Martin Stastny, Dmytro Bavol, Jakub Tolasz, Petr Bezdicka, Jan Cundrle, Martin Kormunda, Ivan Dimitrov, Pavel Janos, Kaplan Kirakci, Jiří Henych
Bisphenol-A (BPA) and its structural analogues such as Bisphenol-S (BPS) and F (BPF) are widespread industrial chemicals of great concern in water and other even biological matrices due to their accumulation and toxicological effects including interference with hormones of the human body. In this work, composites based on CeO2 nanoparticles grown in situ on graphene oxide (GO) sheets were prepared by a low-temperature water-based method and used for removal of bisphenols from water. It has been demonstrated that ceria-based nanomaterials can spontaneously decompose BPS containing a sulfonyl functional group by hydrolytic cleavage upon its adsorption, while BPA and BPF can be efficiently decomposed by simulated solar light using CeO2/GO composites as photocatalysts, as shown by the following degradation kinetics and mechanism by HPLC-DAD and HPLC-HRMS. In addition, the study of photophysical and other properties showed that in order to achieve significant interfacial interactions, it is advantageous to use methods of in situ growth of nanoparticles on suitable counterparts, such as graphene oxide.
双酚-A(BPA)及其结构类似物,如双酚-S(BPS)和双酚-F(BPF),是水和其他甚至生物基质中广泛存在的工业化学品,由于其积累和毒理效应(包括干扰人体激素)而备受关注。本研究采用低温水基法制备了基于 CeO2 纳米颗粒原位生长在氧化石墨烯(GO)片上的复合材料,并将其用于去除水中的双酚。研究表明,铈基纳米材料在吸附含有磺酰基官能团的双酚 A 后,可通过水解裂解自发分解双酚 BPS,而使用 CeO2/GO 复合材料作为光催化剂,双酚 A 和双酚 F 可在模拟太阳光下被有效分解,其降解动力学和机理可通过 HPLC-DAD 和 HPLC-HRMS 验证。此外,对光物理性质和其他性质的研究表明,为了实现显著的界面相互作用,最好采用在合适的对应物(如氧化石墨烯)上原位生长纳米粒子的方法。
{"title":"Interfacial behavior of ceria grown on graphene oxide and its use for hydrolytic and photocatalytic decomposition of bisphenols A, S, and F","authors":"Martin Stastny, Dmytro Bavol, Jakub Tolasz, Petr Bezdicka, Jan Cundrle, Martin Kormunda, Ivan Dimitrov, Pavel Janos, Kaplan Kirakci, Jiří Henych","doi":"10.1039/d4en00787e","DOIUrl":"https://doi.org/10.1039/d4en00787e","url":null,"abstract":"Bisphenol-A (BPA) and its structural analogues such as Bisphenol-S (BPS) and F (BPF) are widespread industrial chemicals of great concern in water and other even biological matrices due to their accumulation and toxicological effects including interference with hormones of the human body. In this work, composites based on CeO2 nanoparticles grown in situ on graphene oxide (GO) sheets were prepared by a low-temperature water-based method and used for removal of bisphenols from water. It has been demonstrated that ceria-based nanomaterials can spontaneously decompose BPS containing a sulfonyl functional group by hydrolytic cleavage upon its adsorption, while BPA and BPF can be efficiently decomposed by simulated solar light using CeO2/GO composites as photocatalysts, as shown by the following degradation kinetics and mechanism by HPLC-DAD and HPLC-HRMS. In addition, the study of photophysical and other properties showed that in order to achieve significant interfacial interactions, it is advantageous to use methods of in situ growth of nanoparticles on suitable counterparts, such as graphene oxide.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"195 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moorthy Gnanasekar Narendran, Aruljothy John Bosco
In the quest for highly efficient nanomaterials to overcome the inherent challenges associated with fungicide elimination from water, herein, a novel ohmic junction was engineered by integrating layered 2D Mo2AlB2 with TiO2 nanoparticles using ultrasound self-assembly technique. A comprehensive array of characterization methods was employed to probe the photophysical properties of the optimized composite (TO/15-MAB). The innovative design of the ohmic junction, facilitated by its internal electric field, significantly reduced the surface charge in the TO/15-MAB composite by transferring free electrons from Mo2AlB2 to TiO2. This charge reduction enhanced the ability of the composite to attract carbendazim because of their opposing charges, promoting its swift adsorption under neutral pH conditions. Upon light irradiation, the junction accelerated the seamless transition of electrons from TiO2 to Mo2AlB2 over a curved energy band, reducing the recombination of photogenerated electrons and holes and converting them into ˙O2− and ˙OH. This culminated in the rapid degradation of 15 ppm carbendazim to ∼1 ppm with an efficiency of 93.4% and an enhanced rate of k = 0.0415 min−1, which is 4 times higher than that of bare TiO2. This assertion was supported by combined experimental and theoretical evaluation. This work showcases the excellent potential of MAB phase materials in harnessing ohmic junctions and electric fields for enhanced photocatalysis, paving the way for a highly efficient and sustainable approach to eliminating fungicides from water.
