首页 > 最新文献

Nature computational science最新文献

英文 中文
Computing the committor with the committor to study the transition state ensemble 计算承诺器与承诺器,研究过渡态集合
IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-06-05 DOI: 10.1038/s43588-024-00645-0
Peilin Kang, Enrico Trizio, Michele Parrinello
The study of the kinetic bottlenecks that hinder the rare transitions between long-lived metastable states is a major challenge in atomistic simulations. Here we propose a method to explore the transition state ensemble, which is the distribution of configurations that the system passes through as it translocates from one metastable basin to another. We base our method on the committor function and the variational principle that it obeys. We find its minimum through a self-consistent procedure that starts from information limited to the initial and final states. Right from the start, our procedure allows the sampling of very many transition state configurations. With the help of the variational principle, we perform a detailed analysis of the transition state ensemble, ranking quantitatively the degrees of freedom mostly involved in the transition and enabling a systematic approach for the interpretation of simulation results and the construction of efficient physics-informed collective variables. A self-consistent iterative procedure is proposed to compute the committor function for rare events, via a variational principle, and extensively sample the transition state ensemble, allowing for the identification of the relevant variables in the process.
研究阻碍长寿命态之间罕见转变的动力学瓶颈是原子模拟的一大挑战。在这里,我们提出了一种探索过渡态集合的方法,过渡态集合是系统从一个态转移到另一个态时所经过的构型分布。我们的方法基于委托函数及其遵循的变分原理。我们从仅限于初始和最终状态的信息出发,通过自洽程序找到其最小值。从一开始,我们的程序就允许对非常多的过渡状态配置进行采样。在变分原理的帮助下,我们对过渡态集合进行了详细分析,定量排序了过渡过程中主要涉及的自由度,并为解释模拟结果和构建高效的物理集合变量提供了系统方法。
{"title":"Computing the committor with the committor to study the transition state ensemble","authors":"Peilin Kang, Enrico Trizio, Michele Parrinello","doi":"10.1038/s43588-024-00645-0","DOIUrl":"10.1038/s43588-024-00645-0","url":null,"abstract":"The study of the kinetic bottlenecks that hinder the rare transitions between long-lived metastable states is a major challenge in atomistic simulations. Here we propose a method to explore the transition state ensemble, which is the distribution of configurations that the system passes through as it translocates from one metastable basin to another. We base our method on the committor function and the variational principle that it obeys. We find its minimum through a self-consistent procedure that starts from information limited to the initial and final states. Right from the start, our procedure allows the sampling of very many transition state configurations. With the help of the variational principle, we perform a detailed analysis of the transition state ensemble, ranking quantitatively the degrees of freedom mostly involved in the transition and enabling a systematic approach for the interpretation of simulation results and the construction of efficient physics-informed collective variables. A self-consistent iterative procedure is proposed to compute the committor function for rare events, via a variational principle, and extensively sample the transition state ensemble, allowing for the identification of the relevant variables in the process.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":12.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic simulations and analysis of transition states using committor functions 使用委托函数对过渡状态进行系统模拟和分析。
IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-06-05 DOI: 10.1038/s43588-024-00652-1
Data about the transition states of rare transitions between long-lived states are needed to simulate physical and chemical processes; however, existing computational approaches often gather little information about these states. A machine-learning technique resolves this challenge by exploiting the century-old theory of committor functions.
模拟物理和化学过程需要有关长寿命状态之间罕见转换的过渡状态的数据;然而,现有的计算方法往往收集不到有关这些状态的信息。一种机器学习技术利用具有百年历史的承诺函数理论解决了这一难题。
{"title":"Systematic simulations and analysis of transition states using committor functions","authors":"","doi":"10.1038/s43588-024-00652-1","DOIUrl":"10.1038/s43588-024-00652-1","url":null,"abstract":"Data about the transition states of rare transitions between long-lived states are needed to simulate physical and chemical processes; however, existing computational approaches often gather little information about these states. A machine-learning technique resolves this challenge by exploiting the century-old theory of committor functions.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":12.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating computational and experimental worlds 将计算和实验世界融为一体。
IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-06-03 DOI: 10.1038/s43588-024-00649-w
Ananya Rastogi
Dr Kelly Ruggles, associate professor at New York University Langone Health, discusses with Nature Computational Science how she uses computational approaches to gain insights into cancer, inflammation and cardiovascular disease, as well as the importance of mentorship.
