首页 > 最新文献

Mayo Clinic Proceedings. Digital health最新文献

英文 中文
Assessment of Positive Cardiac Remodeling in Hypertrophic Obstructive Cardiomyopathy Using an Artificial Intelligence–Based Electrocardiographic Platform in Patients Treated With Mavacamten 使用基于人工智能的心电图平台评估接受马伐康坦治疗的肥厚型梗阻性心肌病患者的积极心脏重塑情况
Pub Date : 2024-04-10 DOI: 10.1016/j.mcpdig.2024.04.002
Mustafa Suppah MD , Kaitlin Roehl PA-C , Kathryn Lew APRN, NP, MSN , Reza Arsanjani MD , Steven Lester MD , Steve Ommen MD , Jeffrey Geske MD , Konstantinos C. Siontis MD , Hartzell Schaff MD , Said Alsidawi MD
{"title":"Assessment of Positive Cardiac Remodeling in Hypertrophic Obstructive Cardiomyopathy Using an Artificial Intelligence–Based Electrocardiographic Platform in Patients Treated With Mavacamten","authors":"Mustafa Suppah MD , Kaitlin Roehl PA-C , Kathryn Lew APRN, NP, MSN , Reza Arsanjani MD , Steven Lester MD , Steve Ommen MD , Jeffrey Geske MD , Konstantinos C. Siontis MD , Hartzell Schaff MD , Said Alsidawi MD","doi":"10.1016/j.mcpdig.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.mcpdig.2024.04.002","url":null,"abstract":"","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 2","pages":"Pages 255-257"},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949761224000294/pdfft?md5=051e61d0b54747fe9d602ac3bd249683&pid=1-s2.0-S2949761224000294-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140822696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Social Media and Artificial Intelligence—Understanding Medical Misinformation Through Snapchat’s New Artificial Intelligence Chatbot 社交媒体与人工智能--通过 Snapchat 的新型人工智能聊天机器人了解医疗误导信息
Pub Date : 2024-04-08 DOI: 10.1016/j.mcpdig.2024.04.004
Clara E. Tandar , Simar S. Bajaj , Fatima Cody Stanford MD, MPH, MPA, MBA
{"title":"Social Media and Artificial Intelligence—Understanding Medical Misinformation Through Snapchat’s New Artificial Intelligence Chatbot","authors":"Clara E. Tandar , Simar S. Bajaj , Fatima Cody Stanford MD, MPH, MPA, MBA","doi":"10.1016/j.mcpdig.2024.04.004","DOIUrl":"https://doi.org/10.1016/j.mcpdig.2024.04.004","url":null,"abstract":"","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 2","pages":"Pages 252-254"},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949761224000324/pdfft?md5=fa80a8039bfb5008a0473d61e26f78b6&pid=1-s2.0-S2949761224000324-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140818294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AImedReport: A Prototype Tool to Facilitate Research Reporting and Translation of Artificial Intelligence Technologies in Health Care AImedReport:促进医疗保健领域人工智能技术研究报告和转化的原型工具
Pub Date : 2024-04-06 DOI: 10.1016/j.mcpdig.2024.03.008
Tracey A. Brereton MS , Momin M. Malik PhD, MS, MSc , Lauren M. Rost PhD, MS , Joshua W. Ohde PhD , Lu Zheng PhD, MS , Kristelle A. Jose MS , Kevin J. Peterson PhD, MS , David Vidal JD , Mark A. Lifson PhD , Joe Melnick BS , Bryce Flor BS , Jason D. Greenwood MD, MS , Kyle Fisher MPA , Shauna M. Overgaard PhD
{"title":"AImedReport: A Prototype Tool to Facilitate Research Reporting and Translation of Artificial Intelligence Technologies in Health Care","authors":"Tracey A. Brereton MS , Momin M. Malik PhD, MS, MSc , Lauren M. Rost PhD, MS , Joshua W. Ohde PhD , Lu Zheng PhD, MS , Kristelle A. Jose MS , Kevin J. Peterson PhD, MS , David Vidal JD , Mark A. Lifson PhD , Joe Melnick BS , Bryce Flor BS , Jason D. Greenwood MD, MS , Kyle Fisher MPA , Shauna M. Overgaard PhD","doi":"10.1016/j.mcpdig.2024.03.008","DOIUrl":"https://doi.org/10.1016/j.mcpdig.2024.03.008","url":null,"abstract":"","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 2","pages":"Pages 246-251"},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949761224000312/pdfft?md5=d79b5ee4ecae7f6058302e879e2b8af2&pid=1-s2.0-S2949761224000312-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Housing Characteristics of Areas With More Falls by Older Adults Living in Single-Family Detached Dwellings: A Cohort Study Using Geospatial Analysis 居住在单户独立式住宅中的老年人跌倒较多的地区的住房特征:使用地理空间分析的队列研究
Pub Date : 2024-04-05 DOI: 10.1016/j.mcpdig.2024.04.001
Paul Y. Takahashi MD, MPH , Euijung Ryu PhD , Katherine S. King MS , Rachel E. Dixon BA , Julie C. Porcher MS , Philip H. Wheeler , Chung Il Wi MD , Young J. Juhn MD, MPH

