mortar. witch explain by a Larger pore and higher porosity produce a less rigid and uniform matrix, meaning that the sonic pulses must travel through longer and more miscellaneous paths which improvement of insulation. The good performance of new materials encourages us to integrate them into the building envelope.
{"title":"Rubber Influence on the Performance of Thermal Insulating Quarry Sand Mortars-A Statistical Analysis","authors":"Smain Benyamina, Y. Abadou","doi":"10.2478/adms-2022-0002","DOIUrl":"https://doi.org/10.2478/adms-2022-0002","url":null,"abstract":"Abstract The purpose of this paper is to develop a framework for managing wastes resulting from the tire rubber valorization waste of quarry sand mortar. A research methodology was developed to achieve the abovementioned main objective. To create a framework for use of crumb rubber in the production of quarry sand mortars, with adequate physical and mechanical properties to be used in a variety of construction applications. Testing included strength and thermal conductivity properties of the various mixture composition subjected to varying by 5%. 10%. 15% and 20% by quarry sand substitution. The internal microstructure, and phase composition of all mixture mortars, were investigated using scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM/EDS). The results show that increasing incorporation rate of additives significantly improves thermophysical properties of based materials, the hardened properties of the various mortars made are analyzed and compared, the experimental results revealed that; the addition of crumb rubber waste in the quarry sand mortar is beneficial for physical properties (Mv) mass loss, The results of mechanics strength of the rubber based quarry mortar studied are also significantly reduced.The addition of 5% to 20% rubber crumb in matrix and the replacement of sand by 20% of rubber in quarry mortar record the low thermal conductivity properties including that appropriate QS and CR levels may change the pattern of quarry sand mortar. witch explain by a Larger pore and higher porosity produce a less rigid and uniform matrix, meaning that the sonic pulses must travel through longer and more miscellaneous paths which improvement of insulation. The good performance of new materials encourages us to integrate them into the building envelope.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73192996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Due to the numerous challenges faced during the dissimilar welding, choosing the right process parameters and their optimization yields better results. In this context, the current investigation is focused on the optimization of process parameters. Taguchi’s L9 orthogonal array was selected to carry out the experimental investigations. The welded samples were tested for shear strength, and the results were analysed using Taguchi’s S/N ratio analysis with “larger the better” criteria. Log-linear regression analysis was applied to formulate an empirical correlation between the process parameters and shear strength. According to S/N ratio analysis, the tool rotational speed of 800 rpm, welding speed of 20 mm/min and a penetration depth of 4.1 mm are the optimized parameters that achieve high joint strength. The achieved joint strength was 3.46 kN that is 70% of the base aluminium metal. It was noticed from the Analysis of variance of the regression model that penetration depth and tool rotational speed are the significant contributors with p-values less than 0.5. Confirmation tests show that the error between the predicted and calculated shear strength is 2.06% which is considered acceptable. R2 and adjusted R2 values of the model with a standard error of 0.076 show that the developed model is statistically significant.
{"title":"Mathematical Model for Friction Stir Lap Welded AA5052 and SS304 Joints and Process Parameters Optimization for High Joint Strength","authors":"Veerendra Chitturi, S. R. Pedapati, M. Awang","doi":"10.2478/adms-2022-0001","DOIUrl":"https://doi.org/10.2478/adms-2022-0001","url":null,"abstract":"Abstract Due to the numerous challenges faced during the dissimilar welding, choosing the right process parameters and their optimization yields better results. In this context, the current investigation is focused on the optimization of process parameters. Taguchi’s L9 orthogonal array was selected to carry out the experimental investigations. The welded samples were tested for shear strength, and the results were analysed using Taguchi’s S/N ratio analysis with “larger the better” criteria. Log-linear regression analysis was applied to formulate an empirical correlation between the process parameters and shear strength. According to S/N ratio analysis, the tool rotational speed of 800 rpm, welding speed of 20 mm/min and a penetration depth of 4.1 mm are the optimized parameters that achieve high joint strength. The achieved joint strength was 3.46 kN that is 70% of the base aluminium metal. It was noticed from the Analysis of variance of the regression model that penetration depth and tool rotational speed are the significant contributors with p-values less than 0.5. Confirmation tests show that the error between the predicted and calculated shear strength is 2.06% which is considered acceptable. R2 and adjusted R2 values of the model with a standard error of 0.076 show that the developed model is statistically significant.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85643057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Muthamilarasu, S. Sivakumar, G. Divya, M. Sivakumar, D. Sakthi
Abstract The photocatalytic degradation and mineralization of Reactive Orange 30 on NiO/CuO/TiO2 ternary composites have been studied using solar light irradiation. The NiO/CuO/TiO2 ternary composites were prepared by producing ethanolic dispersions containing varied amounts of NiO and CuO/TiO2 (3wt% to 15wt.%), followed by annealing at 300 °C. SEM, UV- Vis DRS, PL, XRD and FTIR analysis have been used to characterize the unary (parent photocatalysts), binary and ternary composites. Under solar light irradiation, NiO/CuO/TiO2 ternary composites exhibited an excellent photocatalytic activity in degradation of reactive orange 30 in aqueous solution, whereas the NiO/TiO2, CuO/TiO2 and bare photocatalyst such as NiO, CuO, TiO2 showed lower activities. It was deduced that the remarkable visible-light absorption phenomenon and band gap reduction of the NiO/CuO/TiO2 ternary composites taking place. It paves way for the photogenerated electron transfer between CB of the NiO, CuO, TiO2 semiconductors and also holes shifting between VB of above mentioned materials. The NiO/CuO/TiO2 ternary composite shows good photostability and the photocatalyst retains 94% of its initial activity in the seventh cycle, respectively.
