首页 > 最新文献

Environmental Science: Nano最新文献

英文 中文
Weathering Pathways Differentially Affect Colloidal Stability of Nanoplastics 风化途径对纳米塑料胶体稳定性的不同影响
IF 8.131 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-21 DOI: 10.1039/d4en00739e
Tianchi Cao, mengting Zhao, Tong Zhang, Wei Chen
Aggregation is the most fundamental process affecting the fate, transport, and risks of nanoplastics in aquatic environments. Weathering of nanoplastics alters their physiochemical properties and consequently, aggregation behavior. Here, we show that two weathering pathways, including UV-irradiation (the primary aging pathway in surface water) and sulfide-induced transformation (a commom process in anoxic environments) affect aggregation and colloidal stability of polystyrene (PS) nanoplastics differentially. Compared to sulfide-induced aging, UV-induced aging introduced more oxygen-containing functional groups on nanoplastic surface, even though significant amounts of O-functional groups formed during sulfide-induced aging, due to the hydroxyl radicals formed from the spontaneous oxidation of sulfide. Accordingly, UV-aged PS nanoplastics (PS-UV) exhibited a higher stability than sulfide-aged PS nanoplastics (PS-S) in a monovalent cation-dominated solution, due to enhanced electrostatic repulsion and weakened van der Waals attraction. However, stability of PS-UV was lower than that of PS-S in a divalent salt solution, due to bridging effects of divalent ions. The results underline the importance of comprehending the effects of diverse environmental weathering processes on nanoplastics hehaviors, particularly, those readily occur in anoxic environments but insufficiently investigate.
聚集是影响纳米塑料在水生环境中的归宿、迁移和风险的最基本过程。纳米塑料的风化会改变其理化性质,进而改变其聚集行为。在这里,我们展示了两种风化途径,包括紫外线照射(地表水中的主要老化途径)和硫化物诱导转化(缺氧环境中的常见过程)对聚苯乙烯(PS)纳米塑料的聚集和胶体稳定性的不同影响。与硫化物诱导老化相比,紫外线诱导老化在纳米塑料表面引入了更多的含氧官能团,尽管硫化物诱导老化过程中由于硫化物自发氧化形成的羟基自由基而形成了大量的 O 官能团。因此,在以单价阳离子为主的溶液中,紫外线老化的 PS 纳米塑料(PS-UV)比硫化物老化的 PS 纳米塑料(PS-S)表现出更高的稳定性,这是由于静电排斥力增强和范德华吸引力减弱所致。然而,由于二价离子的架桥效应,PS-UV 在二价盐溶液中的稳定性低于 PS-S。这些结果凸显了理解各种环境风化过程对纳米塑料行为的影响的重要性,尤其是那些容易在缺氧环境中发生但研究不足的影响。
{"title":"Weathering Pathways Differentially Affect Colloidal Stability of Nanoplastics","authors":"Tianchi Cao, mengting Zhao, Tong Zhang, Wei Chen","doi":"10.1039/d4en00739e","DOIUrl":"https://doi.org/10.1039/d4en00739e","url":null,"abstract":"Aggregation is the most fundamental process affecting the fate, transport, and risks of nanoplastics in aquatic environments. Weathering of nanoplastics alters their physiochemical properties and consequently, aggregation behavior. Here, we show that two weathering pathways, including UV-irradiation (the primary aging pathway in surface water) and sulfide-induced transformation (a commom process in anoxic environments) affect aggregation and colloidal stability of polystyrene (PS) nanoplastics differentially. Compared to sulfide-induced aging, UV-induced aging introduced more oxygen-containing functional groups on nanoplastic surface, even though significant amounts of O-functional groups formed during sulfide-induced aging, due to the hydroxyl radicals formed from the spontaneous oxidation of sulfide. Accordingly, UV-aged PS nanoplastics (PS-UV) exhibited a higher stability than sulfide-aged PS nanoplastics (PS-S) in a monovalent cation-dominated solution, due to enhanced electrostatic repulsion and weakened van der Waals attraction. However, stability of PS-UV was lower than that of PS-S in a divalent salt solution, due to bridging effects of divalent ions. The results underline the importance of comprehending the effects of diverse environmental weathering processes on nanoplastics hehaviors, particularly, those readily occur in anoxic environments but insufficiently investigate.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"15 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective Separating of Metal Impurities from Gypsum Nanosludge: Synergism of Mechanical Force and Metal Species Regulation 有效分离石膏纳米污泥中的金属杂质:机械力与金属物种调节的协同作用
IF 8.131 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-21 DOI: 10.1039/d4en00799a
Changzhou Weng, Zhengqiang Zheng, Tian Chen, Zhang Lin
The effective separation of metal impurities from gypsum sludges is crucial for both environmental protection and resource recovery. However, it is seriously limited by their entrapment within calcium sulfate crystal lattices. This study presented a universal strategy for metal extraction through a combined control of mechanical force and metal species regulation, which effectively separated P, Cr, As, Sr, Cd, and Hg from gypsum sludges with separating efficiencies all above 94.0%, especially for As (99.8%) and Hg (99.2%). Such exciting effect was owed to the precise control of a two-step dehydration-rehydration transformation of gypsum. The process initiated by the mechanical force reduced gypsum particle size from the microscale (~10 μm) to the nanoscale (<50 nm), which facilitated the dehydrating process of gypsum-bassanite to exclude the doped metals. In the subsequent rehydration process, the nanoparticle was also beneficial for disrupting the calcium sulfate framework of bassanite, leading to the full release of entrapped metals. Additionally, the application of species regulation agents changed the species of released metals, preventing their re-incorporation into the calcium sulfate. This approach offered a promising method for the separation and recovery of heavy metals from gypsum sludges, providing valuable insights into the treatment of heavy metal-containing solid wastes.