Objective

To identify geographic locations with high numbers of medically attended falls (ie, hotspots) by older adults and to test the associations between fall hotspots and resident/housing characteristics.

Patients and Methods

In this cohort study, we retrospectively reviewed adults who were 65 years or older, lived in a single-family detached dwelling, and had a medically attended fall in Olmsted County, MN, between April 1, 2012, and December 31, 2014. We identified medically attended falls by using billing codes and confirmed by manual review of the electronic health records. We performed geospatial analysis to identify fall hotspots and evaluated the association between fall hotspots and resident or housing characteristics with logistic regression models, adjusting for age, sex, socioeconomic status, chronic health conditions, and/or a history of falls.

Results

Among 12,888 residents living in single-family detached dwellings in our community, 587 residents (4.6%) had documented accidental falls. Falls were more common in older residents and in women. Residents who had more chronic diseases, lower socioeconomic status, and a history of falls also had higher odds of a fall. Geospatial analysis identified 2061 (16.0%) residents who lived in a fall hotspot. Houses in hotspots were more likely to have more stories with fewer stairs (split level) (odds ratio [OR], 1.75; 95% CI, 1.57-1.94, for split level vs 1-story houses), smaller square feet (OR, 0.29; 95% CI, 0.24-0.35, for largest vs smallest houses), and in the highest quartile for age (OR, 1.46; 95% CI, 1.26-1.70, for oldest built vs newest built houses).

Conclusion

Falls were more common in locations in our community that had older, smaller homes and lower housing-based socioeconomic status. These findings can be used by clinicians to identify residents who are at higher risk for falls.