摘要研究了太阳光照下活性橙30在NiO/CuO/TiO2三元复合材料上的光催化降解和矿化。通过制备含有不同数量的NiO和CuO/TiO2 (3wt% ~ 15wt %)的乙醇分散体,在300℃下退火,制备了NiO/CuO/TiO2三元复合材料。利用SEM、UV- Vis DRS、PL、XRD和FTIR等分析手段对复合材料进行了表征。在太阳光照射下,NiO/CuO/TiO2三元复合材料对水中活性橙30的降解表现出优异的光催化活性,而NiO/TiO2、CuO/TiO2以及NiO、CuO、TiO2等裸光催化剂的降解活性较低。结果表明,NiO/CuO/TiO2三元复合材料出现了明显的可见光吸收现象和带隙减小。这为NiO, CuO, TiO2半导体的CB之间的光生电子转移以及上述材料的VB之间的空穴转移铺平了道路。NiO/CuO/TiO2三元复合材料表现出良好的光稳定性,光催化剂在第七次循环中分别保持了94%的初始活性。
{"title":"NiO/CuO/TiO2 Ternary Composites: Development, Physicochemical Characterization and Photocatalytic Degradation Study Over Reactive Orange 30 Solutions Under Solar Light Irradiation","authors":"A. Muthamilarasu, S. Sivakumar, G. Divya, M. Sivakumar, D. Sakthi","doi":"10.2478/adms-2022-0003","DOIUrl":"https://doi.org/10.2478/adms-2022-0003","url":null,"abstract":"Abstract The photocatalytic degradation and mineralization of Reactive Orange 30 on NiO/CuO/TiO2 ternary composites have been studied using solar light irradiation. The NiO/CuO/TiO2 ternary composites were prepared by producing ethanolic dispersions containing varied amounts of NiO and CuO/TiO2 (3wt% to 15wt.%), followed by annealing at 300 °C. SEM, UV- Vis DRS, PL, XRD and FTIR analysis have been used to characterize the unary (parent photocatalysts), binary and ternary composites. Under solar light irradiation, NiO/CuO/TiO2 ternary composites exhibited an excellent photocatalytic activity in degradation of reactive orange 30 in aqueous solution, whereas the NiO/TiO2, CuO/TiO2 and bare photocatalyst such as NiO, CuO, TiO2 showed lower activities. It was deduced that the remarkable visible-light absorption phenomenon and band gap reduction of the NiO/CuO/TiO2 ternary composites taking place. It paves way for the photogenerated electron transfer between CB of the NiO, CuO, TiO2 semiconductors and also holes shifting between VB of above mentioned materials. The NiO/CuO/TiO2 ternary composite shows good photostability and the photocatalyst retains 94% of its initial activity in the seventh cycle, respectively.","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72449667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.11648/j.am.20221101.12
H. Zeng, Jianping Zhou, Yan Zhang
{"title":"Research Progress of Composite Materials of NiTi SMA and Stainless Steel","authors":"H. Zeng, Jianping Zhou, Yan Zhang","doi":"10.11648/j.am.20221101.12","DOIUrl":"https://doi.org/10.11648/j.am.20221101.12","url":null,"abstract":"","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77953700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.11648/j.am.20221101.13
W. Qingsheng, P. Novikov, Anadoli Popovich, Yang Zhelong, Yu-hong Yao, Okonov Leonid
{"title":"Studies on Synthesis and Electrochemical Properties of Lithium Ferrous Silicate Cathode Materials","authors":"W. Qingsheng, P. Novikov, Anadoli Popovich, Yang Zhelong, Yu-hong Yao, Okonov Leonid","doi":"10.11648/j.am.20221101.13","DOIUrl":"https://doi.org/10.11648/j.am.20221101.13","url":null,"abstract":"","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83189246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.11648/j.am.20221101.11
Nassio Sory, Moussa Ouedraogo, A. Messan, Issiaka Sanou, Moustapha Sawadogo, Kouka Jeremy Ouedraogo, Halidou Bamogo, Ouanmini Bobet, L. Zerbo, M. Seynou
{"title":"Mechanical, Thermal and Hydric Behavior of the Bio-sourced Compressed Earth Block (B-CEB) Added to Peanut Shells Powder","authors":"Nassio Sory, Moussa Ouedraogo, A. Messan, Issiaka Sanou, Moustapha Sawadogo, Kouka Jeremy Ouedraogo, Halidou Bamogo, Ouanmini Bobet, L. Zerbo, M. Seynou","doi":"10.11648/j.am.20221101.11","DOIUrl":"https://doi.org/10.11648/j.am.20221101.11","url":null,"abstract":"","PeriodicalId":7327,"journal":{"name":"Advances in Materials Science","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77387324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}