Pub Date : 2024-06-25DOI: 10.1134/S1063780X24600439
V. A. Turikov
Resonance interaction of a laser wave at twice the upper hybrid frequency with plasma in an inhomogeneous magnetic field is analyzed. A linear dependence of the magnetic field on the coordinate along the direction of propagation of the laser pulse and fulfillment of the resonance condition at the center of the plasma layer are assumed. It is demonstrated that the laser wave decays into two upper hybrid plasmons accompanied by excitation of the Bernstein modes under such an interaction. The occurance of an electromagnetic wave at the upper hybrid frequency reflected from the plasma boundary is detected. The conclusion is drawn that the reflected wave is driven upon interaction of the Bernstein modes with the upper hybrid plasmons since the wave disappears in the case of a cold-plasma layer. The dependence of average energy gained by electrons upon development of instability on the gradient of the external magnetic field is investigated.
{"title":"Parametric Decay and Mode Conversion upon Laser-Wave Interaction with Plasma in an Inhomogeneous Magnetic Field","authors":"V. A. Turikov","doi":"10.1134/S1063780X24600439","DOIUrl":"10.1134/S1063780X24600439","url":null,"abstract":"<p>Resonance interaction of a laser wave at twice the upper hybrid frequency with plasma in an inhomogeneous magnetic field is analyzed. A linear dependence of the magnetic field on the coordinate along the direction of propagation of the laser pulse and fulfillment of the resonance condition at the center of the plasma layer are assumed. It is demonstrated that the laser wave decays into two upper hybrid plasmons accompanied by excitation of the Bernstein modes under such an interaction. The occurance of an electromagnetic wave at the upper hybrid frequency reflected from the plasma boundary is detected. The conclusion is drawn that the reflected wave is driven upon interaction of the Bernstein modes with the upper hybrid plasmons since the wave disappears in the case of a cold-plasma layer. The dependence of average energy gained by electrons upon development of instability on the gradient of the external magnetic field is investigated.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 5","pages":"659 - 661"},"PeriodicalIF":0.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141513612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1134/S1063780X24600543
A. S. Drozd, D. S. Sergeev, R. A. Begishev, G. B. Igon’kina, M. M. Sokolov, N. V. Korshunov, E. N. Khairutdinov, T. B. Myalton
The distinctive features of the T-15MD tokamak microwave interferometer for measuring linearly integrated electron density, as well as the system for processing and recording its signals, are presented. The phase stability of microwave interferometer signals is analyzed. The results of measurements with a microwave interferometer during the first experimental campaign of the T-15MD tokamak are presented. The phase values were extracted by using an analog phase meter and post-processing of digitized microwave interferometer signals: an intermediate frequency signal and a local oscillator signal. It is shown that the results of the plasma density calculation by these two methods coincide.
{"title":"T-15MD Tokamak Microwave Interferometer for Measuring the Average Electron Density of Plasma","authors":"A. S. Drozd, D. S. Sergeev, R. A. Begishev, G. B. Igon’kina, M. M. Sokolov, N. V. Korshunov, E. N. Khairutdinov, T. B. Myalton","doi":"10.1134/S1063780X24600543","DOIUrl":"10.1134/S1063780X24600543","url":null,"abstract":"<p>The distinctive features of the T-15MD tokamak microwave interferometer for measuring linearly integrated electron density, as well as the system for processing and recording its signals, are presented. The phase stability of microwave interferometer signals is analyzed. The results of measurements with a microwave interferometer during the first experimental campaign of the T-15MD tokamak are presented. The phase values were extracted by using an analog phase meter and post-processing of digitized microwave interferometer signals: an intermediate frequency signal and a local oscillator signal. It is shown that the results of the plasma density calculation by these two methods coincide.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 5","pages":"568 - 572"},"PeriodicalIF":0.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1134/S1063780X24600324