{"title":"2D Mo2AlB2 transition-metal-aluminum-boride-phase-integrated TiO2 nanoparticles enable accelerated carbendazim photodegradation: impact of ohmic junctions and electric fields","authors":"Moorthy Gnanasekar Narendran, Aruljothy John Bosco","doi":"10.1039/d4en00727a","DOIUrl":"https://doi.org/10.1039/d4en00727a","url":null,"abstract":"In the quest for highly efficient nanomaterials to overcome the inherent challenges associated with fungicide elimination from water, herein, a novel ohmic junction was engineered by integrating layered 2D Mo<small><sub>2</sub></small>AlB<small><sub>2</sub></small> with TiO<small><sub>2</sub></small> nanoparticles using ultrasound self-assembly technique. A comprehensive array of characterization methods was employed to probe the photophysical properties of the optimized composite (TO/15-MAB). The innovative design of the ohmic junction, facilitated by its internal electric field, significantly reduced the surface charge in the TO/15-MAB composite by transferring free electrons from Mo<small><sub>2</sub></small>AlB<small><sub>2</sub></small> to TiO<small><sub>2</sub></small>. This charge reduction enhanced the ability of the composite to attract carbendazim because of their opposing charges, promoting its swift adsorption under neutral pH conditions. Upon light irradiation, the junction accelerated the seamless transition of electrons from TiO<small><sub>2</sub></small> to Mo<small><sub>2</sub></small>AlB<small><sub>2</sub></small> over a curved energy band, reducing the recombination of photogenerated electrons and holes and converting them into ˙O<small><sub>2</sub></small><small><sup>−</sup></small> and ˙OH. This culminated in the rapid degradation of 15 ppm carbendazim to ∼1 ppm with an efficiency of 93.4% and an enhanced rate of <em>k</em> = 0.0415 min<small><sup>−1</sup></small>, which is 4 times higher than that of bare TiO<small><sub>2</sub></small>. This assertion was supported by combined experimental and theoretical evaluation. This work showcases the excellent potential of MAB phase materials in harnessing ohmic junctions and electric fields for enhanced photocatalysis, paving the way for a highly efficient and sustainable approach to eliminating fungicides from water.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"36 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a novel approach for the sensitive detection of Cu(II) ions in acidic industrial samples, used in the manufacture of printed circuits. The study outlines the synthesis and functionalization of Fe3O4 magnetic nanoparticles, emphasizing the optimization of parameters affecting Cu(II) concentration measurements. The NPs are surface-modified with APTES and succinic acid and characterized through different methods including TEM imaging and FTIR analysis. A method employing the magnetic NPs for bulk preconcentration of Cu(II) ions, followed by collection using a simple and home-made magnetic glassy carbon electrode (MGCE), is detailed. The electrochemical analysis showcases the efficiency of the proposed method for rapid and sequential measurements of Cu(II) ions adequate for industrial matrixes. Results demonstrate the potential of this approach for sensitive Cu(II) sensing, offering a cost-effective and efficient alternative to conventional analytical techniques. Notably, the successful quantification of Cu(II) concentrations in a real sample obtained from an acid industrial electroplating bath of CuSO4 highlights the practical applicability of the developed methodology.