患者和方法在这项队列研究中,我们对 2012 年 4 月 1 日至 2014 年 12 月 31 日期间明尼苏达州奥姆斯特德县 65 岁或以上、居住在单户独立式住宅中并发生过医疗护理跌倒的成年人进行了回顾性回顾。我们通过使用账单代码来识别医疗护理跌倒,并通过人工审核电子健康记录来确认。我们进行了地理空间分析以确定跌倒热点,并通过逻辑回归模型评估了跌倒热点与居民或住房特征之间的关联,同时对年龄、性别、社会经济地位、慢性健康状况和/或跌倒史进行了调整。结果在我们社区居住在单户独立住宅中的 12888 名居民中,有 587 名居民(4.6%)有意外跌倒的记录。跌倒在老年居民和女性中更为常见。患有慢性疾病、社会经济地位较低和有跌倒史的居民发生跌倒的几率也较高。通过地理空间分析发现,有 2061 名(16.0%)居民居住在跌倒热点地区。热点地区的房屋更有可能层数较多,楼梯较少(分层)(分层房屋与单层房屋的几率比 [OR], 1.75; 95% CI, 1.57-1.94),面积较小(最大房屋与最小房屋的几率比 [OR], 0.29; 95% CI, 0.24-0.结论在我们的社区中,房屋较老、较小、社会经济地位较低的地方更容易发生跌倒。临床医生可以利用这些发现来识别跌倒风险较高的居民。
{"title":"Housing Characteristics of Areas With More Falls by Older Adults Living in Single-Family Detached Dwellings: A Cohort Study Using Geospatial Analysis","authors":"Paul Y. Takahashi MD, MPH ,&nbsp;Euijung Ryu PhD ,&nbsp;Katherine S. King MS ,&nbsp;Rachel E. Dixon BA ,&nbsp;Julie C. Porcher MS ,&nbsp;Philip H. Wheeler ,&nbsp;Chung Il Wi MD ,&nbsp;Young J. Juhn MD, MPH","doi":"10.1016/j.mcpdig.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.mcpdig.2024.04.001","url":null,"abstract":"<div><h3>Objective</h3><p>To identify geographic locations with high numbers of medically attended falls (ie, hotspots) by older adults and to test the associations between fall hotspots and resident/housing characteristics.</p></div><div><h3>Patients and Methods</h3><p>In this cohort study, we retrospectively reviewed adults who were 65 years or older, lived in a single-family detached dwelling, and had a medically attended fall in Olmsted County, MN, between April 1, 2012, and December 31, 2014. We identified medically attended falls by using billing codes and confirmed by manual review of the electronic health records. We performed geospatial analysis to identify fall hotspots and evaluated the association between fall hotspots and resident or housing characteristics with logistic regression models, adjusting for age, sex, socioeconomic status, chronic health conditions, and/or a history of falls.</p></div><div><h3>Results</h3><p>Among 12,888 residents living in single-family detached dwellings in our community, 587 residents (4.6%) had documented accidental falls. Falls were more common in older residents and in women. Residents who had more chronic diseases, lower socioeconomic status, and a history of falls also had higher odds of a fall. Geospatial analysis identified 2061 (16.0%) residents who lived in a fall hotspot. Houses in hotspots were more likely to have more stories with fewer stairs (split level) (odds ratio [OR], 1.75; 95% CI, 1.57-1.94, for split level vs 1-story houses), smaller square feet (OR, 0.29; 95% CI, 0.24-0.35, for largest vs smallest houses), and in the highest quartile for age (OR, 1.46; 95% CI, 1.26-1.70, for oldest built vs newest built houses).</p></div><div><h3>Conclusion</h3><p>Falls were more common in locations in our community that had older, smaller homes and lower housing-based socioeconomic status. These findings can be used by clinicians to identify residents who are at higher risk for falls.</p></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 2","pages":"Pages 259-269"},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949761224000282/pdfft?md5=677afcbfea9f9ecd229c0c3ed4369544&pid=1-s2.0-S2949761224000282-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140894928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Use of Artificial Intelligence to Detect Malignant Skin Lesions 利用人工智能检测恶性皮肤病变
Pub Date : 2024-04-05 DOI: 10.1016/j.mcpdig.2024.04.003
Sofia Haddadin , Latha Ganti MD, MS, MBA
{"title":"The Use of Artificial Intelligence to Detect Malignant Skin Lesions","authors":"Sofia Haddadin ,&nbsp;Latha Ganti MD, MS, MBA","doi":"10.1016/j.mcpdig.2024.04.003","DOIUrl":"https://doi.org/10.1016/j.mcpdig.2024.04.003","url":null,"abstract":"","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 2","pages":"Pages 241-245"},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949761224000300/pdfft?md5=10086ff1aae1aa26c957d2e5d87ac957&pid=1-s2.0-S2949761224000300-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empowering Patients in the Digital Age: New Framework to Measure and Improve Patient Digital Experiences 在数字时代为患者赋权:衡量和改善患者数字体验的新框架
Pub Date : 2024-04-03 DOI: 10.1016/j.mcpdig.2024.03.001
Andrew Kucheriavy BCS, BEc
{"title":"Empowering Patients in the Digital Age: New Framework to Measure and Improve Patient Digital Experiences","authors":"Andrew Kucheriavy BCS, BEc","doi":"10.1016/j.mcpdig.2024.03.001","DOIUrl":"https://doi.org/10.1016/j.mcpdig.2024.03.001","url":null,"abstract":"","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 2","pages":"Pages 181-185"},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294976122400018X/pdfft?md5=8a1e0da33153f6f9b359407345dc3538&pid=1-s2.0-S294976122400018X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating Clinical Guidelines With ChatGPT-4 Enhances Its’ Skills 将临床指南与 ChatGPT-4 相结合可提高其技能
Pub Date : 2024-03-28 DOI: 10.1016/j.mcpdig.2024.02.004
Raseen Tariq MBBS, Elida Voth MD, Sahil Khanna MBBS, MS