从石膏渣中有效分离金属杂质对于环境保护和资源回收都至关重要。然而,硫酸钙晶格对金属杂质的截留严重限制了这一技术的发展。本研究提出了一种通过机械力控制和金属物种调节相结合的金属萃取通用策略,可有效分离石膏渣中的铅、铬、砷、锶、镉和汞,分离效率均在 94.0% 以上,尤其是砷(99.8%)和汞(99.2%)。这种令人兴奋的效果归功于对石膏脱水-水化两步转化的精确控制。机械力启动的过程将石膏的粒度从微米级(约 10 μm)减小到纳米级(50 nm),从而促进了石膏-重晶石的脱水过程,以排除掺杂的金属。在随后的再水化过程中,纳米粒子还有利于破坏重晶石的硫酸钙框架,使夹带的金属充分释放。此外,物种调节剂的应用改变了释放金属的物种,防止了它们重新融入硫酸钙中。这种方法为从石膏淤泥中分离和回收重金属提供了一种很有前景的方法,为处理含重金属固体废物提供了宝贵的见解。
{"title":"Effective Separating of Metal Impurities from Gypsum Nanosludge: Synergism of Mechanical Force and Metal Species Regulation","authors":"Changzhou Weng, Zhengqiang Zheng, Tian Chen, Zhang Lin","doi":"10.1039/d4en00799a","DOIUrl":"https://doi.org/10.1039/d4en00799a","url":null,"abstract":"The effective separation of metal impurities from gypsum sludges is crucial for both environmental protection and resource recovery. However, it is seriously limited by their entrapment within calcium sulfate crystal lattices. This study presented a universal strategy for metal extraction through a combined control of mechanical force and metal species regulation, which effectively separated P, Cr, As, Sr, Cd, and Hg from gypsum sludges with separating efficiencies all above 94.0%, especially for As (99.8%) and Hg (99.2%). Such exciting effect was owed to the precise control of a two-step dehydration-rehydration transformation of gypsum. The process initiated by the mechanical force reduced gypsum particle size from the microscale (~10 μm) to the nanoscale (&lt;50 nm), which facilitated the dehydrating process of gypsum-bassanite to exclude the doped metals. In the subsequent rehydration process, the nanoparticle was also beneficial for disrupting the calcium sulfate framework of bassanite, leading to the full release of entrapped metals. Additionally, the application of species regulation agents changed the species of released metals, preventing their re-incorporation into the calcium sulfate. This approach offered a promising method for the separation and recovery of heavy metals from gypsum sludges, providing valuable insights into the treatment of heavy metal-containing solid wastes.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"344 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adsorption Behavior of Carbon Dots on La3+ and The Multiple Effects on The Growth of Mung Bean Seedlings under La3+ Stress 碳点对 La3+ 的吸附行为及其对 La3+ 胁迫下绿豆幼苗生长的多重影响
IF 8.131 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-19 DOI: 10.1039/d4en00530a
Xinanbei Liu, Xianfei Niu, Yinshuai Tian, Yue Jiang, Cheng Cheng, Ting Wang, Yiran Sun, Fang Chen, Ying Xu
The excessive usage of rare earth elements (REEs) as micro-fertilizers is harmful for agricultural production and environment. This study explored the potential application of carbon dots (CDs) to mitigate the effects of La contamination. The results indicate that the CDs based on citric acid (C-CDs) used can adsorb La3+ in aqueous solution system through surface carboxyl and pyrrolic-N. While no significant alteration in the total La content within mung bean seedlings was observed, the presence of C-CDs induced the conversion of La into an inactive form within the body, and significantly affected the chemical form and distribution of La in the plant body. However, with the increased concentrations, C-CDs do not effectively improve growth inhibition of seedling under the La stress but exacerbate it occurs. This may be relevant to the peroxidation damage and excess extracellular precipitates. RNA-seq results showed stronger cell wall-related synthesis under C-CDs and La co-treatment than in La treatment, which indicated the important role of cell wall in this process. Although many issues remain to be addressed, this study demonstrates that C-CDs possess distinct advantages in remediating soil La contamination without significantly impeding the plant's La absorption, thus exhibiting considerable potential for agricultural application.
过量使用稀土元素(REEs)作为微肥对农业生产和环境有害。本研究探讨了碳点(CDs)在减轻 La 污染影响方面的潜在应用。结果表明,所使用的基于柠檬酸的碳点(C-CDs)可通过表面的羧基和吡咯-N吸附水溶液体系中的 La3+。虽然绿豆幼苗体内的 La 总含量没有发生明显变化,但 C-CDs 的存在会促使 La 在体内转化为非活性形式,并显著影响 La 在植物体内的化学形态和分布。然而,随着浓度的增加,C-CDs 并不能有效改善 La 胁迫下对幼苗生长的抑制,反而会加剧这种抑制。这可能与过氧化损伤和细胞外沉淀物过多有关。RNA-seq 结果表明,在 C-CDs 和 La 共同处理下,细胞壁相关合成比 La 处理时更强,这表明细胞壁在这一过程中起着重要作用。尽管还有许多问题有待解决,但本研究表明,C-CDs 在修复土壤 La 污染方面具有独特的优势,而且不会明显阻碍植物对 La 的吸收,因此在农业应用方面具有相当大的潜力。
{"title":"Adsorption Behavior of Carbon Dots on La3+ and The Multiple Effects on The Growth of Mung Bean Seedlings under La3+ Stress","authors":"Xinanbei Liu, Xianfei Niu, Yinshuai Tian, Yue Jiang, Cheng Cheng, Ting Wang, Yiran Sun, Fang Chen, Ying Xu","doi":"10.1039/d4en00530a","DOIUrl":"https://doi.org/10.1039/d4en00530a","url":null,"abstract":"The excessive usage of rare earth elements (REEs) as micro-fertilizers is harmful for agricultural production and environment. This study explored the potential application of carbon dots (CDs) to mitigate the effects of La contamination. The results indicate that the CDs based on citric acid (C-CDs) used can adsorb La3+ in aqueous solution system through surface carboxyl and pyrrolic-N. While no significant alteration in the total La content within mung bean seedlings was observed, the presence of C-CDs induced the conversion of La into an inactive form within the body, and significantly affected the chemical form and distribution of La in the plant body. However, with the increased concentrations, C-CDs do not effectively improve growth inhibition of seedling under the La stress but exacerbate it occurs. This may be relevant to the peroxidation damage and excess extracellular precipitates. RNA-seq results showed stronger cell wall-related synthesis under C-CDs and La co-treatment than in La treatment, which indicated the important role of cell wall in this process. Although many issues remain to be addressed, this study demonstrates that C-CDs possess distinct advantages in remediating soil La contamination without significantly impeding the plant's La absorption, thus exhibiting considerable potential for agricultural application.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"1 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanozymes as a tool to boost agricultural production: from preparation to application 纳米酶作为促进农业生产的工具:从制备到应用