{"title":"Cu(II) Traceability in Industrial Samples: Innovating Detection with Modified Nanoparticles and Magnetic Electrodes","authors":"Cecilia Daniela Costa, Delphine Talbot, Agnes Bee, Sebastien Abramson, Virginia Emilse Diz, Graciela Alicia Alicia González","doi":"10.1039/d4en00459k","DOIUrl":"https://doi.org/10.1039/d4en00459k","url":null,"abstract":"This paper presents a novel approach for the sensitive detection of Cu(II) ions in acidic industrial samples, used in the manufacture of printed circuits. The study outlines the synthesis and functionalization of Fe3O4 magnetic nanoparticles, emphasizing the optimization of parameters affecting Cu(II) concentration measurements. The NPs are surface-modified with APTES and succinic acid and characterized through different methods including TEM imaging and FTIR analysis. A method employing the magnetic NPs for bulk preconcentration of Cu(II) ions, followed by collection using a simple and home-made magnetic glassy carbon electrode (MGCE), is detailed. The electrochemical analysis showcases the efficiency of the proposed method for rapid and sequential measurements of Cu(II) ions adequate for industrial matrixes. Results demonstrate the potential of this approach for sensitive Cu(II) sensing, offering a cost-effective and efficient alternative to conventional analytical techniques. Notably, the successful quantification of Cu(II) concentrations in a real sample obtained from an acid industrial electroplating bath of CuSO4 highlights the practical applicability of the developed methodology.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"25 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martín Benzo, Maria Eugenia Perez Barthaburu, Andrés Pérez-Parada, Álvaro Olivera, Laura Fornaro
Micro and nanoplastics (MNP) pollution has become an increasingly concerning environmental issue. Wastewater treatment plants represent a significant source of MNP pollution, as the treatments involved do not completely remove them. Studies on their removal from water and wastewater are of current interest. However, suitable reference materials are necessary to conduct these studies accurately and to calibrate and validate analytical techniques capable of determining their concentration in water and wastewater. This work provides new insights into developing such materials. By a simple, straightforward, and cost-effective method, we produced MNP of target commodity polymers: polyethylene (PE), polypropylene (PP), polystyrene (PS) , polyvinyl chloride (PVC) and polyethylene terephthalate (PET) in sizes ranging from 20 to 3500 nm through non-solvent precipitation. The MNP obtained were aged by exposure to UV/O3 to simulate natural plastic weathering. We assessed the dispersibility of the particles in various media and conducted a series of coagulation/flocculation tests using both aged and non-aged particles in different aqueous media. The results of these tests suggest that an 'eco-corona' was formed, which strongly influences the colloidal behavior of MNP. The MNP obtained in this work proved to be suitable for assessing MNP removal efficiency in coagulation/flocculation processes, provided that an adequate medium with a chemical composition resembling that of wastewater is used. This research not only contributes to the development of representative reference materials but also provides new insights into the colloidal behavior of MNP in wastewater, which could help optimize removal efficiencies in wastewater treatment processes.
{"title":"Developing environmentally relevant micro- and nanoplastics to assess removal efficiencies in wastewater treatment processes","authors":"Martín Benzo, Maria Eugenia Perez Barthaburu, Andrés Pérez-Parada, Álvaro Olivera, Laura Fornaro","doi":"10.1039/d4en00250d","DOIUrl":"https://doi.org/10.1039/d4en00250d","url":null,"abstract":"Micro and nanoplastics (MNP) pollution has become an increasingly concerning environmental issue. Wastewater treatment plants represent a significant source of MNP pollution, as the treatments involved do not completely remove them. Studies on their removal from water and wastewater are of current interest. However, suitable reference materials are necessary to conduct these studies accurately and to calibrate and validate analytical techniques capable of determining their concentration in water and wastewater. This work provides new insights into developing such materials. By a simple, straightforward, and cost-effective method, we produced MNP of target commodity polymers: polyethylene (PE), polypropylene (PP), polystyrene (PS) , polyvinyl chloride (PVC) and polyethylene terephthalate (PET) in sizes ranging from 20 to 3500 nm through non-solvent precipitation. The MNP obtained were aged by exposure to UV/O3 to simulate natural plastic weathering. We assessed the dispersibility of the particles in various media and conducted a series of coagulation/flocculation tests using both aged and non-aged particles in different aqueous media. The results of these tests suggest that an 'eco-corona' was formed, which strongly influences the colloidal behavior of MNP. The MNP obtained in this work proved to be suitable for assessing MNP removal efficiency in coagulation/flocculation processes, provided that an adequate medium with a chemical composition resembling that of wastewater is used. This research not only contributes to the development of representative reference materials but also provides new insights into the colloidal behavior of MNP in wastewater, which could help optimize removal efficiencies in wastewater treatment processes.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"15 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142541331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Moya, Natacha Brion, Ludovic Troian-Gautier, Ivan Jabin, Gilles Bruylants