Navigating clinical guidelines can be complex for real-time health care decision making. Our study evaluates the chat generative prerained transformer (ChatGPT)-4 in improving responses to clinical questions by integrating guidelines on Clostridioides difficile infection and colon polyp surveillance. We assessed ChatGPT-4’s responses to questions before and after guideline integration, noting a clear improvement in accuracy. ChatGPT-4 provided guideline-aligned answers consistently. Further analysis showed its ability to summarize information from conflicting guidelines, highlighting its utility in complex clinical scenarios. The findings suggest that large language models such as ChatGPT-4 can enhance clinical decision making and patient education by providing quick, conversational, and accurate responses. This approach opens a path for using artificial intelligence to deliver reliable responses in health care, supporting clinicians in real-time decision making and improving patient care.

对于实时医疗决策而言,浏览临床指南可能很复杂。我们的研究通过整合艰难梭菌感染和结肠息肉监测指南,评估了聊天生成预增益转换器(ChatGPT)-4 在改善临床问题回复方面的作用。我们评估了指南整合前后 ChatGPT-4 对问题的回答,发现其准确性明显提高。ChatGPT-4 提供的答案始终与指南保持一致。进一步的分析表明,它有能力概括相互矛盾的指南信息,突出了它在复杂临床场景中的实用性。研究结果表明,像 ChatGPT-4 这样的大型语言模型可以通过提供快速、会话式的准确回答来加强临床决策制定和患者教育。这种方法为在医疗保健领域使用人工智能提供可靠的回复开辟了一条道路,可为临床医生实时决策和改善患者护理提供支持。
{"title":"Integrating Clinical Guidelines With ChatGPT-4 Enhances Its’ Skills","authors":"Raseen Tariq MBBS,&nbsp;Elida Voth MD,&nbsp;Sahil Khanna MBBS, MS","doi":"10.1016/j.mcpdig.2024.02.004","DOIUrl":"https://doi.org/10.1016/j.mcpdig.2024.02.004","url":null,"abstract":"<div><p>Navigating clinical guidelines can be complex for real-time health care decision making. Our study evaluates the chat generative prerained transformer (ChatGPT)-4 in improving responses to clinical questions by integrating guidelines on <em>Clostridioides difficile</em> infection and colon polyp surveillance. We assessed ChatGPT-4’s responses to questions before and after guideline integration, noting a clear improvement in accuracy. ChatGPT-4 provided guideline-aligned answers consistently. Further analysis showed its ability to summarize information from conflicting guidelines, highlighting its utility in complex clinical scenarios. The findings suggest that large language models such as ChatGPT-4 can enhance clinical decision making and patient education by providing quick, conversational, and accurate responses. This approach opens a path for using artificial intelligence to deliver reliable responses in health care, supporting clinicians in real-time decision making and improving patient care.</p></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 2","pages":"Pages 177-180"},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949761224000178/pdfft?md5=7aaafaf14f2ffcccea9377d36db0cb44&pid=1-s2.0-S2949761224000178-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foundation Models for Histopathology—Fanfare or Flair 组织病理学基础模型--狂热还是炫耀
Pub Date : 2024-03-01 DOI: 10.1016/j.mcpdig.2024.02.003
Saghir Alfasly PhD , Peyman Nejat MD , Sobhan Hemati PhD , Jibran Khan , Isaiah Lahr , Areej Alsaafin PhD , Abubakr Shafique PhD , Nneka Comfere MD , Dennis Murphree PhD , Chady Meroueh MD , Saba Yasir MBBS , Aaron Mangold MD , Lisa Boardman MD , Vijay H. Shah MD , Joaquin J. Garcia MD , H.R. Tizhoosh PhD

Objective

To assess the performance of the current foundation models in histopathology.

