Pub Date : 2024-07-24DOI: 10.1109/TAI.2024.3429293
Yikai Li;Tong Zhang;C. L. Philip Chen
Facial beauty prediction (FBP) aims to automatically predict beauty scores of facial images according to human perception. Usually, facial images contain lots of information irrelevant to facial beauty, such as information about pose, emotion, and illumination, which interferes with the prediction of facial beauty. To overcome interferences, we develop a broad Siamese network (BSN) to focus more on the task of beauty prediction. Specifically, BSN consists mainly of three components: a multitask Siamese network (MTSN), a multilayer attention (MLA) module, and a broad representation learning (BRL) module. First, MTSN is proposed with different tasks about facial beauty to fully mine knowledge about attractiveness and guide the network to neglect interference information. In the subnetwork of MTSN, the MLA module is proposed to focus more on salient features about facial beauty and reduce the impact of interference information. Then, the BRL module based on broad learning system (BLS) is developed to learn discriminative features with the guidance of beauty scores. It further releases facial features from the impact of interference information. Comparisons with state-of-the-art methods demonstrate the effectiveness of BSN.
{"title":"Broad Siamese Network for Facial Beauty Prediction","authors":"Yikai Li;Tong Zhang;C. L. Philip Chen","doi":"10.1109/TAI.2024.3429293","DOIUrl":"https://doi.org/10.1109/TAI.2024.3429293","url":null,"abstract":"Facial beauty prediction (FBP) aims to automatically predict beauty scores of facial images according to human perception. Usually, facial images contain lots of information irrelevant to facial beauty, such as information about pose, emotion, and illumination, which interferes with the prediction of facial beauty. To overcome interferences, we develop a broad Siamese network (BSN) to focus more on the task of beauty prediction. Specifically, BSN consists mainly of three components: a multitask Siamese network (MTSN), a multilayer attention (MLA) module, and a broad representation learning (BRL) module. First, MTSN is proposed with different tasks about facial beauty to fully mine knowledge about attractiveness and guide the network to neglect interference information. In the subnetwork of MTSN, the MLA module is proposed to focus more on salient features about facial beauty and reduce the impact of interference information. Then, the BRL module based on broad learning system (BLS) is developed to learn discriminative features with the guidance of beauty scores. It further releases facial features from the impact of interference information. Comparisons with state-of-the-art methods demonstrate the effectiveness of BSN.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 11","pages":"5786-5800"},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1109/TAI.2024.3432856
Yibo He;Kah Phooi Seng;Li Minn Ang
With the widespread adoption of generative adversarial networks (GANs) for sample generation, this article aims to enhance adversarial neural networks to facilitate collaborative artificial intelligence (AI) learning which has been specifically tailored to handle datasets containing multimodalities. Currently, a significant portion of the literature is dedicated to sample generation using GANs, with the objective of enhancing the detection performance of machine learning (ML) classifiers through the incorporation of these generated data into the original training set via adversarial training. The quality of the generated adversarial samples is contingent upon the sufficiency of training data samples. However, in the multimodal domain, the scarcity of multimodal data poses a challenge due to resource constraints. In this article, we address this challenge by proposing a new multimodal dataset generation approach based on the classical audio–visual speech recognition (AVSR) task, utilizing CycleGAN, DiscoGAN, and StyleGAN2 for exploration and performance comparison. AVSR experiments are conducted using the LRS2 and LRS3 corpora. Our experiments reveal that CycleGAN, DiscoGAN, and StyleGAN2 do not effectively address the low-data state problem in AVSR classification. Consequently, we introduce an enhanced model, CycleGAN*, based on the original CycleGAN, which efficiently learns the original dataset features and generates high-quality multimodal data. Experimental results demonstrate that the multimodal datasets generated by our proposed CycleGAN* exhibit significant improvement in word error rate (WER), indicating reduced errors. Notably, the images produced by CycleGAN* exhibit a marked enhancement in overall visual clarity, indicative of its superior generative capabilities. Furthermore, in contrast to traditional approaches, we underscore the significance of collaborative learning. We implement co-training with diverse multimodal data to facilitate information sharing and complementary learning across modalities. This collaborative approach enhances the model’s capability to integrate heterogeneous information, thereby boosting its performance in multimodal environments.