IF 8.131 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-18 DOI: 10.1039/d4en00780h
Kan Huang, Chengxiao Hu, Qiling Tan, Songwei Wu, Sergey Shabala, Min Yu, Xuecheng Sun
Nanozymes, as an emerging class of biomimetic enzymes, not only inherit the unique properties of nanomaterials but also endow them with catalytic functions that are similar to biological enzymes. With high designability of catalytic activity and the ability to mimic the catalytic conditions and mechanisms of biological enzymes, nanozymes progressively attract significant attention in agricultural research. This research aims to provide researchers with a comprehensive overview of this emerging tool, from preparation of nanozymes to their applications in agricultural production systems. Firstly, this review systematically summarized the selection of various elements involved in nanozyme preparation, covering both metal-based and non-metal-based materials. Secondly, it outlined the mainstream chemical and environmentally friendly nanozyme synthesis technologies, critically analyzing their advantages and limitations. Thirdly, it explored the multifaceted contributions of nanozymes within the agricultural field, encompassing enhancements in crop quality and yields, augmentation of nitrogen fixation efficiency, and stimulation of microbial activity in the plant rhizosphere, as well as the improvement of agricultural crops' resilience to environmental stresses. Finally, the research discussed the main challenges faced by nanozyme research and provided forward-looking insights for future agricultural research directions. This work significantly advances understanding of the role of nanozymes in sustainable agricultural production.
纳米酶作为一类新兴的仿生物酶,不仅继承了纳米材料的独特性质,还具有与生物酶相似的催化功能。纳米酶的催化活性可设计性强,能够模拟生物酶的催化条件和机制,因此在农业研究中逐渐受到重视。本研究旨在从纳米酶的制备到其在农业生产系统中的应用,为研究人员提供这一新兴工具的全面概述。首先,本综述系统地总结了纳米酶制剂所涉及的各种元素的选择,包括金属基和非金属基材料。其次,概述了主流的化学和环境友好型纳米酶合成技术,批判性地分析了其优势和局限性。第三,该研究探讨了纳米酶在农业领域的多方面贡献,包括提高作物质量和产量、提高固氮效率、刺激植物根圈微生物活动,以及提高农作物对环境压力的适应能力。最后,研究讨论了纳米酶研究面临的主要挑战,并对未来农业研究方向提出了前瞻性见解。这项工作极大地推动了人们对纳米酶在可持续农业生产中作用的认识。
{"title":"Nanozymes as a tool to boost agricultural production: from preparation to application","authors":"Kan Huang, Chengxiao Hu, Qiling Tan, Songwei Wu, Sergey Shabala, Min Yu, Xuecheng Sun","doi":"10.1039/d4en00780h","DOIUrl":"https://doi.org/10.1039/d4en00780h","url":null,"abstract":"Nanozymes, as an emerging class of biomimetic enzymes, not only inherit the unique properties of nanomaterials but also endow them with catalytic functions that are similar to biological enzymes. With high designability of catalytic activity and the ability to mimic the catalytic conditions and mechanisms of biological enzymes, nanozymes progressively attract significant attention in agricultural research. This research aims to provide researchers with a comprehensive overview of this emerging tool, from preparation of nanozymes to their applications in agricultural production systems. Firstly, this review systematically summarized the selection of various elements involved in nanozyme preparation, covering both metal-based and non-metal-based materials. Secondly, it outlined the mainstream chemical and environmentally friendly nanozyme synthesis technologies, critically analyzing their advantages and limitations. Thirdly, it explored the multifaceted contributions of nanozymes within the agricultural field, encompassing enhancements in crop quality and yields, augmentation of nitrogen fixation efficiency, and stimulation of microbial activity in the plant rhizosphere, as well as the improvement of agricultural crops' resilience to environmental stresses. Finally, the research discussed the main challenges faced by nanozyme research and provided forward-looking insights for future agricultural research directions. This work significantly advances understanding of the role of nanozymes in sustainable agricultural production.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"78 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tetraploidy and Fe2O3 nanoparticles: dual strategy to reduce the Cd-induced toxicity in rice plants by ameliorating the oxidative stress and downregulation of metal transporters 四倍体和纳米 Fe2O3 粒子:通过改善氧化应激和下调金属转运体来降低镉诱导的水稻毒性的双重策略
IF 8.131 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-18 DOI: 10.1039/d4en00470a
Fozia Ghouri, Munazzam Jawad Shahid, Shafaqat Ali, Humera Ashraf, Sarah Owdah Alomrani, Jingwen Liu, Mohammed Ali Alshehri, Shah Fahad, Muhammad Qasim Shahid
Whole-genome doubling or polyploidy increases plants' tolerance to biotic and abiotic stress. Cadmium (Cd) damages the plant's metabolic system, leading to decreased plant development. The role of tetraploidy and iron nanoparticles (Fe NPs) in minimizing Cd toxicity in rice was investigated in this work. Diploid (E285) and tetraploid (T485) rice lines were treated with Cd (100 μM) and different doses of Fe NPs (0, 10, 25, and 50 mg L−1). The Cd exposure substantially decreased agronomic traits (root and shoot length, shoot and root fresh weight), chlorophyll contents, and antioxidant enzyme activity and increased reactive oxygen species (ROS). The Cd toxicity effect was more pronounced in diploid rice than in tetraploid rice. The application of Fe NPs to Cd-contaminated rice plants reversed the detrimental consequences of Cd in tetraploid and diploid rice cultivars, verified by the substantial upturn in plant growth parameters, chlorophyll contents, decreased ROS, and increased levels of antioxidant enzymes. The Cd uptake was significantly reduced by tetraploidy and Fe NPs, which negatively controlled the expression patterns of Cd transporter genes (like OsNRAMP2 and OsHMA2). The strongest association was seen between diploid rice and cadmium levels in seedlings. Transmission electron microscopy revealed that Cd, especially in diploid rice, caused cell structure damage that Fe NPs and tetraploidy almost repaired. This study demonstrated that tetraploidy and Fe NPs could alleviate Cd toxicity by lowering Cd accumulation, ROS, and cell damage.