E. E. Mukhin, S. Yu. Tolstyakov, G. S. Kurskiev, N. S. Zhiltsov, N. V. Ermakov, E. E. Tkachenko, A. N. Koval, V. A. Solovey, S. A. Aleksandrov, A. V. Nikolaev, D. A. Antropov, A. V. Bondar, I. V. Kedrov, T. A. Marchenko, A. F. Kornev, A. M. Makarov, D. L. Bogachev, D. S. Samsonov, E. G. Guk, V. N. Klimov, E. P. Smirnova, A. V. Sotnikov, A. G. Razdobarin, A. N. Bazhenov, I. V. Bocharov, V. A. Bocharnikov, I. M. Bukreev, A. M. Dmitriev, D. I. Elets, I. B. Tereshchenko, L. A. Varshavchik, An. P. Chernakov, P. A. Pankrat’ev, G. V. Marchii, M. Minbaev, K. O. Nikolaenko, N. A. Kungurtsev, N. V. Sakharov, Yu. V. Petrov, A. N. Mokeev
Thomson scattering of the core edge and divertor plasma regions of a tokamak with reactor technologies is discussed. The rationale and choice of technical solutions are given, the composition of the Thomson scattering diagnostic complex is discussed, as well as an estimate of the accuracy of measuring both electron temperature and density. Particular attention is paid to ensuring the functionality of the proposed diagnostics in the reactor mode of the tokamak operation and the results of testing diagnostic equipment in the experiments on Globus-M2 tokamak.
{"title":"Set of Thomson Scattering Diagnostics for TRT","authors":"E. E. Mukhin, S. Yu. Tolstyakov, G. S. Kurskiev, N. S. Zhiltsov, N. V. Ermakov, E. E. Tkachenko, A. N. Koval, V. A. Solovey, S. A. Aleksandrov, A. V. Nikolaev, D. A. Antropov, A. V. Bondar, I. V. Kedrov, T. A. Marchenko, A. F. Kornev, A. M. Makarov, D. L. Bogachev, D. S. Samsonov, E. G. Guk, V. N. Klimov, E. P. Smirnova, A. V. Sotnikov, A. G. Razdobarin, A. N. Bazhenov, I. V. Bocharov, V. A. Bocharnikov, I. M. Bukreev, A. M. Dmitriev, D. I. Elets, I. B. Tereshchenko, L. A. Varshavchik, An. P. Chernakov, P. A. Pankrat’ev, G. V. Marchii, M. Minbaev, K. O. Nikolaenko, N. A. Kungurtsev, N. V. Sakharov, Yu. V. Petrov, A. N. Mokeev","doi":"10.1134/S1063780X24600324","DOIUrl":"10.1134/S1063780X24600324","url":null,"abstract":"<p>Thomson scattering of the core edge and divertor plasma regions of a tokamak with reactor technologies is discussed. The rationale and choice of technical solutions are given, the composition of the Thomson scattering diagnostic complex is discussed, as well as an estimate of the accuracy of measuring both electron temperature and density. Particular attention is paid to ensuring the functionality of the proposed diagnostics in the reactor mode of the tokamak operation and the results of testing diagnostic equipment in the experiments on Globus-M2 tokamak.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 4","pages":"406 - 422"},"PeriodicalIF":0.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1134/S1063780X24600336
A. M. Belov, V. F. Andreev, A. V. Sushkov
The results of model numerical calculations are presented, showing the effect of the TRT vacuum vessel on the amplitudes and phases of the magnetic sensors signals, which are located on the inner and outer vacuum vessel surfaces. It is shown that the characteristic times of loop voltage sensors considerably depend on their position on the TRT vacuum vessel. Therefore, their accurate mutual matching is required, especially in the dynamic stage of the discharge, when high eddy currents are induced in the vacuum vessel. The results of numerical calculations for the case of periodic disturbances in the plasma column are presented. They showed that the vacuum vessel almost completely shields the signals of the magnetic sensors located on the outer surface of the vacuum vessel. Moreover, it affects not only the amplitudes of magnetic sensors signals, but also their phases. Numerical studies brought us to conclusion that it is of priority to install the magnetic sensors just on the inner surface of the TRT vacuum vessel.