Magnetic removal and recovery of precious metals from wastewater and complex biological media pose significant challenges mostly due to the need for efficient, selective, and stable materials. This work reports a methodology that allows to address these challenges by synthesizing iron oxide nanoparticles (IONPs) coated with a covalent layer of calix[4]arene-tetracarboxylate (X4C4) capable of binding polyethyleneimine (PEI) functionalities via electrostatic interactions. In contrast to citrate coating, which was previously utilized as an attachment layer for PEI, the reductive grafting of X4C4-tetra-diazonium salts onto IONPs results in a considerably more stable coating that proves to be an excellent substrate for the adsorption of PEI. This efficiently results in a synergistic interaction that significantly improves the durability of the PEI coating and maintains the particles in a dispersed state. The stability of the resulting IONPs@X4C4@PEI particles is demonstrated by their ability to withstand both acidic and alkaline conditions without significant particle aggregation or loss of magnetic properties. Moreover, these particles exhibit exceptional magnetic reusability, retaining their selectivity and recovery efficiency over multiple separation cycles. The selective affinity of IONPs@X4C4@PEI particles for Au and Pt stems from the specific binding interactions between the complexes formed by these metals in solution and the PEI coating, enabling efficient recovery of these precious metals. This work places these IONPs at the forefront in terms of stability, reusability, and selectivity, which will undoubtedly open new avenues for environmental remediation and purification applications.
{"title":"Robust Calix[4]arene-Polyethyleneimine Coated Iron Oxide Nanoparticles for Enhanced Recovery of Gold and Platinum Chloride Complexes","authors":"Carlos Moya, Natacha Brion, Ludovic Troian-Gautier, Ivan Jabin, Gilles Bruylants","doi":"10.1039/d4en00408f","DOIUrl":"https://doi.org/10.1039/d4en00408f","url":null,"abstract":"Magnetic removal and recovery of precious metals from wastewater and complex biological media pose significant challenges mostly due to the need for efficient, selective, and stable materials. This work reports a methodology that allows to address these challenges by synthesizing iron oxide nanoparticles (IONPs) coated with a covalent layer of calix[4]arene-tetracarboxylate (X4C4) capable of binding polyethyleneimine (PEI) functionalities via electrostatic interactions. In contrast to citrate coating, which was previously utilized as an attachment layer for PEI, the reductive grafting of X4C4-tetra-diazonium salts onto IONPs results in a considerably more stable coating that proves to be an excellent substrate for the adsorption of PEI. This efficiently results in a synergistic interaction that significantly improves the durability of the PEI coating and maintains the particles in a dispersed state. The stability of the resulting IONPs@X4C4@PEI particles is demonstrated by their ability to withstand both acidic and alkaline conditions without significant particle aggregation or loss of magnetic properties. Moreover, these particles exhibit exceptional magnetic reusability, retaining their selectivity and recovery efficiency over multiple separation cycles. The selective affinity of IONPs@X4C4@PEI particles for Au and Pt stems from the specific binding interactions between the complexes formed by these metals in solution and the PEI coating, enabling efficient recovery of these precious metals. This work places these IONPs at the forefront in terms of stability, reusability, and selectivity, which will undoubtedly open new avenues for environmental remediation and purification applications.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"58 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142490467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Si Chen, Zhengyan Pan, Jose R. Peralta-Videa, Lijuan Zhao
Rice is highly susceptible to salt stress. Increasing the salt tolerance of rice is critical to reduce yield loss. Herein, we investigated the possibility of using an AgNP-based priming method (seed soaking (SP) and leaf spraying (LP)) to enhance rice salt tolerance. Under saline conditions, both SP (40 mg L−1) and LP (∼0.15 mg per plant) significantly increased the biomass (10.4–13.4%) and height (6.6–6.9%) of 6-week-old rice seedlings. In addition, SP significantly increased chlorophyll a (7.3%) and carotenoid (7.9%) content as well as total antioxidant capacity (10.5%), whereas it decreased malondialdehyde (MDA) content (16.9%) in rice leaves. These findings indicate that AgNP priming, especially SP, improved the salt tolerance of rice seedlings. A life cycle field study conducted in a real saline land revealed that SP significantly increased the rice grain yield by 25.8% compared to hydropriming. Multi-omics analyses demonstrated that AgNP priming induced metabolic and transcriptional reprogramming in both seeds and leaves. Notably, both SP and LP upregulated osmoprotectants in seeds and leaves. Furthermore, several transcriptional factors (TFs), such as WRKY and NAC, and salt-tolerance related genes, including the high-affinity K+ channel gene (OsHKT2;4, OsHAK5), the Ca2+/proton exchanger (CAX4), and the cation/Ca2+ exchanger (CCX4), were upregulated in leaves. Omics data provide a deep insight into the molecular mechanisms for enhanced salinity tolerance. Together, the results of this study suggest that seed priming with AgNPs can enhance the salt tolerance of rice and increase rice yield in saline soil, which provides an efficient and simple way to engineering salt-tolerant rice.