全基因组加倍或多倍体提高了植物对生物和非生物胁迫的耐受力。镉(Cd)会破坏植物的新陈代谢系统,导致植物发育不良。本研究调查了四倍体和纳米铁粒子(Fe NPs)在降低水稻镉毒性方面的作用。二倍体(E285)和四倍体(T485)水稻品系分别接受镉(100 μM)和不同剂量的铁纳米粒子(0、10、25 和 50 mg L-1)处理。镉暴露大大降低了农艺性状(根和芽长度、芽和根鲜重)、叶绿素含量和抗氧化酶活性,并增加了活性氧(ROS)。与四倍体水稻相比,二倍体水稻的镉毒性效应更为明显。向受镉污染的水稻植株施用铁氧化物可逆转镉对四倍体和二倍体水稻栽培品种的不利影响,植物生长参数、叶绿素含量、ROS 减少和抗氧化酶水平提高都证实了这一点。四倍体和 Fe NPs 显著降低了镉的吸收,对镉转运基因(如 OsNRAMP2 和 OsHMA2)的表达模式产生了负面控制。二倍体水稻与秧苗中镉含量的关系最为密切。透射电子显微镜显示,镉(尤其是在二倍体水稻中)对细胞结构造成了破坏,而铁氧化物和四倍体几乎可以修复这种破坏。这项研究表明,四倍体和铁纳米粒子可降低镉积累、ROS 和细胞损伤,从而减轻镉的毒性。
{"title":"Tetraploidy and Fe2O3 nanoparticles: dual strategy to reduce the Cd-induced toxicity in rice plants by ameliorating the oxidative stress and downregulation of metal transporters","authors":"Fozia Ghouri, Munazzam Jawad Shahid, Shafaqat Ali, Humera Ashraf, Sarah Owdah Alomrani, Jingwen Liu, Mohammed Ali Alshehri, Shah Fahad, Muhammad Qasim Shahid","doi":"10.1039/d4en00470a","DOIUrl":"https://doi.org/10.1039/d4en00470a","url":null,"abstract":"Whole-genome doubling or polyploidy increases plants' tolerance to biotic and abiotic stress. Cadmium (Cd) damages the plant's metabolic system, leading to decreased plant development. The role of tetraploidy and iron nanoparticles (Fe NPs) in minimizing Cd toxicity in rice was investigated in this work. Diploid (E285) and tetraploid (T485) rice lines were treated with Cd (100 μM) and different doses of Fe NPs (0, 10, 25, and 50 mg L<small><sup>−1</sup></small>). The Cd exposure substantially decreased agronomic traits (root and shoot length, shoot and root fresh weight), chlorophyll contents, and antioxidant enzyme activity and increased reactive oxygen species (ROS). The Cd toxicity effect was more pronounced in diploid rice than in tetraploid rice. The application of Fe NPs to Cd-contaminated rice plants reversed the detrimental consequences of Cd in tetraploid and diploid rice cultivars, verified by the substantial upturn in plant growth parameters, chlorophyll contents, decreased ROS, and increased levels of antioxidant enzymes. The Cd uptake was significantly reduced by tetraploidy and Fe NPs, which negatively controlled the expression patterns of Cd transporter genes (like <em>OsNRAMP2</em> and <em>OsHMA2</em>). The strongest association was seen between diploid rice and cadmium levels in seedlings. Transmission electron microscopy revealed that Cd, especially in diploid rice, caused cell structure damage that Fe NPs and tetraploidy almost repaired. This study demonstrated that tetraploidy and Fe NPs could alleviate Cd toxicity by lowering Cd accumulation, ROS, and cell damage.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"3 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering MXene for Electrochemical Environmental Pollutant Sensing 用于电化学环境污染物传感的工程 MXene
IF 8.131 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1039/d4en00255e
Muhammad Hussnain Afzal, Wajeeha Pervaiz, Muhammad Asif, Zhuo Huang, Jiawei Dai, You Xu, Jiannan Zhu, Tiansui Zhang, Zhuang Rao, Guangfang Li, Zhengyun Wang, Hongfang Liu
Environmental pollutant sensing is essential to sustainable development of human health and ecosystem. MXenes as a category of two-dimensional materials consisting of nitrides and carbides have emerged as highly attractive candidates for electrochemical sensing of environmental pollutants including toxic gases, harmful volatile organic compounds, and biologically relevant components due to strong metallic conductivity, easy customization, abundant surface functional groups and large interlayer spacing. This comprehensive review firstly assesses environmental pollutant sensing mechanism and modular MXene electrode fabrication methods. Subsequently, the research progress of MXene has been summarized by comparing the performances in environmental pollutants detection. Next, how to improve electrochemical stability and selectivity of MXenes has been further discussed by different techniques. Finally, the faced challenges in this field and prospective directions for future research have been suggested by integrating emerging technologies and interdisciplinary approaches. The key objective of this review is to motivate engineers and materials scientists to consider incorporating MXenes into technologies for environmental protection, thereby fostering inventive solutions to urgent global issues.