摘要 介绍了模型数值计算的结果,显示了 TRT 真空容器对位于真空容器内外表面的磁传感器信号的振幅和相位的影响。结果表明,环路电压传感器的特性时间在很大程度上取决于它们在 TRT 真空容器上的位置。因此,需要对它们进行精确的相互匹配,尤其是在放电的动态阶段,此时真空容器中会产生高涡流。本文介绍了等离子体柱中周期性干扰情况下的数值计算结果。结果表明,真空容器几乎完全屏蔽了位于真空容器外表面的磁性传感器的信号。此外,它不仅影响磁传感器信号的振幅,还影响其相位。数值研究使我们得出结论,当务之急是将磁传感器安装在 TRT 真空容器的内表面。
{"title":"Simulations of TRT Vacuum Vessel Effect on the Magnetic Diagnostics System Sensor Signals","authors":"A. M. Belov, V. F. Andreev, A. V. Sushkov","doi":"10.1134/S1063780X24600336","DOIUrl":"10.1134/S1063780X24600336","url":null,"abstract":"<p>The results of model numerical calculations are presented, showing the effect of the TRT vacuum vessel on the amplitudes and phases of the magnetic sensors signals, which are located on the inner and outer vacuum vessel surfaces. It is shown that the characteristic times of loop voltage sensors considerably depend on their position on the TRT vacuum vessel. Therefore, their accurate mutual matching is required, especially in the dynamic stage of the discharge, when high eddy currents are induced in the vacuum vessel. The results of numerical calculations for the case of periodic disturbances in the plasma column are presented. They showed that the vacuum vessel almost completely shields the signals of the magnetic sensors located on the outer surface of the vacuum vessel. Moreover, it affects not only the amplitudes of magnetic sensors signals, but also their phases. Numerical studies brought us to conclusion that it is of priority to install the magnetic sensors just on the inner surface of the TRT vacuum vessel.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 4","pages":"457 - 469"},"PeriodicalIF":0.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1134/S1063780X24600142
V. I. Afanasyev, A. D. Melnik, M. I. Mironov, A. S. Navolotsky, V. G. Nesenevich, M. P. Petrov, S. Ya. Petrov, F. V. Chernyshev, R. Yu. Shmitov
The possibilities of using active neutral particle diagnostics for measuring local ion temperatures and isotopic ratio of deuterium-tritium plasma at the tokamak with reactor technologies are considered. Options for positioning the neutral particle analyzer relative to the diagnostic injector are presented. The fluxes of deuterium and tritium atoms escaping out of plasma were simulated in a wide range of plasma densities and temperatures. It is shown that the neutral particle analyzer active diagnostics will make it possible to measure the plasma parameters mentioned with the spatial and time resolutions of ~14 cm and ~0.01–0.1 s, respectively.
{"title":"Possibilities of Using Active Neutral Particle Diagnostics at the TRT Facility","authors":"V. I. Afanasyev, A. D. Melnik, M. I. Mironov, A. S. Navolotsky, V. G. Nesenevich, M. P. Petrov, S. Ya. Petrov, F. V. Chernyshev, R. Yu. Shmitov","doi":"10.1134/S1063780X24600142","DOIUrl":"10.1134/S1063780X24600142","url":null,"abstract":"<p>The possibilities of using active neutral particle diagnostics for measuring local ion temperatures and isotopic ratio of deuterium-tritium plasma at the tokamak with reactor technologies are considered. Options for positioning the neutral particle analyzer relative to the diagnostic injector are presented. The fluxes of deuterium and tritium atoms escaping out of plasma were simulated in a wide range of plasma densities and temperatures. It is shown that the neutral particle analyzer active diagnostics will make it possible to measure the plasma parameters mentioned with the spatial and time resolutions of ~14 cm and ~0.01–0.1 s, respectively.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 4","pages":"524 - 529"},"PeriodicalIF":0.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1134/S1063780X24600269
A. Yu. Yashin, A. M. Ponomarenko, V. V. Solokha, S. S. Rozhkov, A. A. Kharchevskii
The paper discusses the possibility of using the Doppler backscattering (DBS) diagnostic to aid the Tokamak with Reactor Technologies (TRT) with its mission, and also offers ways of installing it in TRT, including the possible technical characteristics of the system. One of the most important advantages of DBS implementation is the ability to investigate various areas of plasma. This requires selecting an appropriate range of probing frequencies to match the scenarios and density profiles expected in TRT. Aspects and advantages of different ways of implementing DBS in the tokamak are discussed. Possible hardware, design and arrangement of the antenna system are presented. There are also system limitations that need to be considered specifically for TRT. The propositions for DBS on TRT are supported by calculations of ray tracing and diagnostic resolution. The wave number values of plasma fluctuations that the system could detect are also estimated.