{"title":"Multi-omics revealed the mechanisms of AgNP-priming enhanced rice salinity tolerance","authors":"Si Chen, Zhengyan Pan, Jose R. Peralta-Videa, Lijuan Zhao","doi":"10.1039/d4en00685b","DOIUrl":"https://doi.org/10.1039/d4en00685b","url":null,"abstract":"Rice is highly susceptible to salt stress. Increasing the salt tolerance of rice is critical to reduce yield loss. Herein, we investigated the possibility of using an AgNP-based priming method (seed soaking (SP) and leaf spraying (LP)) to enhance rice salt tolerance. Under saline conditions, both SP (40 mg L<small><sup>−1</sup></small>) and LP (∼0.15 mg per plant) significantly increased the biomass (10.4–13.4%) and height (6.6–6.9%) of 6-week-old rice seedlings. In addition, SP significantly increased chlorophyll a (7.3%) and carotenoid (7.9%) content as well as total antioxidant capacity (10.5%), whereas it decreased malondialdehyde (MDA) content (16.9%) in rice leaves. These findings indicate that AgNP priming, especially SP, improved the salt tolerance of rice seedlings. A life cycle field study conducted in a real saline land revealed that SP significantly increased the rice grain yield by 25.8% compared to hydropriming. Multi-omics analyses demonstrated that AgNP priming induced metabolic and transcriptional reprogramming in both seeds and leaves. Notably, both SP and LP upregulated osmoprotectants in seeds and leaves. Furthermore, several transcriptional factors (TFs), such as WRKY and NAC, and salt-tolerance related genes, including the high-affinity K<small><sup>+</sup></small> channel gene (OsHKT2;4, OsHAK5), the Ca<small><sup>2+</sup></small>/proton exchanger (CAX4), and the cation/Ca<small><sup>2+</sup></small> exchanger (CCX4), were upregulated in leaves. Omics data provide a deep insight into the molecular mechanisms for enhanced salinity tolerance. Together, the results of this study suggest that seed priming with AgNPs can enhance the salt tolerance of rice and increase rice yield in saline soil, which provides an efficient and simple way to engineering salt-tolerant rice.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"3 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Brunelli, A. Serrano-Lotina, Miguel Bañares, Victor Alcolea-Rodriguez, Magda Blosi, Anna Costa, Simona Ortelli, Willie Peijnenburg, Carlos Fito-López, Ernesto Gonzalez Fernandez, Jorge Hermosilla, Lya G Soeteman-Hernandez, Iranztu Garmendia Aguirre, Hubert Rauscher, Fiona Murphy, Vicki Stone, José Balbuena, José Manuel Lloris Cormano, Lisa Pizzol, Danail Hristozov, Antonio Marcomini, Elena Badetti
Safety aspects of chemicals/materials are transversal in all sustainability dimensions, representing a pillar at early-innovation stages of the European Commission’s “Safe and Sustainable-by-Design” (SSbD) framework for chemicals and materials. The first three of the five SSbD framework steps covers different safety aspects: hazard assessment based on intrinsic properties (step 1), occupational health and safety (including exposure) assessment during the production/processing phase (step 2) and exposure in the final application phase (step 3). The goal of this work was to identify a set of characterization tools/procedures to support the operationalization of the first three safety steps to multi-component nanomaterials (MCNMs), applying the findings to a SiO2 core-ZnO shell MCNM. The safety of this MCNM, used as additive to a silicate/calcium hydroxide mortar to improve air quality through photocatalytic NOₓ removal, was investigated from different perspectives along its value chain. Existing and newly generated data on its hazard profile were collected, workers’ exposure during synthesis was assessed, and potential exposure to hazardous substances during its final application phase was investigated. Concerning step 1, physico-chemical properties, hazard classification and cytotoxicity assays were considered. Afterwards, a three-tiered established methodology for evaluating occupational exposure assessment was performed for step 2. Lastly, for step 3, the release of inorganic substances from the MCNM-based mortars in the final application phase was investigated. Safety assessment according to the SSbD framework was done by selecting tools and procedures suitable for application at an early innovation stage, resulting in a preliminary hazard assessment of the MCNM and a suggestion for redesigning a step in the process.