环境污染物传感对人类健康和生态系统的可持续发展至关重要。MXene 是一类由氮化物和碳化物组成的二维材料,具有金属传导性强、易于定制、表面官能团丰富和层间间距大等特点,已成为电化学传感环境污染物(包括有毒气体、有害挥发性有机化合物和生物相关成分)的极具吸引力的候选材料。本综述首先评估了环境污染物传感机理和模块化 MXene 电极制造方法。随后,通过比较 MXene 在环境污染物检测中的性能,总结了 MXene 的研究进展。接着,进一步讨论了如何通过不同技术提高 MXene 的电化学稳定性和选择性。最后,通过整合新兴技术和跨学科方法,提出了该领域面临的挑战和未来研究的前景方向。本综述的主要目的是激励工程师和材料科学家考虑将三氧化二烯纳入环境保护技术中,从而为解决紧迫的全球性问题提供创造性的解决方案。
{"title":"Engineering MXene for Electrochemical Environmental Pollutant Sensing","authors":"Muhammad Hussnain Afzal, Wajeeha Pervaiz, Muhammad Asif, Zhuo Huang, Jiawei Dai, You Xu, Jiannan Zhu, Tiansui Zhang, Zhuang Rao, Guangfang Li, Zhengyun Wang, Hongfang Liu","doi":"10.1039/d4en00255e","DOIUrl":"https://doi.org/10.1039/d4en00255e","url":null,"abstract":"Environmental pollutant sensing is essential to sustainable development of human health and ecosystem. MXenes as a category of two-dimensional materials consisting of nitrides and carbides have emerged as highly attractive candidates for electrochemical sensing of environmental pollutants including toxic gases, harmful volatile organic compounds, and biologically relevant components due to strong metallic conductivity, easy customization, abundant surface functional groups and large interlayer spacing. This comprehensive review firstly assesses environmental pollutant sensing mechanism and modular MXene electrode fabrication methods. Subsequently, the research progress of MXene has been summarized by comparing the performances in environmental pollutants detection. Next, how to improve electrochemical stability and selectivity of MXenes has been further discussed by different techniques. Finally, the faced challenges in this field and prospective directions for future research have been suggested by integrating emerging technologies and interdisciplinary approaches. The key objective of this review is to motivate engineers and materials scientists to consider incorporating MXenes into technologies for environmental protection, thereby fostering inventive solutions to urgent global issues.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"230 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amphiphilic Engineering of MoS2-g-C3N4 Nanocomposites into a Mangrove-Inspired Cascade System for Sustainable Drinking Water Production 将 MoS2-g-C3N4 纳米复合材料应用于红树林启发的级联系统的双亲工程,促进可持续饮用水生产
IF 8.131 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1039/d4en00633j
Sichen Liu, Haotian Wang, Yumeng Xiao, Calatayud David G., Boyang Mao, gaoqi Zhang, Chenhui Yang, Lidong Wang, Meng Li
Drinking water contamination and water shortages are seriously exacerbated by industrial wastewater discharge. However, due to the high complexity of wastewater treatment systems, effective high-concentration pollutant removal and simplified wastewater recycling remain major challenges. Inspired by mangrove interconnected purification mechanisms, a novel cascade water treatment system has been developed using MoS2-g-C3N4 (MoG), an amphiphilic material, as the main and single component to directly produce drinking water from wastewater with high efficiency. This cascade system integrates membrane filtration and solar-powered water evaporation processes to produce clean water, while also overcoming the requirement for less polluted source water that is typically required for standalone solar evaporation-based clean water production. The MoG membrane, featuring an amphiphilic platform, exhibits a high removal rate for organic and heavy metal contaminants and achieves a water flow of 966 L m-2 h-1 bar-1 and an 80% efficiency in pollutant removal. The MoG-based aerogel enables nano- and micro-channels and exhibits a clean water production rate of 1.48 kg m-2 h-1 under 1 sun irradiation. The compact cascade system for practical use can produce drinking water that meets WHO standards from heavily polluted wastewater with an average hourly water production rate of 1.39 kg m-2 h-1. Life cycle assessment confirms that the cascade system displays significant environmental profile improvement with reduced CO2 equivalent (CO2e) levels with only 1/25 of that observed in conventional water treatment systems.
工业废水排放严重加剧了饮用水污染和水资源短缺。然而,由于废水处理系统的高度复杂性,有效去除高浓度污染物和简化废水循环利用仍是主要挑战。受红树林相互连接的净化机制的启发,一种新型级联水处理系统应运而生,它以两亲性材料 MoS2-g-C3N4 (MoG)为主要和单一成分,可直接从废水中高效生产饮用水。这种级联系统集成了膜过滤和太阳能水蒸发过程以生产清洁水,同时还克服了独立太阳能蒸发清洁水生产通常对污染较少的原水的要求。MoG 膜采用两性平台,对有机污染物和重金属污染物的去除率很高,水流量达到 966 L m-2 h-1 bar-1,污染物去除率达到 80%。基于 MoG 的气凝胶可形成纳米和微通道,在 1 个太阳光照射下的净水生产率为 1.48 kg m-2 h-1。用于实际应用的紧凑型级联系统可以从严重污染的废水中生产出符合世界卫生组织标准的饮用水,平均每小时产水量为 1.39 kg m-2 h-1。生命周期评估证实,级联系统显著改善了环境状况,二氧化碳当量(CO2e)水平仅为传统水处理系统的 1/25。
{"title":"Amphiphilic Engineering of MoS2-g-C3N4 Nanocomposites into a Mangrove-Inspired Cascade System for Sustainable Drinking Water Production","authors":"Sichen Liu, Haotian Wang, Yumeng Xiao, Calatayud David G., Boyang Mao, gaoqi Zhang, Chenhui Yang, Lidong Wang, Meng Li","doi":"10.1039/d4en00633j","DOIUrl":"https://doi.org/10.1039/d4en00633j","url":null,"abstract":"Drinking water contamination and water shortages are seriously exacerbated by industrial wastewater discharge. However, due to the high complexity of wastewater treatment systems, effective high-concentration pollutant removal and simplified wastewater recycling remain major challenges. Inspired by mangrove interconnected purification mechanisms, a novel cascade water treatment system has been developed using MoS2-g-C3N4 (MoG), an amphiphilic material, as the main and single component to directly produce drinking water from wastewater with high efficiency. This cascade system integrates membrane filtration and solar-powered water evaporation processes to produce clean water, while also overcoming the requirement for less polluted source water that is typically required for standalone solar evaporation-based clean water production. The MoG membrane, featuring an amphiphilic platform, exhibits a high removal rate for organic and heavy metal contaminants and achieves a water flow of 966 L m-2 h-1 bar-1 and an 80% efficiency in pollutant removal. The MoG-based aerogel enables nano- and micro-channels and exhibits a clean water production rate of 1.48 kg m-2 h-1 under 1 sun irradiation. The compact cascade system for practical use can produce drinking water that meets WHO standards from heavily polluted wastewater with an average hourly water production rate of 1.39 kg m-2 h-1. Life cycle assessment confirms that the cascade system displays significant environmental profile improvement with reduced CO2 equivalent (CO2e) levels with only 1/25 of that observed in conventional water treatment systems.