首页 > 最新文献

Nature computational science最新文献

英文 中文
Improving the prediction of protein stability changes upon mutations by geometric learning and a pre-training strategy 通过几何学习和预训练策略改进突变后蛋白质稳定性变化的预测。
IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-25 DOI: 10.1038/s43588-024-00716-2
Yunxin Xu, Di Liu, Haipeng Gong
Accurate prediction of protein mutation effects is of great importance in protein engineering and design. Here we propose GeoStab-suite, a suite of three geometric learning-based models—GeoFitness, GeoDDG and GeoDTm—for the prediction of fitness score, ΔΔG and ΔTm of a protein upon mutations, respectively. GeoFitness engages a specialized loss function to allow supervised training of a unified model using the large amount of multi-labeled fitness data in the deep mutational scanning database. To further improve the downstream tasks of ΔΔG and ΔTm prediction, the encoder of GeoFitness is reutilized as a pre-trained module in GeoDDG and GeoDTm to overcome the challenge of lacking sufficient labeled data. This pre-training strategy, in combination with data expansion, markedly improves model performance and generalizability. In the benchmark test, GeoDDG and GeoDTm outperform the other state-of-the-art methods by at least 30% and 70%, respectively, in terms of the Spearman correlation coefficient. In this study, the authors propose a strategy to train a unified model to learn the general mutational effects based on multi-labeled deep mutational scanning (DMS) data, and then reutilize this pre-trained model to improve the downstream protein stability prediction tasks.
准确预测蛋白质突变效应对蛋白质工程和设计至关重要。在此,我们提出了 GeoStab-suite,这是一套由 GeoFitness、GeoDDG 和 GeoDTm 三种基于几何学习的模型组成的套件,分别用于预测蛋白质突变后的适应度得分、ΔΔG 和ΔTm。GeoFitness 使用专门的损失函数,利用深度突变扫描数据库中的大量多标签适配性数据对统一模型进行监督训练。为了进一步改进ΔΔG和ΔTm预测的下游任务,GeoFitness的编码器被重新用作GeoDDG和GeoDTm的预训练模块,以克服缺乏足够标记数据的挑战。这种预训练策略与数据扩展相结合,显著提高了模型的性能和普适性。在基准测试中,GeoDDG 和 GeoDTm 的斯皮尔曼相关系数分别比其他先进方法高出至少 30% 和 70%。
{"title":"Improving the prediction of protein stability changes upon mutations by geometric learning and a pre-training strategy","authors":"Yunxin Xu, Di Liu, Haipeng Gong","doi":"10.1038/s43588-024-00716-2","DOIUrl":"10.1038/s43588-024-00716-2","url":null,"abstract":"Accurate prediction of protein mutation effects is of great importance in protein engineering and design. Here we propose GeoStab-suite, a suite of three geometric learning-based models—GeoFitness, GeoDDG and GeoDTm—for the prediction of fitness score, ΔΔG and ΔTm of a protein upon mutations, respectively. GeoFitness engages a specialized loss function to allow supervised training of a unified model using the large amount of multi-labeled fitness data in the deep mutational scanning database. To further improve the downstream tasks of ΔΔG and ΔTm prediction, the encoder of GeoFitness is reutilized as a pre-trained module in GeoDDG and GeoDTm to overcome the challenge of lacking sufficient labeled data. This pre-training strategy, in combination with data expansion, markedly improves model performance and generalizability. In the benchmark test, GeoDDG and GeoDTm outperform the other state-of-the-art methods by at least 30% and 70%, respectively, in terms of the Spearman correlation coefficient. In this study, the authors propose a strategy to train a unified model to learn the general mutational effects based on multi-labeled deep mutational scanning (DMS) data, and then reutilize this pre-trained model to improve the downstream protein stability prediction tasks.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 11","pages":"840-850"},"PeriodicalIF":12.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fostering discussions on topical issues 促进对热点问题的讨论。
IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-23 DOI: 10.1038/s43588-024-00719-z
Nature Computational Science invites researchers to submit Correspondence pieces.