摘要 本文讨论了利用多普勒反向散射(DBS)诊断技术协助托卡马克反应堆技术(TRT)完成其任务的可能性,并提出了在 TRT 中安装该诊断技术的方法,包括该系统可能具有的技术特点。实施 DBS 的最重要优势之一是能够调查等离子体的各个领域。这就需要选择适当的探测频率范围,以匹配 TRT 中预期的情景和密度剖面。本文讨论了在托卡马克中实施 DBS 的不同方法的各个方面和优势。还介绍了天线系统的可能硬件、设计和布置。此外,还需要特别考虑 TRT 的系统限制。通过射线追踪和诊断分辨率的计算,支持在 TRT 上使用 DBS 的提议。还估算了该系统可以探测到的等离子体波动的波数值。
{"title":"Concept of the Doppler Backscattering Diagnostic on TRT","authors":"A. Yu. Yashin, A. M. Ponomarenko, V. V. Solokha, S. S. Rozhkov, A. A. Kharchevskii","doi":"10.1134/S1063780X24600269","DOIUrl":"10.1134/S1063780X24600269","url":null,"abstract":"<p>The paper discusses the possibility of using the Doppler backscattering (DBS) diagnostic to aid the Tokamak with Reactor Technologies (TRT) with its mission, and also offers ways of installing it in TRT, including the possible technical characteristics of the system. One of the most important advantages of DBS implementation is the ability to investigate various areas of plasma. This requires selecting an appropriate range of probing frequencies to match the scenarios and density profiles expected in TRT. Aspects and advantages of different ways of implementing DBS in the tokamak are discussed. Possible hardware, design and arrangement of the antenna system are presented. There are also system limitations that need to be considered specifically for TRT. The propositions for DBS on TRT are supported by calculations of ray tracing and diagnostic resolution. The wave number values of plasma fluctuations that the system could detect are also estimated.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 4","pages":"493 - 507"},"PeriodicalIF":0.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1134/S1063780X24600257
N. A. Solovev, D. E. Dias Mikhaylova
The paper presents a concept of the ECE diagnostic for the TRT facility and estimates the achievable measurement parameters in the baseline scenario. The target spectral region for the diagnostic corresponds to the first harmonic of the ECR frequency in ordinary polarization (O1) and the second harmonic in extraordinary polarization (X2). It is proposed to carry out measurements from the low-field side along two lines of sight: radial and toroidally oblique. The accessible spectral region in terms of the normalized radial coordinate is approximately estimated as –0.9 to 0.9 and –0.1 to 0.9. It is proposed to shape the input wave beam by means of a quasi-optical focusing system that provides a transverse size of the resolved region of approximately 3–5 cm for O1 and 1.2–3 cm for X2. For measurements, it is proposed to use Fourier transform spectrometers with a time resolution of about 10 ms and multichannel heterodyne receivers with a time resolution of about 1 μs. The minimum radial size of the resolved region is estimated to be 3–5 cm for O1 and 2–4 cm for X2, depending on the coordinate.