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"9 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing maize stress tolerance with nickel ferrite nanoparticles: a sustainable approach to combat abiotic stresses 利用镍铁氧体纳米颗粒增强玉米的抗逆性:一种可持续的抗非生物性胁迫的方法
IF 8.131 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-16 DOI: 10.1039/d4en00603h
Yuying Tang, Yanru Ding, Muhammed Nadeem, Yuanbo Li, Weichen Zhao, Zhiling Guo, Peng Zhang, Yukui Rui
The use of nanotechnology to pre-treat crop seeds through seed treatments for enhancing their resistance to abiotic stresses is a promising and sustainable approach. This study demonstrates for the first time the potential of nickel ferrite (NiFe2O4) nanoparticles (NPs) in improving the tolerance of maize (Zea mays L.) exposed to drought and salt stress conditions. This study fills the current gap in understanding whether metal ferrite nanoparticles can mitigate abiotic stresses in crops, especially under hydric and saline stress. In this study, NiFe2O4 NPs were used as seed pretreatments to enhance the resistance of maize (Zea mays L.) experiencing drought and salt stress. We conducted a 7 day germination experiment and a 3-week seedling growth experiment to assess the impact of NiFe2O4 NPs on key growth parameters such as seed germination, seedling vigor, root and shoot length, and biomass accumulation. The findings indicated that under drought conditions, 40 mg L−1 NiFe2O4 NPs was the most effective concentration, leading to a substantial increase in the germination rate by 90%. Under salt stress, 20 mg L−1 was the optimal concentration, which resulted in a significant increase in seedling vigor by 521%, shoot length by 177%, and so on. In addition, NiFe2O4 NPs exhibited peroxidase (POD)-like activity, which could increase the antioxidant capacity of maize seedlings, thereby enhancing their stress tolerance. These results offer a theoretical foundation for the use of NiFe2O4 NPs in agricultural practices and highlight their unique potential for promoting plant resistance and sustainable agricultural practices. Although these results are promising, extensive research is needed to comprehensively elucidate the mechanisms through which NiFe2O4 NPs enhance stress tolerance. Future research should explore the prolonged effects of NiFe2O4 NPs on the growth of plants and yield, their potential environmental impacts, and their broader applicability. In addition, there is still a need to explore the interplay between NiFe2O4 NPs and other biotic or abiotic factors to optimize their application in agricultural systems.
利用纳米技术通过种子处理剂对作物种子进行预处理,以增强其对非生物胁迫的抗性,是一种前景广阔的可持续方法。本研究首次证明了镍铁氧体(NiFe2O4)纳米粒子(NPs)在提高玉米(Zea mays L.)对干旱和盐胁迫条件的耐受性方面的潜力。这项研究填补了目前在了解金属铁氧体纳米粒子是否能减轻作物非生物胁迫方面的空白,尤其是在水胁迫和盐胁迫条件下。本研究使用 NiFe2O4 NPs 作为种子预处理,以增强玉米(Zea mays L.)在干旱和盐胁迫下的抗性。我们进行了为期 7 天的发芽实验和为期 3 周的幼苗生长实验,以评估 NiFe2O4 NPs 对种子发芽、幼苗活力、根和芽长度以及生物量积累等关键生长参数的影响。结果表明,在干旱条件下,40 mg L-1 NiFe2O4 NPs 是最有效的浓度,可使发芽率大幅提高 90%。在盐胁迫条件下,20 mg L-1 是最佳浓度,可使幼苗活力显著提高 521%,芽长显著提高 177%,等等。此外,NiFe2O4 NPs 表现出类似过氧化物酶(POD)的活性,可提高玉米幼苗的抗氧化能力,从而增强其抗逆性。这些结果为在农业实践中使用 NiFe2O4 NPs 提供了理论基础,并凸显了其在促进植物抗性和可持续农业实践方面的独特潜力。尽管这些结果很有希望,但要全面阐明 NiFe2O4 NPs 增强抗逆性的机制还需要广泛的研究。未来的研究应探索 NiFe2O4 NPs 对植物生长和产量的长期影响、对环境的潜在影响及其更广泛的适用性。此外,仍有必要探索镍铁氧体氮氧化物与其他生物或非生物因素之间的相互作用,以优化其在农业系统中的应用。
{"title":"Enhancing maize stress tolerance with nickel ferrite nanoparticles: a sustainable approach to combat abiotic stresses","authors":"Yuying Tang, Yanru Ding, Muhammed Nadeem, Yuanbo Li, Weichen Zhao, Zhiling Guo, Peng Zhang, Yukui Rui","doi":"10.1039/d4en00603h","DOIUrl":"https://doi.org/10.1039/d4en00603h","url":null,"abstract":"The use of nanotechnology to pre-treat crop seeds through seed treatments for enhancing their resistance to abiotic stresses is a promising and sustainable approach. This study demonstrates for the first time the potential of nickel ferrite (NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small>) nanoparticles (NPs) in improving the tolerance of maize (<em>Zea mays</em> L.) exposed to drought and salt stress conditions. This study fills the current gap in understanding whether metal ferrite nanoparticles can mitigate abiotic stresses in crops, especially under hydric and saline stress. In this study, NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small> NPs were used as seed pretreatments to enhance the resistance of maize (<em>Zea mays</em> L.) experiencing drought and salt stress. We conducted a 7 day germination experiment and a 3-week seedling growth experiment to assess the impact of NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small> NPs on key growth parameters such as seed germination, seedling vigor, root and shoot length, and biomass accumulation. The findings indicated that under drought conditions, 40 mg L<small><sup>−1</sup></small> NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small> NPs was the most effective concentration, leading to a substantial