{"title":"Safe-by-design assessment of SiO2@ZnO multi-component nanomaterial used in construction","authors":"Andrea Brunelli, A. Serrano-Lotina, Miguel Bañares, Victor Alcolea-Rodriguez, Magda Blosi, Anna Costa, Simona Ortelli, Willie Peijnenburg, Carlos Fito-López, Ernesto Gonzalez Fernandez, Jorge Hermosilla, Lya G Soeteman-Hernandez, Iranztu Garmendia Aguirre, Hubert Rauscher, Fiona Murphy, Vicki Stone, José Balbuena, José Manuel Lloris Cormano, Lisa Pizzol, Danail Hristozov, Antonio Marcomini, Elena Badetti","doi":"10.1039/d4en00352g","DOIUrl":"https://doi.org/10.1039/d4en00352g","url":null,"abstract":"Safety aspects of chemicals/materials are transversal in all sustainability dimensions, representing a pillar at early-innovation stages of the European Commission’s “Safe and Sustainable-by-Design” (SSbD) framework for chemicals and materials. The first three of the five SSbD framework steps covers different safety aspects: hazard assessment based on intrinsic properties (step 1), occupational health and safety (including exposure) assessment during the production/processing phase (step 2) and exposure in the final application phase (step 3). The goal of this work was to identify a set of characterization tools/procedures to support the operationalization of the first three safety steps to multi-component nanomaterials (MCNMs), applying the findings to a SiO2<small><sub></sub></small> core-ZnO shell MCNM. The safety of this MCNM, used as additive to a silicate/calcium hydroxide mortar to improve air quality through photocatalytic NOₓ removal, was investigated from different perspectives along its value chain. Existing and newly generated data on its hazard profile were collected, workers’ exposure during synthesis was assessed, and potential exposure to hazardous substances during its final application phase was investigated. Concerning step 1, physico-chemical properties, hazard classification and cytotoxicity assays were considered. Afterwards, a three-tiered established methodology for evaluating occupational exposure assessment was performed for step 2. Lastly, for step 3, the release of inorganic substances from the MCNM-based mortars in the final application phase was investigated. Safety assessment according to the SSbD framework was done by selecting tools and procedures suitable for application at an early innovation stage, resulting in a preliminary hazard assessment of the MCNM and a suggestion for redesigning a step in the process.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"125 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maycon Lucas de Oliveira, Juliana Cancino-Bernardi, Márcia Andreia Mesquita Silva da Veiga
Iron Oxide Nanoparticles (IONPs) are among the most versatile and applied nanoparticles due to their unique properties. However, the distribution of these nanoparticles (NPs) in the environmental system represents an emergency problem for understanding the generation of reactive oxygen species (ROS) and their unpredictable effect on micro and macro fauna/flora due to their chemical form. This study describes strategies to evaluate the dispersion of IONPs in environmental media under controlled conditions of pH (5 – 9), hardness (0 – 400 mg CaCO3 L-1), temperature (10 – 30 °C), and exposure time (0 – 48 h) in aquatic systems. For this purpose, iron-based nanoparticles (hematite, goethite, and magnetite) were synthesised and characterised using chemical and morphological analytical techniques. Subsequently, the effect of environmental parameters on NPs dispersion was investigated by developing a model using a central composite rotatable design (CCRD) with total Fe as the dependent variable. The IONPs were synthesised with a size minor than 100 nm for the three nanoparticles. It was observed that the nano-hematites and magnetites had spherical morphology while goethite appeared as nanorods. The resulting models, integrating linear, quadratic, and combined effects, exhibit high predictive capacities – 76.4%, 93.6%, and an impressive 99.9% for nano-hematite, goethite, and magnetite, respectively. This research contributes to understanding nanoparticle behaviour in natural settings, providing essential insights to assess and potentially mitigate the adverse consequences of IONPs contamination in aquatic environments.