{"title":"Concept of a Diagnostic System for Measuring the Electron Temperature Profile of Plasma from the Intensity of Electron Cyclotron Emission for the TRT Facility","authors":"N. A. Solovev, D. E. Dias Mikhaylova","doi":"10.1134/S1063780X24600257","DOIUrl":"10.1134/S1063780X24600257","url":null,"abstract":"<p>The paper presents a concept of the ECE diagnostic for the TRT facility and estimates the achievable measurement parameters in the baseline scenario. The target spectral region for the diagnostic corresponds to the first harmonic of the ECR frequency in ordinary polarization (O1) and the second harmonic in extraordinary polarization (X2). It is proposed to carry out measurements from the low-field side along two lines of sight: radial and toroidally oblique. The accessible spectral region in terms of the normalized radial coordinate is approximately estimated as –0.9 to 0.9 and –0.1 to 0.9. It is proposed to shape the input wave beam by means of a quasi-optical focusing system that provides a transverse size of the resolved region of approximately 3–5 cm for O1 and 1.2–3 cm for X2. For measurements, it is proposed to use Fourier transform spectrometers with a time resolution of about 10 ms and multichannel heterodyne receivers with a time resolution of about 1 μs. The minimum radial size of the resolved region is estimated to be 3–5 cm for O1 and 2–4 cm for X2, depending on the coordinate.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 4","pages":"423 - 440"},"PeriodicalIF":0.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1134/S1063780X24600245
A. V. Krasilnikov
To solve the main problems of designing a thermonuclear tokamak reactor, such as the experimental demonstration of quasi-stationary thermonuclear burning, generation of non-inductive quasi-stationary current; development of plasma technologies and materials of the first wall and divertor, the International Thermonuclear Experimental Reactor ITER is being designed, projects of DEMO demonstration reactors are being developed, and a Tokamak with Reactor Technologies TRT is being developed in Russia. The main components of the ITER (superconducting electromagnetic system (EMS) made of Nb3Sn and NbTi, the first wall of W coated with a low-Z material, systems for additional plasma heating, experimental modules of a breeder blanket, plasma control systems, etc.) and TRT (EMS of high-temperature superconductors, first wall options of W with B4C coating, TiB2–AlN composite and liquid metal lithium, additional heating and quasi-stationary non-inductive current drive systems, innovative divertor, experimental breeder and hybrid blanket modules, reactor-compatible diagnostics and remote plasma control systems, etc.) technology platforms are presented. The technological platforms of the ITER being under construction and the TRT being designed contain an almost complete, according to modern understanding, set of technologies for the future thermonuclear reactor.
摘要 为解决设计热核托卡马克反应堆的主要问题,如准稳态热核燃烧的实验演示、非感应准稳态电流的产生、等离子体技术的发展以及第一壁和分流器材料的开发,正在设计国际热核实验反应堆热核实验堆(ITER),正在开发 DEMO 演示反应堆项目,俄罗斯正在开发具有反应堆技术的托卡马克反应堆 TRT。国际热核聚变实验堆的主要组成部分(由 Nb3Sn 和 NbTi 制成的超导电磁系统(EMS)、涂有低 Z 材料的 W 第一壁、用于额外等离子体加热的系统、增殖毯实验模块、等离子体控制系统等)和 TRT(由高强度 Nb3Sn 和 NbTi 制成的 EMS、涂有低 Z 材料的 W 第一壁、用于额外等离子体加热的系统、增殖毯实验模块、等离子体控制系统等)。此外,还介绍了国际热核聚变实验堆的技术平台(高温超导体 EMS、带 B4C 涂层的 W 第一壁选项、TiB2-AlN 复合材料和液态金属锂、附加加热和准稳态非感应电流驱动系统、创新型分流器、增殖毯和混合毯实验模块、反应堆兼容诊断和远程等离子体控制系统等)和 TRT(高温超导体 EMS、带 B4C 涂层的 W 第一壁选项、TiB2-AlN 复合材料和液态金属锂、附加加热和准稳态非感应电流驱动系统、创新型分流器、增殖毯和混合毯实验模块、反应堆兼容诊断和远程等离子体控制系统等)。根据现代认识,正在建设的热核实验堆和正在设计的 TRT 的技术平台几乎包含了未来热核反应堆的全套技术。