自然-计算科学》邀请研究人员提交通讯稿件。
{"title":"Fostering discussions on topical issues","authors":"","doi":"10.1038/s43588-024-00719-z","DOIUrl":"10.1038/s43588-024-00719-z","url":null,"abstract":"Nature Computational Science invites researchers to submit Correspondence pieces.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 10","pages":"723-723"},"PeriodicalIF":12.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43588-024-00719-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation 作者更正:用于高效 ab initio 电子结构计算的深度学习密度泛函理论哈密顿。
IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-23 DOI: 10.1038/s43588-024-00723-3
He Li, Zun Wang, Nianlong Zou, Meng Ye, Runzhang Xu, Xiaoxun Gong, Wenhui Duan, Yong Xu
{"title":"Author Correction: Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation","authors":"He Li, Zun Wang, Nianlong Zou, Meng Ye, Runzhang Xu, Xiaoxun Gong, Wenhui Duan, Yong Xu","doi":"10.1038/s43588-024-00723-3","DOIUrl":"10.1038/s43588-024-00723-3","url":null,"abstract":"","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 11","pages":"876-876"},"PeriodicalIF":12.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43588-024-00723-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Taking a deep dive with active learning for drug discovery 利用主动学习深入研究药物发现。
IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-23 DOI: 10.1038/s43588-024-00704-6
Zachary Fralish, Daniel Reker
Active machine learning is employed in academia and industry to support drug discovery. A recent study unravels the factors that influence a deep learning models’ ability to guide iterative discovery.
学术界和工业界都采用主动式机器学习来支持药物发现。最近的一项研究揭示了影响深度学习模型指导迭代发现能力的因素。
{"title":"Taking a deep dive with active learning for drug discovery","authors":"Zachary Fralish, Daniel Reker","doi":"10.1038/s43588-024-00704-6","DOIUrl":"10.1038/s43588-024-00704-6","url":null,"abstract":"Active machine learning is employed in academia and industry to support drug discovery. A recent study unravels the factors that influence a deep learning models’ ability to guide iterative discovery.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 10","pages":"727-728"},"PeriodicalIF":12.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An interdisciplinary effort to integrate coding into science courses 将编码纳入科学课程的跨学科努力。
IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-22 DOI: 10.1038/s43588-024-00708-2
Christina L. Vizcarra, Ryan F. Trainor, Ashley Ringer McDonald, Chris T. Richardson, Davit Potoyan, Jessica A. Nash, Britt Lundgren, Tyler Luchko, Glen M. Hocky, Jonathan J. Foley IV, Timothy J. Atherton, Grace Y. Stokes
{"title":"An interdisciplinary effort to integrate coding into science courses","authors":"Christina L. Vizcarra, Ryan F. Trainor, Ashley Ringer McDonald, Chris T. Richardson, Davit Potoyan, Jessica A. Nash, Britt Lundgren, Tyler Luchko, Glen M. Hocky, Jonathan J. Foley IV, Timothy J. Atherton, Grace Y. Stokes","doi":"10.1038/s43588-024-00708-2","DOIUrl":"10.1038/s43588-024-00708-2","url":null,"abstract":"","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 11","pages":"803-804"},"PeriodicalIF":12.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The future of machine learning for small-molecule drug discovery will be driven by data 小分子药物发现机器学习的未来将由数据驱动。
IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-15 DOI: 10.1038/s43588-024-00699-0
Guy Durant, Fergus Boyles, Kristian Birchall, Charlotte M. Deane
Many studies have prophesied that the integration of machine learning techniques into small-molecule therapeutics development will help to deliver a true leap forward in drug discovery. However, increasingly advanced algorithms and novel architectures have not always yielded substantial improvements in results. In this Perspective, we propose that a greater focus on the data for training and benchmarking these models is more likely to drive future improvement, and explore avenues for future research and strategies to address these data challenges. The application of machine learning techniques to small-molecule drug discovery has not yet yielded a true leap forward in the field. This Perspective discusses how a renewed focus on data and validation could help unlock machine learning’s potential.