{"title":"Understanding and Predicting the Environmental Dispersion of Iron Oxide Nanoparticles: A Comprehensive Study on Synthesis, Characterisation, and Modelling","authors":"Maycon Lucas de Oliveira, Juliana Cancino-Bernardi, Márcia Andreia Mesquita Silva da Veiga","doi":"10.1039/d3en00860f","DOIUrl":"https://doi.org/10.1039/d3en00860f","url":null,"abstract":"Iron Oxide Nanoparticles (IONPs) are among the most versatile and applied nanoparticles due to their unique properties. However, the distribution of these nanoparticles (NPs) in the environmental system represents an emergency problem for understanding the generation of reactive oxygen species (ROS) and their unpredictable effect on micro and macro fauna/flora due to their chemical form. This study describes strategies to evaluate the dispersion of IONPs in environmental media under controlled conditions of pH (5 – 9), hardness (0 – 400 mg CaCO3 L-1), temperature (10 – 30 °C), and exposure time (0 – 48 h) in aquatic systems. For this purpose, iron-based nanoparticles (hematite, goethite, and magnetite) were synthesised and characterised using chemical and morphological analytical techniques. Subsequently, the effect of environmental parameters on NPs dispersion was investigated by developing a model using a central composite rotatable design (CCRD) with total Fe as the dependent variable. The IONPs were synthesised with a size minor than 100 nm for the three nanoparticles. It was observed that the nano-hematites and magnetites had spherical morphology while goethite appeared as nanorods. The resulting models, integrating linear, quadratic, and combined effects, exhibit high predictive capacities – 76.4%, 93.6%, and an impressive 99.9% for nano-hematite, goethite, and magnetite, respectively. This research contributes to understanding nanoparticle behaviour in natural settings, providing essential insights to assess and potentially mitigate the adverse consequences of IONPs contamination in aquatic environments.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"14 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Li, Jing-Han Wei, Bing-Ke Wei, Zi-Qi Chen, Hai-Long Liu, Wan-Ying Zhang, Xin-Yu Li and Dong-Mei Zhou
Plastic particles deposited from the atmosphere can be absorbed by crops and have significant effects on crops. However, current knowledge regarding the particle size effects on the phytotoxicity of airborne plastic particles to leafy vegetables is limited. Therefore, in the present study, we examined the effects of foliar exposure to polystyrene nanoplastics (PS NPs, 100 nm) and polystyrene microplastics (PS MPs, 1 μm) of different concentrations on the biomass, physiological and biochemical indexes (i.e., chlorophyll, antioxidant enzyme and malonaldehyde (MDA), nutritional quality), and the metabolism of lettuce (Lactuca sativa L.). PS concentration, rather than particle size, exerted significant effects on these physiological and biochemical indexes. Both PS NPs and PS MPs at the high concentration of 35.0 mg L−1 decreased the contents of chlorophyll a, chlorophyll b, and total chlorophyll in lettuce leaves. Further, the nutritional quality of lettuce leaves was generally improved as evidenced by the increased soluble protein and soluble sugar as well as the decreased nitrate. The decrease of superoxide dismutase activity and accumulation of MDA suggested oxidative stress induced by PS NPs and PS MPs. Metabolomics analysis showed that foliar exposure to PS NPs disturbed the energy metabolism, glutathione metabolism, and ABC transporter, whereas PS MPs perturbed the lipid metabolism and cutin, suberin and wax biosynthesis in lettuce leaves. The different metabolic responses between PS NP and PS MP treatments highlighted the importance of particle size in investigating the phytotoxicity of airborne plastic particles. These results provided effective information for the risk assessment of airborne plastic particles.