{"title":"ITER and TRT—Technological Platforms for Controlled Thermonuclear Fusion","authors":"A. V. Krasilnikov","doi":"10.1134/S1063780X24600245","DOIUrl":"10.1134/S1063780X24600245","url":null,"abstract":"<p>To solve the main problems of designing a thermonuclear tokamak reactor, such as the experimental demonstration of quasi-stationary thermonuclear burning, generation of non-inductive quasi-stationary current; development of plasma technologies and materials of the first wall and divertor, the International Thermonuclear Experimental Reactor ITER is being designed, projects of DEMO demonstration reactors are being developed, and a Tokamak with Reactor Technologies TRT is being developed in Russia. The main components of the ITER (superconducting electromagnetic system (EMS) made of Nb<sub>3</sub>Sn and NbTi, the first wall of W coated with a low-Z material, systems for additional plasma heating, experimental modules of a breeder blanket, plasma control systems, etc.) and TRT (EMS of high-temperature superconductors, first wall options of W with B<sub>4</sub>C coating, TiB<sub>2</sub>–AlN composite and liquid metal lithium, additional heating and quasi-stationary non-inductive current drive systems, innovative divertor, experimental breeder and hybrid blanket modules, reactor-compatible diagnostics and remote plasma control systems, etc.) technology platforms are presented. The technological platforms of the ITER being under construction and the TRT being designed contain an almost complete, according to modern understanding, set of technologies for the future thermonuclear reactor.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 4","pages":"397 - 405"},"PeriodicalIF":0.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1134/S1063780X24600270
A. N. Kirichenko, A. V. Krasilnikov, N. B. Rodionov, V. P. Rodionova, A. G. Trapeznikov, V. P. Yartsev, S. A. Meshchaninov, K. K. Artemev, R. A. Khmel’nitskii, V. N. Amosov
High radiation resistance, chemical inertness, the ability to operate at elevated temperatures, high mobility and efficiency of charge-carrier collection are important properties of diamond for designing detectors and spectrometers of ionizing radiation. Currently, diagnostics of neutrons and neutral particle fluxes based on diamond detectors for the ITER thermonuclear reactor are justified and developed. This work presents the results of a Raman spectroscopy and photoluminescence spectroscopy study of the electronic quality of synthesized epitaxial diamond films obtained by vapor deposition in a hydrogen and methane mixture in the ARDIS reactor on boron-doped single-crystal diamond substrates. To confirm their electronic quality, detectors have been made from films selected by spectrometric methods and the charge collection efficiency and energy resolution have been measured when irradiated with alpha particles from a 241Am source and 14.7 MeV fast neutrons from the ING-07T2 neutron generator.
{"title":"Spectrometers of Neutrons and Fast Atoms of Tokamak Thermonuclear Plasma Based on CVD Synthesized Diamond Single-Crystal Films","authors":"A. N. Kirichenko, A. V. Krasilnikov, N. B. Rodionov, V. P. Rodionova, A. G. Trapeznikov, V. P. Yartsev, S. A. Meshchaninov, K. K. Artemev, R. A. Khmel’nitskii, V. N. Amosov","doi":"10.1134/S1063780X24600270","DOIUrl":"10.1134/S1063780X24600270","url":null,"abstract":"<p>High radiation resistance, chemical inertness, the ability to operate at elevated temperatures, high mobility and efficiency of charge-carrier collection are important properties of diamond for designing detectors and spectrometers of ionizing radiation. Currently, diagnostics of neutrons and neutral particle fluxes based on diamond detectors for the ITER thermonuclear reactor are justified and developed. This work presents the results of a Raman spectroscopy and photoluminescence spectroscopy study of the electronic quality of synthesized epitaxial diamond films obtained by vapor deposition in a hydrogen and methane mixture in the ARDIS reactor on boron-doped single-crystal diamond substrates. To confirm their electronic quality, detectors have been made from films selected by spectrometric methods and the charge collection efficiency and energy resolution have been measured when irradiated with alpha particles from a <sup>241</sup>Am source and 14.7 MeV fast neutrons from the ING-07T2 neutron generator.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 4","pages":"508 - 513"},"PeriodicalIF":0.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1134/S1063780X24600348