Patients and Methods

The assessment involves a comprehensive evaluation of some foundation models, such as the CLIP derivatives, namely PLIP and BiomedCLIP, which were fine-tuned on data scraped from the internet. The comparison is performed against simpler and nonfoundational histology models that are trained on well-curated data, eg, the cancer genome atlas. All models are evaluated on 8 datasets, 4 of which are internal histology datasets collected and curated at Mayo Clinic, and 4 well-known public datasets: PANDA, BRACS, CAMELYON16, and DigestPath. Evaluation metrics include accuracy and macro-averaged F1 score, using a majority vote among top-k (eg, MV@5) at the whole slide image/patch levels. Moreover, all models are evaluated in classification settings. This detailed analysis allows for a deep understanding of each model’s performance across various datasets.

Results

In various evaluation tasks, domain-specific (and nonfoundational) models like DinoSSLPath and KimiaNet outperform general-purpose foundation models. The DinoSSLPath excels in whole slide image-level retrieval for internal colorectal cancer and liver datasets with MV@5 macro-averaged F1 scores of 63% and 74%, respectively. The KimiaNet leads in breast and skin cancer tasks with respective Top-1 and MV@5 scores of 56% and 70%, respectively and scores 75% on the public CAMELYON16 dataset. Similar trends are observed in patch-level metrics, highlighting the advantage of using specialized datasets like the cancer genome atlas for histopathological analysis.

Conclusion

To enable effective vision-language foundation models in biomedicine, high-quality, multi-modal medical datasets are essential. These datasets serve as the substrate for training models capable of translating research into clinical practice. Of importance, the alignment (correspondence) between textual and visual data—often diagnostic—is critical and requires validation by domain experts. Thus, advancing foundation models in this field necessitates collaborative efforts in data curation and validation.