increase in the germination rate by 90%. Under salt stress, 20 mg L<small><sup>−1</sup></small> was the optimal concentration, which resulted in a significant increase in seedling vigor by 521%, shoot length by 177%, and so on. In addition, NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small> NPs exhibited peroxidase (POD)-like activity, which could increase the antioxidant capacity of maize seedlings, thereby enhancing their stress tolerance. These results offer a theoretical foundation for the use of NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small> NPs in agricultural practices and highlight their unique potential for promoting plant resistance and sustainable agricultural practices. Although these results are promising, extensive research is needed to comprehensively elucidate the mechanisms through which NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small> NPs enhance stress tolerance. Future research should explore the prolonged effects of NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small> NPs on the growth of plants and yield, their potential environmental impacts, and their broader applicability. In addition, there is still a need to explore the interplay between NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small> NPs and other biotic or abiotic factors to optimize their application in agricultural systems.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"78 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocarrier Foliar Uptake Pathways Affect Delivery of Active Agents and Plant Physiological Response 纳米载体叶面吸收途径影响活性剂的输送和植物生理反应
IF 8.131 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-15 DOI: 10.1039/d4en00547c
Hagay Kohay, Jonas Wielinski, Jana Reiser, Lydia A Perkins, kurt ristoph, Juan Pablo Giraldo, Gregory V. Lowry
Layered double hydroxide (LDH) nanoparticles enable foliar delivery of genetic material, herbicides, and nutrients to promote plant growth and yield. Understanding foliar uptake route of nanoparticles is needed to maximize their effectiveness and avoid unwanted negative effects. In this study, we investigated how delivering layered double hydroxide (d=37±1.5 nm) through the adaxial (upper) or abaxial (lower) side of leaves affects particle uptake, nutrient delivery, and photosynthesis in tomato plants. LDH applied on the adaxial side was embedded in the cuticle and accumulated at the anticlinal pegs between epidermal cells. On the abaxial side, LDH particles penetrated the cuticle less, but the presence of the stomata enables penetration to deeper leaf layers. Accordingly, the average penetration levels of LDH relative to the cuticle were 2.47±0.07, 1.25±0.13, and 0.75±0.1 µm for adaxial, abaxial with stomata, and abaxial without stomata leaf segments, respectively. In addition, the colocalization of LDH with the cuticle was ~2.3 times lower for the adaxial application, indicating the ability to penetrate the cuticle. Despite the low adaxial stomata density, LDH-mediated delivery of magnesium (Mg) from leaves to roots was 46% higher for the adaxial than abaxial application. In addition, adaxial application leads to ~24% higher leaf CO2 assimilation rate and higher biomass accumulation. The lower efficiency from the abaxial side was, at least partially, a result of interference with the stomata functionality which reduced stomatal conductance and evapotranspiration by 28% and 25%, respectively, limiting plant photosynthesis. This study elucidates how foliar delivery pathways through different sides of the leaves affect their ability to deliver active agents into plants and consequently affect the plants’ physiological response. That knowledge enables a more efficient use of nanocarriers for agricultural applications.
层状双氢氧化物(LDH)纳米粒子可通过叶面传递遗传物质、除草剂和养分,促进植物生长和提高产量。为了最大限度地发挥纳米粒子的功效,避免不必要的负面影响,我们需要了解纳米粒子的叶面吸收途径。在本研究中,我们研究了通过叶片正面(上部)或背面(下部)输送层状双氢氧化物(d=37±1.5 nm)如何影响番茄植株的颗粒吸收、养分输送和光合作用。施用在正面的 LDH 被嵌入角质层,并在表皮细胞之间的反斜面钉子处积聚。在背面,LDH 粒子穿透角质层的程度较低,但气孔的存在使其能够穿透到更深的叶层。因此,在正面、背面有气孔和背面无气孔的叶片上,LDH 相对于角质层的平均穿透水平分别为 2.47±0.07、1.25±0.13 和 0.75±0.1 µm。此外,正面施用的 LDH 与角质层的共定位是背面施用的约 2.3 倍,这表明 LDH 能够穿透角质层。尽管正面气孔密度较低,但由 LDH 介导的从叶片到根部的镁(Mg)输送量在正面施用时比背面施用时高 46%。此外,正面施用可使叶片二氧化碳同化率和生物量积累提高 24%。背面的效率较低,至少部分原因是气孔功能受到干扰,气孔导度和蒸散量分别降低了 28% 和 25%,从而限制了植物的光合作用。这项研究阐明了通过叶片不同侧面的叶面递送途径如何影响其向植物递送活性剂的能力,进而影响植物的生理反应。这些知识有助于在农业应用中更有效地使用纳米载体。
{"title":"Nanocarrier Foliar Uptake Pathways Affect Delivery of Active Agents and Plant Physiological Response","authors":"Hagay Kohay, Jonas Wielinski, Jana Reiser, Lydia A Perkins, kurt ristoph, Juan Pablo Giraldo, Gregory V. Lowry","doi":"10.1039/d4en00547c","DOIUrl":"https://doi.org/10.1039/d4en00547c","url":null,"abstract":"Layered double hydroxide (LDH) nanoparticles enable foliar delivery of genetic material, herbicides, and nutrients to promote plant growth and yield. Understanding foliar uptake route of nanoparticles is needed to maximize their effectiveness and avoid unwanted negative effects. In this study, we investigated how delivering layered double hydroxide (d=37±1.5 nm) through the adaxial (upper) or abaxial (lower) side of leaves affects particle uptake, nutrient delivery, and photosynthesis in tomato plants. LDH applied on the adaxial side was embedded in the cuticle and accumulated at the anticlinal pegs between epidermal cells. On the abaxial side, LDH particles penetrated the cuticle less, but the presence of the stomata enables penetration to deeper leaf layers. Accordingly, the average penetration levels of LDH relative to the cuticle were 2.47±0.07, 1.25±0.13, and 0.75±0.1 µm for adaxial, abaxial with stomata, and abaxial without stomata leaf segments, respectively. In addition, the colocalization of LDH with the cuticle was ~2.3 times lower for the adaxial