A. G. Razdobarin, Ya. R. Shubin, A. A. Belokur, D. L. Bogachev, D. I. Elets, O. S. Medvedev, E. E. Mukhin, L. A. Snigirev, I. V. Alekseenko
A conceptual design for diagnosing erosion of the first wall and divertor plates of a tokamak with reactor technologies TRT is proposed. The principles of constructing a diagnostic complex based on the following systems are developed: laser radar, dual-wavelength digital holographic interferometry and active laser IR thermography. An optical scheme is developed for combining the optical paths to input laser radiation and collect scattered light from diagnostic systems. To view the maximum area of the first wall, a scheme for optical scanning of the surface of the first wall and divertor is proposed. Based on optical simulation, the spatial distribution of the power density and phase of interferometry laser radiation in the illuminated region of the first wall is constructed, and the dimensions of the light fields and power density for IR thermography and laser radar diagnostics are determined. An image formation scheme is proposed and the spatial resolution is determined for interferometry and IR thermography methods. The light scattering function on models of the ITER divertor cladding is studied experimentally. The energy of the collected signal is calculated on the basis on the experimental data for all three diagnostic methods and the requirements for the diagnostic equipment are formulated.
摘要 提出了采用反应堆技术 TRT 诊断托卡马克第一壁和岔流板侵蚀的概念设计。本文提出了基于以下系统的诊断综合系统的构建原则:激光雷达、双波长数字全息干涉仪和主动激光红外热成像。制定了一种光学方案,用于将输入激光辐射和收集诊断系统散射光的光路结合起来。为了查看第一面墙的最大面积,提出了对第一面墙和分流器表面进行光学扫描的方案。在光学模拟的基础上,构建了第一面墙照射区域内干涉测量激光辐射的功率密度和相位的空间分布,并确定了用于红外热成像和激光雷达诊断的光场尺寸和功率密度。提出了图像形成方案,并确定了干涉测量法和红外热成像法的空间分辨率。通过实验研究了 ITER 分流器包层模型上的光散射函数。根据所有三种诊断方法的实验数据计算了所收集信号的能量,并提出了对诊断设备的要求。
{"title":"Conceptual Project for Diagnostics of Erosion of the First Wall and Divertor of the Tokamak with Reactor Technologies TRT","authors":"A. G. Razdobarin, Ya. R. Shubin, A. A. Belokur, D. L. Bogachev, D. I. Elets, O. S. Medvedev, E. E. Mukhin, L. A. Snigirev, I. V. Alekseenko","doi":"10.1134/S1063780X24600348","DOIUrl":"10.1134/S1063780X24600348","url":null,"abstract":"<p>A conceptual design for diagnosing erosion of the first wall and divertor plates of a tokamak with reactor technologies TRT is proposed. The principles of constructing a diagnostic complex based on the following systems are developed: laser radar, dual-wavelength digital holographic interferometry and active laser IR thermography. An optical scheme is developed for combining the optical paths to input laser radiation and collect scattered light from diagnostic systems. To view the maximum area of the first wall, a scheme for optical scanning of the surface of the first wall and divertor is proposed. Based on optical simulation, the spatial distribution of the power density and phase of interferometry laser radiation in the illuminated region of the first wall is constructed, and the dimensions of the light fields and power density for IR thermography and laser radar diagnostics are determined. An image formation scheme is proposed and the spatial resolution is determined for interferometry and IR thermography methods. The light scattering function on models of the ITER divertor cladding is studied experimentally. The energy of the collected signal is calculated on the basis on the experimental data for all three diagnostic methods and the requirements for the diagnostic equipment are formulated.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 4","pages":"441 - 456"},"PeriodicalIF":0.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141256212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}