{"title":"Metabolic response of lettuce (Lactuca sativa L.) to polystyrene nanoplastics and microplastics after foliar exposure†","authors":"Min Li, Jing-Han Wei, Bing-Ke Wei, Zi-Qi Chen, Hai-Long Liu, Wan-Ying Zhang, Xin-Yu Li and Dong-Mei Zhou","doi":"10.1039/D4EN00233D","DOIUrl":"10.1039/D4EN00233D","url":null,"abstract":"<p >Plastic particles deposited from the atmosphere can be absorbed by crops and have significant effects on crops. However, current knowledge regarding the particle size effects on the phytotoxicity of airborne plastic particles to leafy vegetables is limited. Therefore, in the present study, we examined the effects of foliar exposure to polystyrene nanoplastics (PS NPs, 100 nm) and polystyrene microplastics (PS MPs, 1 μm) of different concentrations on the biomass, physiological and biochemical indexes (<em>i.e.</em>, chlorophyll, antioxidant enzyme and malonaldehyde (MDA), nutritional quality), and the metabolism of lettuce (<em>Lactuca sativa</em> L.). PS concentration, rather than particle size, exerted significant effects on these physiological and biochemical indexes. Both PS NPs and PS MPs at the high concentration of 35.0 mg L<small><sup>−1</sup></small> decreased the contents of chlorophyll <em>a</em>, chlorophyll <em>b</em>, and total chlorophyll in lettuce leaves. Further, the nutritional quality of lettuce leaves was generally improved as evidenced by the increased soluble protein and soluble sugar as well as the decreased nitrate. The decrease of superoxide dismutase activity and accumulation of MDA suggested oxidative stress induced by PS NPs and PS MPs. Metabolomics analysis showed that foliar exposure to PS NPs disturbed the energy metabolism, glutathione metabolism, and ABC transporter, whereas PS MPs perturbed the lipid metabolism and cutin, suberin and wax biosynthesis in lettuce leaves. The different metabolic responses between PS NP and PS MP treatments highlighted the importance of particle size in investigating the phytotoxicity of airborne plastic particles. These results provided effective information for the risk assessment of airborne plastic particles.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 12","pages":" 4847-4861"},"PeriodicalIF":5.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yingchao Du, Jingyu Yu, Baoliang Chen, Xiaoying Zhu
Membrane technology stands as a leading method for water and wastewater treatments. MXene, a type of two-dimensional material, has garnered significant interest as a promising next-generation membrane material. Its customizable pore structure, uniform pore size, and hydrophilicity make it highly suitable for membrane separation technologies. This manuscript elucidates the modification strategies employed and evaluates the performance of MXene-based membranes (MBMs). Initially, the preparation of MXene nanosheets, pivotal to membrane fabrication, is detailed. Subsequently, the fabrication methods of MBMs are presented, emphasizing filtration, coating assembly, and other fabrication techniques. Furthermore, we emphasize the modification strategies employed to enhance the performance of MBMs. These encompass the regulation of MXene nanosheets in terms of lateral size, terminal functional groups, and in-plane pores. Furthermore, adjustments are made to the membrane assembly processes, focusing on controlling interlayer spacing. This includes methods such as self-crosslinking, insertion, and the incorporation of hybrid functional layers. Additionally, surface modifications encompass the regulation of surface charge, surface wettability, and management of surface defects. Next, we delineate the key membrane applications, encompassing separation mechanisms and their promising utility. Lastly, we present the challenges and opportunities that MBMs face in the field of water purification, with the hope of providing profound insights into the design and synthesis of advanced MBMs.
{"title":"Recent progresses in modification strategies of MXene-based membranes for water and wastewater treatments","authors":"Yingchao Du, Jingyu Yu, Baoliang Chen, Xiaoying Zhu","doi":"10.1039/d4en00712c","DOIUrl":"https://doi.org/10.1039/d4en00712c","url":null,"abstract":"Membrane technology stands as a leading method for water and wastewater treatments. MXene, a type of two-dimensional material, has garnered significant interest as a promising next-generation membrane material. Its customizable pore structure, uniform pore size, and hydrophilicity make it highly suitable for membrane separation technologies. This manuscript elucidates the modification strategies employed and evaluates the performance of MXene-based membranes (MBMs). Initially, the preparation of MXene nanosheets, pivotal to membrane fabrication, is detailed. Subsequently, the fabrication methods of MBMs are presented, emphasizing filtration, coating assembly, and other fabrication techniques. Furthermore, we emphasize the modification strategies employed to enhance the performance of MBMs. These encompass the regulation of MXene nanosheets in terms of lateral size, terminal functional groups, and in-plane pores. Furthermore, adjustments are made to the membrane assembly processes, focusing on controlling interlayer spacing. This includes methods such as self-crosslinking, insertion, and the incorporation of hybrid functional layers. Additionally, surface modifications encompass the regulation of surface charge, surface wettability, and management of surface defects. Next, we delineate the key membrane applications, encompassing separation mechanisms and their promising utility. Lastly, we present the challenges and opportunities that MBMs face in the field of water purification, with the hope of providing profound insights into the design and synthesis of advanced MBMs.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"8 1","pages":""},"PeriodicalIF":8.131,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}