{"title":"CycleGAN*: Collaborative AI Learning With Improved Adversarial Neural Networks for Multimodalities Data","authors":"Yibo He;Kah Phooi Seng;Li Minn Ang","doi":"10.1109/TAI.2024.3432856","DOIUrl":"https://doi.org/10.1109/TAI.2024.3432856","url":null,"abstract":"With the widespread adoption of generative adversarial networks (GANs) for sample generation, this article aims to enhance adversarial neural networks to facilitate collaborative artificial intelligence (AI) learning which has been specifically tailored to handle datasets containing multimodalities. Currently, a significant portion of the literature is dedicated to sample generation using GANs, with the objective of enhancing the detection performance of machine learning (ML) classifiers through the incorporation of these generated data into the original training set via adversarial training. The quality of the generated adversarial samples is contingent upon the sufficiency of training data samples. However, in the multimodal domain, the scarcity of multimodal data poses a challenge due to resource constraints. In this article, we address this challenge by proposing a new multimodal dataset generation approach based on the classical audio–visual speech recognition (AVSR) task, utilizing CycleGAN, DiscoGAN, and StyleGAN2 for exploration and performance comparison. AVSR experiments are conducted using the LRS2 and LRS3 corpora. Our experiments reveal that CycleGAN, DiscoGAN, and StyleGAN2 do not effectively address the low-data state problem in AVSR classification. Consequently, we introduce an enhanced model, CycleGAN*, based on the original CycleGAN, which efficiently learns the original dataset features and generates high-quality multimodal data. Experimental results demonstrate that the multimodal datasets generated by our proposed CycleGAN* exhibit significant improvement in word error rate (WER), indicating reduced errors. Notably, the images produced by CycleGAN* exhibit a marked enhancement in overall visual clarity, indicative of its superior generative capabilities. Furthermore, in contrast to traditional approaches, we underscore the significance of collaborative learning. We implement co-training with diverse multimodal data to facilitate information sharing and complementary learning across modalities. This collaborative approach enhances the model’s capability to integrate heterogeneous information, thereby boosting its performance in multimodal environments.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 11","pages":"5616-5629"},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1109/TAI.2024.3432511
Yizhen Meng;Chun Liu;Qiang Wang;Longyu Tan
This article investigates the distributed optimal strategy problem in multiagent pursuit-evasion (MPE) games, striving for Nash equilibrium through the optimization of individual benefit matrices based on observations. To this end, a novel collaborative control scheme for MPE games using communication graphs is proposed. This scheme employs cooperative advantage actor–critic (A2C) reinforcement learning to facilitate collaborative capture by pursuers in a distributed manner while maintaining bounded system signals. The strategy orchestrates the actions of pursuers through adaptive neural network learning, ensuring proximity-based collaboration for effective captures. Meanwhile, evaders aim to evade collectively by converging toward each other. Through extensive simulations involving five pursuers and two evaders, the efficacy of the proposed approach is demonstrated, and pursuers seamlessly organize into pursuit units and capture evaders, validating the collaborative capture objective. This article represents a promising step toward effective and cooperative control strategies in MPE game scenarios.
{"title":"Cooperative Advantage Actor–Critic Reinforcement Learning for Multiagent Pursuit-Evasion Games on Communication Graphs","authors":"Yizhen Meng;Chun Liu;Qiang Wang;Longyu Tan","doi":"10.1109/TAI.2024.3432511","DOIUrl":"https://doi.org/10.1109/TAI.2024.3432511","url":null,"abstract":"This article investigates the distributed optimal strategy problem in multiagent pursuit-evasion (MPE) games, striving for Nash equilibrium through the optimization of individual benefit matrices based on observations. To this end, a novel collaborative control scheme for MPE games using communication graphs is proposed. This scheme employs cooperative advantage actor–critic (A2C) reinforcement learning to facilitate collaborative capture by pursuers in a distributed manner while maintaining bounded system signals. The strategy orchestrates the actions of pursuers through adaptive neural network learning, ensuring proximity-based collaboration for effective captures. Meanwhile, evaders aim to evade collectively by converging toward each other. Through extensive simulations involving five pursuers and two evaders, the efficacy of the proposed approach is demonstrated, and pursuers seamlessly organize into pursuit units and capture evaders, validating the collaborative capture objective. This article represents a promising step toward effective and cooperative control strategies in MPE game scenarios.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 12","pages":"6509-6523"},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1109/TAI.2024.3429306
Lili Chen;Wensheng Gan;Chien-Ming Chen
The goal of high-utility sequential pattern mining (HUSPM) is to efficiently discover profitable or useful sequential patterns in a large number of sequences. However, simply being aware of utility-eligible patterns is insufficient for making predictions. To compensate for this deficiency, high-utility sequential rule mining (HUSRM) is designed to explore the confidence or probability of predicting the occurrence of consequence sequential patterns based on the appearance of premise sequential patterns. It has numerous applications, such as product recommendation and weather prediction. However, the existing algorithm, known as HUSRM, is limited to extracting all eligible rules while neglecting the correlation between the generated sequential rules. To address this issue, we propose a novel algorithm called correlated high-utility sequential rule miner (CoUSR) to integrate the concept of correlation into HUSRM. The proposed algorithm requires not only that each rule be correlated but also that the patterns in the antecedent and consequent of the high-utility sequential rule be correlated. The algorithm adopts a utility-list structure to avoid multiple database scans. Additionally, several pruning strategies are used to improve the algorithm's efficiency and performance. Based on several real-world datasets, subsequent experiments demonstrated that CoUSR is effective and efficient in terms of operation time and memory consumption. All codes are accessible on GitHub: https://github.com/DSI-Lab1/CoUSR