application, indicating the ability to penetrate the cuticle. Despite the low adaxial stomata density, LDH-mediated delivery of magnesium (Mg) from leaves to roots was 46% higher for the adaxial than abaxial application. In addition, adaxial application leads to ~24% higher leaf CO2 assimilation rate and higher biomass accumulation. The lower efficiency from the abaxial side was, at least partially, a result of interference with the stomata functionality which reduced stomatal conductance and evapotranspiration by 28% and 25%, respectively, limiting plant photosynthesis. This study elucidates how foliar delivery pathways through different sides of the leaves affect their ability to deliver active agents into plants and consequently affect the plants’ physiological response. That knowledge enables a more efficient use of nanocarriers for agricultural applications.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"20 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facet-Dependent Oxysulfidation of Cu2O Nanomaterials: Implications for Improving the Efficacy of Nanopesticides Cu2O 纳米材料的面依赖性氧化硫化:提高纳米杀虫剂功效的意义
IF 8.131 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-14 DOI: 10.1039/d4en00545g
Tingting Du, Wenyu Guan, Zhanhua Zhang, Chuanjia Jiang, Pedro Alvarez, Wei Chen, Tong Zhang
Copper (hydr)oxide nanomaterials are an important class of nanomaterials with various applications, including next-generation pesticides. The efficacy of these materials is largely affected by oxysulfidation, one of the most important transformation processes in the environment. Here, we show that the extent and route of oxysulfidation are facet-dependent for these materials. Specifically, oxysulfidation of Cu2O_{100} and Cu2O_{111}—two Cu2O nanomaterials with predominantly exposed {100} and {111} facets—is fast and complete, with only a hollow shell left at the end of the experiment. In comparison, oxysulfidation of Cu2O_{110}, a nanomaterial with {110} facet, is much less complete, in that, the end-product exhibits a yolk–shell structure with a large cuprite core. The varied degrees of oxysulfidation are attributable to the facet-dependent adsorption affinities of Cu2O for both oxygen and sulfide ions, leading to the formation of different initial oxysulfidation products. Unlike the porous coatings of yarrowite on Cu2O_{111} and a mixture of yarrowite and covellite on Cu2O_{100}, the condensed layer of djurleite formed on Cu2O_{110} passivates the material by sealing the surface of Cu2O, hindering subsequent copper dissolution. Consequently, Cu ion release from Cu2O_{100} and Cu2O_{111} are 2.2 and 2.4 times higher than Cu2O_{110}. These findings underline the important role of exposed facets in dictating the interfacial processes of soft metal-based nanomaterials, and have important implications for improving the efficiency of nanopesticides in redox dynamic rhizospheres to minimize the environmental impacts associated with the overuse of conventional pesticides.
氧化铜(氢)纳米材料是一类重要的纳米材料,具有多种用途,包括下一代杀虫剂。这些材料的功效在很大程度上受到氧化硫化的影响,而氧化硫化是环境中最重要的转化过程之一。在这里,我们发现氧化硫化的程度和途径与这些材料的切面有关。具体来说,Cu2O_{100}和Cu2O_{111}--两种主要具有暴露的{100}和{111}面的Cu2O纳米材料--的氧化硫化过程快速而彻底,实验结束时只剩下一个空壳。相比之下,具有{110}面的纳米材料 Cu2O_{110} 的氧化硫化就不那么完全了,最终产物呈现出具有大块铜绿石内核的蛋黄壳结构。氧化硫化程度不同的原因在于 Cu2O 对氧离子和硫化离子的吸附亲和力取决于刻面,从而形成了不同的初始氧化硫化产物。与 Cu2O_{111} 上的蓍石多孔涂层以及 Cu2O_{100} 上的蓍石和柯氏石混合物不同,Cu2O_{110} 上形成的烛石凝结层通过封闭 Cu2O 表面使材料钝化,阻碍了铜的后续溶解。因此,Cu2O_{100} 和 Cu2O_{111} 的铜离子释放量分别是 Cu2O_{110} 的 2.2 倍和 2.4 倍。这些发现强调了暴露面在决定软金属基纳米材料界面过程中的重要作用,并对提高氧化还原动态根瘤中纳米杀虫剂的效率以尽量减少与过度使用传统杀虫剂相关的环境影响具有重要意义。
{"title":"Facet-Dependent Oxysulfidation of Cu2O Nanomaterials: Implications for Improving the Efficacy of Nanopesticides","authors":"Tingting Du, Wenyu Guan, Zhanhua Zhang, Chuanjia Jiang, Pedro Alvarez, Wei Chen, Tong Zhang","doi":"10.1039/d4en00545g","DOIUrl":"https://doi.org/10.1039/d4en00545g","url":null,"abstract":"Copper (hydr)oxide nanomaterials are an important class of nanomaterials with various applications, including next-generation pesticides. The efficacy of these materials is largely affected by oxysulfidation, one of the most important transformation processes in the environment. Here, we show that the extent and route of oxysulfidation are facet-dependent for these materials. Specifically, oxysulfidation of Cu2O_{100} and Cu2O_{111}—two Cu2O nanomaterials with predominantly exposed {100} and {111} facets—is fast and complete, with only a hollow shell left at the end of the experiment. In comparison, oxysulfidation of Cu2O_{110}, a nanomaterial with {110} facet, is much less complete, in that, the end-product exhibits a yolk–shell structure with a large cuprite core. The varied degrees of oxysulfidation are attributable to the facet-dependent adsorption affinities of Cu2O for both oxygen and sulfide ions, leading to the formation of different initial oxysulfidation products. Unlike the porous coatings of yarrowite on Cu2O_{111} and a mixture of yarrowite and covellite on Cu2O_{100}, the condensed layer of djurleite formed on Cu2O_{110} passivates the material by sealing the surface of Cu2O, hindering subsequent copper dissolution. Consequently, Cu ion release from Cu2O_{100} and Cu2O_{111} are 2.2 and 2.4 times higher than Cu2O_{110}. These findings underline the important role of exposed facets in dictating the interfacial processes of soft metal-based nanomaterials, and have important implications for improving the efficiency of nanopesticides in redox dynamic rhizospheres to minimize the environmental impacts associated with the overuse of conventional pesticides.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"16 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Science: Nano
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1