许多研究都预言,将机器学习技术融入小分子疗法的开发,将有助于实现药物发现的真正飞跃。然而,越来越先进的算法和新颖的架构并不总能带来实质性的结果改进。在本《视角》中,我们提出,更加关注用于训练和基准测试这些模型的数据更有可能推动未来的改进,并探讨了未来研究的途径和应对这些数据挑战的策略。
{"title":"The future of machine learning for small-molecule drug discovery will be driven by data","authors":"Guy Durant, Fergus Boyles, Kristian Birchall, Charlotte M. Deane","doi":"10.1038/s43588-024-00699-0","DOIUrl":"10.1038/s43588-024-00699-0","url":null,"abstract":"Many studies have prophesied that the integration of machine learning techniques into small-molecule therapeutics development will help to deliver a true leap forward in drug discovery. However, increasingly advanced algorithms and novel architectures have not always yielded substantial improvements in results. In this Perspective, we propose that a greater focus on the data for training and benchmarking these models is more likely to drive future improvement, and explore avenues for future research and strategies to address these data challenges. The application of machine learning techniques to small-molecule drug discovery has not yet yielded a true leap forward in the field. This Perspective discusses how a renewed focus on data and validation could help unlock machine learning’s potential.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 10","pages":"735-743"},"PeriodicalIF":12.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The decomposition of perturbation modeling 扰动建模的分解。
IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-14 DOI: 10.1038/s43588-024-00706-4
Stefan Peidli
A recent study proposes a strategy for the prediction of genetic perturbation outcomes by breaking it down into three subtasks: identifying differentially expressed genes, determining expression change directions, and estimating gene expression magnitudes.
最近的一项研究提出了一种预测遗传扰动结果的策略,将其分解为三个子任务:识别差异表达基因、确定表达变化方向和估计基因表达量级。
{"title":"The decomposition of perturbation modeling","authors":"Stefan Peidli","doi":"10.1038/s43588-024-00706-4","DOIUrl":"10.1038/s43588-024-00706-4","url":null,"abstract":"A recent study proposes a strategy for the prediction of genetic perturbation outcomes by breaking it down into three subtasks: identifying differentially expressed genes, determining expression change directions, and estimating gene expression magnitudes.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 10","pages":"725-726"},"PeriodicalIF":12.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient simulations of electronic spectra 高效模拟电子光谱。
IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-14 DOI: 10.1038/s43588-024-00715-3
Kaitlin McCardle
{"title":"Efficient simulations of electronic spectra","authors":"Kaitlin McCardle","doi":"10.1038/s43588-024-00715-3","DOIUrl":"10.1038/s43588-024-00715-3","url":null,"abstract":"","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 10","pages":"724-724"},"PeriodicalIF":12.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectively detecting anomalous diffusion via deep learning 通过深度学习有效检测异常扩散。
IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-11 DOI: 10.1038/s43588-024-00705-5
Adrian Pacheco-Pozo, Diego Krapf
A deep learning algorithm is presented to classify single-particle tracking trajectories into theoretical models of anomalous diffusion and detect if the trajectory is related to a model not originally found within the training dataset.