患者和方法评估包括对一些基础模型的综合评估,如 CLIP 衍生模型,即 PLIP 和 BiomedCLIP,这些模型是根据从互联网上搜刮的数据进行微调的。比较的对象是在癌症基因组图谱等经过精心整理的数据基础上训练的更简单的非基础组织学模型。所有模型都在 8 个数据集上进行了评估,其中 4 个是梅奥诊所收集和整理的内部组织学数据集,另外 4 个是著名的公共数据集:PANDA、BRACS、CAMELYON16 和 DigestPath。评估指标包括准确率和宏观平均 F1 分数,在整张幻灯片图像/斑块级别上采用前 k(如 MV@5)中的多数票。此外,所有模型都在分类设置中进行了评估。结果在各种评估任务中,DinoSSLPath 和 KimiaNet 等特定领域(非基础)模型的表现优于通用基础模型。DinoSSLPath 在内部结直肠癌和肝脏数据集的整张幻灯片图像级检索中表现出色,MV@5 宏观平均 F1 分数分别为 63% 和 74%。KimiaNet 在乳腺癌和皮肤癌任务中遥遥领先,Top-1 和 MV@5 分数分别为 56% 和 70%,在公共 CAMELYON16 数据集上的分数为 75%。在斑块级指标中也观察到了类似的趋势,这凸显了使用癌症基因组图谱等专业数据集进行组织病理学分析的优势。这些数据集是训练能够将研究成果转化为临床实践的模型的基础。重要的是,文本数据和视觉数据(通常是诊断数据)之间的对齐(对应)至关重要,需要领域专家的验证。因此,要推进该领域的基础模型,就必须在数据整理和验证方面开展合作。
{"title":"Foundation Models for Histopathology—Fanfare or Flair","authors":"Saghir Alfasly PhD ,&nbsp;Peyman Nejat MD ,&nbsp;Sobhan Hemati PhD ,&nbsp;Jibran Khan ,&nbsp;Isaiah Lahr ,&nbsp;Areej Alsaafin PhD ,&nbsp;Abubakr Shafique PhD ,&nbsp;Nneka Comfere MD ,&nbsp;Dennis Murphree PhD ,&nbsp;Chady Meroueh MD ,&nbsp;Saba Yasir MBBS ,&nbsp;Aaron Mangold MD ,&nbsp;Lisa Boardman MD ,&nbsp;Vijay H. Shah MD ,&nbsp;Joaquin J. Garcia MD ,&nbsp;H.R. Tizhoosh PhD","doi":"10.1016/j.mcpdig.2024.02.003","DOIUrl":"https://doi.org/10.1016/j.mcpdig.2024.02.003","url":null,"abstract":"<div><h3>Objective</h3><p>To assess the performance of the current foundation models in histopathology.</p></div><div><h3>Patients and Methods</h3><p>The assessment involves a comprehensive evaluation of some foundation models, such as the CLIP derivatives, namely PLIP and BiomedCLIP, which were fine-tuned on data scraped from the internet. The comparison is performed against simpler and nonfoundational histology models that are trained on well-curated data, eg, the cancer genome atlas. All models are evaluated on 8 datasets, 4 of which are internal histology datasets collected and curated at Mayo Clinic, and 4 well-known public datasets: PANDA, BRACS, CAMELYON16, and DigestPath. Evaluation metrics include accuracy and macro-averaged F1 score, using a majority vote among top-k (eg, MV@5) at the whole slide image/patch levels. Moreover, all models are evaluated in classification settings. This detailed analysis allows for a deep understanding of each model’s performance across various datasets.</p></div><div><h3>Results</h3><p>In various evaluation tasks, domain-specific (and nonfoundational) models like DinoSSLPath and KimiaNet outperform general-purpose foundation models. The DinoSSLPath excels in whole slide image-level retrieval for internal colorectal cancer and liver datasets with MV@5 macro-averaged F1 scores of 63% and 74%, respectively. The KimiaNet leads in breast and skin cancer tasks with respective Top-1 and MV@5 scores of 56% and 70%, respectively and scores 75% on the public CAMELYON16 dataset. Similar trends are observed in patch-level metrics, highlighting the advantage of using specialized datasets like the cancer genome atlas for histopathological analysis.</p></div><div><h3>Conclusion</h3><p>To enable effective vision-language foundation models in biomedicine, high-quality, multi-modal medical datasets are essential. These datasets serve as the substrate for training models capable of translating research into clinical practice. Of importance, the alignment (correspondence) between textual and visual data—often diagnostic—is critical and requires validation by domain experts. Thus, advancing foundation models in this field necessitates collaborative efforts in data curation and validation.</p></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 1","pages":"Pages 165-174"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949761224000142/pdfft?md5=238256763b3157fe9ab69c42a61cae64&pid=1-s2.0-S2949761224000142-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140030354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence Face Swapping: Promise and Peril in Health Care 人工智能换脸:医疗保健中的希望与危险
Pub Date : 2024-03-01 DOI: 10.1016/j.mcpdig.2024.01.009
Shankargouda Patil BDS, MDS, PhD
{"title":"Artificial Intelligence Face Swapping: Promise and Peril in Health Care","authors":"Shankargouda Patil BDS, MDS, PhD","doi":"10.1016/j.mcpdig.2024.01.009","DOIUrl":"https://doi.org/10.1016/j.mcpdig.2024.01.009","url":null,"abstract":"","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 1","pages":"Page 159"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949761224000129/pdfft?md5=17ded9949a5f81f9bacbc3731943bf85&pid=1-s2.0-S2949761224000129-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reply to: Exercise Testing and Artificial Intelligence as Allies in Improving the Detection and Diagnosis of Long QT Syndrome 回复运动测试和人工智能是改善长 QT 综合征检测和诊断的盟友
Pub Date : 2024-03-01 DOI: 10.1016/j.mcpdig.2024.01.012
Negar Raissi Dehkordi MD, Nastaran Raissi Dehkordi MD, Kimia Karimi Toudeshki MD, Mohammad Hadi Farjoo MD, PhD
{"title":"Reply to: Exercise Testing and Artificial Intelligence as Allies in Improving the Detection and Diagnosis of Long QT Syndrome","authors":"Negar Raissi Dehkordi MD,&nbsp;Nastaran Raissi Dehkordi MD,&nbsp;Kimia Karimi Toudeshki MD,&nbsp;Mohammad Hadi Farjoo MD, PhD","doi":"10.1016/j.mcpdig.2024.01.012","DOIUrl":"https://doi.org/10.1016/j.mcpdig.2024.01.012","url":null,"abstract":"","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 1","pages":"Page 164"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949761224000166/pdfft?md5=568e945b8d3e4093fa58d3edbf68e68e&pid=1-s2.0-S2949761224000166-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140013999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mayo Clinic Proceedings. Digital health
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1