本文介绍了一种深度学习算法,可将单粒子跟踪轨迹归类到异常扩散的理论模型中,并检测轨迹是否与训练数据集中未找到的模型相关。
{"title":"Effectively detecting anomalous diffusion via deep learning","authors":"Adrian Pacheco-Pozo, Diego Krapf","doi":"10.1038/s43588-024-00705-5","DOIUrl":"10.1038/s43588-024-00705-5","url":null,"abstract":"A deep learning algorithm is presented to classify single-particle tracking trajectories into theoretical models of anomalous diffusion and detect if the trajectory is related to a model not originally found within the training dataset.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 10","pages":"731-732"},"PeriodicalIF":12.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reliable deep learning in anomalous diffusion against out-of-distribution dynamics 在异常扩散中进行可靠的深度学习,对抗分布外动态。
IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-11 DOI: 10.1038/s43588-024-00703-7
Xiaochen Feng, Hao Sha, Yongbing Zhang, Yaoquan Su, Shuai Liu, Yuan Jiang, Shangguo Hou, Sanyang Han, Xiangyang Ji
Anomalous diffusion plays a crucial rule in understanding molecular-level dynamics by offering valuable insights into molecular interactions, mobility states and the physical properties of systems across both biological and materials sciences. Deep-learning techniques have recently outperformed conventional statistical methods in anomalous diffusion recognition. However, deep-learning networks are typically trained by data with limited distribution, which inevitably fail to recognize unknown diffusion models and misinterpret dynamics when confronted with out-of-distribution (OOD) scenarios. In this work, we present a general framework for evaluating deep-learning-based OOD dynamics-detection methods. We further develop a baseline approach that achieves robust OOD dynamics detection as well as accurate recognition of in-distribution anomalous diffusion. We demonstrate that this method enables a reliable characterization of complex behaviors across a wide range of experimentally diverse systems, including nicotinic acetylcholine receptors in membranes, fluorescent beads in dextran solutions and silver nanoparticles undergoing active endocytosis. This work introduces a framework that enhances deep learning for anomalous diffusion, enabling reliable detection of out-of-distribution dynamics and characterization of complex behaviors across diverse systems.
反常扩散在理解分子级动力学方面起着至关重要的作用,它为了解分子相互作用、流动状态以及整个生物和材料科学系统的物理性质提供了宝贵的见解。最近,深度学习技术在异常扩散识别方面的表现优于传统统计方法。然而,深度学习网络通常是通过有限分布的数据进行训练的,这就不可避免地无法识别未知的扩散模型,并在面对分布外(OOD)场景时误解动态。在这项工作中,我们提出了一个通用框架,用于评估基于深度学习的 OOD 动态检测方法。我们进一步开发了一种基线方法,可实现稳健的 OOD 动态检测以及分布内异常扩散的准确识别。我们证明,这种方法能够可靠地描述各种实验系统的复杂行为,包括膜中的烟碱乙酰胆碱受体、葡聚糖溶液中的荧光珠以及正在进行主动内吞的银纳米粒子。
{"title":"Reliable deep learning in anomalous diffusion against out-of-distribution dynamics","authors":"Xiaochen Feng, Hao Sha, Yongbing Zhang, Yaoquan Su, Shuai Liu, Yuan Jiang, Shangguo Hou, Sanyang Han, Xiangyang Ji","doi":"10.1038/s43588-024-00703-7","DOIUrl":"10.1038/s43588-024-00703-7","url":null,"abstract":"Anomalous diffusion plays a crucial rule in understanding molecular-level dynamics by offering valuable insights into molecular interactions, mobility states and the physical properties of systems across both biological and materials sciences. Deep-learning techniques have recently outperformed conventional statistical methods in anomalous diffusion recognition. However, deep-learning networks are typically trained by data with limited distribution, which inevitably fail to recognize unknown diffusion models and misinterpret dynamics when confronted with out-of-distribution (OOD) scenarios. In this work, we present a general framework for evaluating deep-learning-based OOD dynamics-detection methods. We further develop a baseline approach that achieves robust OOD dynamics detection as well as accurate recognition of in-distribution anomalous diffusion. We demonstrate that this method enables a reliable characterization of complex behaviors across a wide range of experimentally diverse systems, including nicotinic acetylcholine receptors in membranes, fluorescent beads in dextran solutions and silver nanoparticles undergoing active endocytosis. This work introduces a framework that enhances deep learning for anomalous diffusion, enabling reliable detection of out-of-distribution dynamics and characterization of complex behaviors across diverse systems.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 10","pages":"761-772"},"PeriodicalIF":12.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142407285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature computational science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1