纽约大学朗贡卫生学院副教授凯利-鲁格尔斯博士与《自然-计算科学》杂志讨论了她如何利用计算方法深入了解癌症、炎症和心血管疾病,以及导师的重要性。
{"title":"Integrating computational and experimental worlds","authors":"Ananya Rastogi","doi":"10.1038/s43588-024-00649-w","DOIUrl":"10.1038/s43588-024-00649-w","url":null,"abstract":"Dr Kelly Ruggles, associate professor at New York University Langone Health, discusses with Nature Computational Science how she uses computational approaches to gain insights into cancer, inflammation and cardiovascular disease, as well as the importance of mentorship.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":12.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43588-024-00649-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating scientific progress with preprints 利用预印本加快科学进步。
Pub Date : 2024-05-29 DOI: 10.1038/s43588-024-00641-4
We recognize the importance of preprint posting in communicating research findings and encourage our authors to make use of this service.
我们认识到预印本发布在交流研究成果方面的重要性,并鼓励我们的作者利用这项服务。
{"title":"Accelerating scientific progress with preprints","authors":"","doi":"10.1038/s43588-024-00641-4","DOIUrl":"10.1038/s43588-024-00641-4","url":null,"abstract":"We recognize the importance of preprint posting in communicating research findings and encourage our authors to make use of this service.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43588-024-00641-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outsourcing eureka moments to artificial intelligence 将 "尤里卡时刻 "外包给人工智能
Pub Date : 2024-05-24 DOI: 10.1038/s43588-024-00633-4
Martijn Meeter
A two-stage learning algorithm is proposed to directly uncover the symbolic representation of rules for skill acquisition from large-scale training log data.
本文提出了一种两阶段学习算法,可直接从大规模训练日志数据中挖掘出技能习得规则的符号表示。
{"title":"Outsourcing eureka moments to artificial intelligence","authors":"Martijn Meeter","doi":"10.1038/s43588-024-00633-4","DOIUrl":"10.1038/s43588-024-00633-4","url":null,"abstract":"A two-stage learning algorithm is proposed to directly uncover the symbolic representation of rules for skill acquisition from large-scale training log data.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141099980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrete latent embeddings illuminate cellular diversity in single-cell epigenomics 离散潜隐嵌入揭示单细胞表观组学中的细胞多样性
Pub Date : 2024-05-24 DOI: 10.1038/s43588-024-00634-3
Zhi Wei
CASTLE, a deep learning approach, extracts interpretable discrete representations from single-cell chromatin accessibility data, enabling accurate cell type identification, effective data integration, and quantitative insights into gene regulatory mechanisms.
CASTLE 是一种深度学习方法,可从单细胞染色质可及性数据中提取可解释的离散表示,从而实现准确的细胞类型鉴定、有效的数据整合以及对基因调控机制的定量洞察。
{"title":"Discrete latent embeddings illuminate cellular diversity in single-cell epigenomics","authors":"Zhi Wei","doi":"10.1038/s43588-024-00634-3","DOIUrl":"10.1038/s43588-024-00634-3","url":null,"abstract":"CASTLE, a deep learning approach, extracts interpretable discrete representations from single-cell chromatin accessibility data, enabling accurate cell type identification, effective data integration, and quantitative insights into gene regulatory mechanisms.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141099637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated discovery of symbolic laws governing skill acquisition from naturally occurring data 从自然发生的数据中自动发现支配技能习得的符号法则
Pub Date : 2024-05-24 DOI: 10.1038/s43588-024-00629-0
Sannyuya Liu, Qing Li, Xiaoxuan Shen, Jianwen Sun, Zongkai Yang
Skill acquisition is a key area of research in cognitive psychology as it encompasses multiple psychological processes. The laws discovered under experimental paradigms are controversial and lack generalizability. This paper aims to unearth the laws of skill learning from large-scale training log data. A two-stage algorithm was developed to tackle the issues of unobservable cognitive states and an algorithmic explosion in searching. A deep learning model is initially employed to determine the learner’s cognitive state and assess the feature importance. Symbolic regression algorithms are then used to parse the neural network model into algebraic equations. Experimental results show that the algorithm can accurately restore preset laws within a noise range in continuous feedback settings. When applied to Lumosity training data, the method outperforms traditional and recent models in fitness terms. The study reveals two new forms of skill acquisition laws and reaffirms some previous findings. This paper introduces an algorithm to uncover laws of skill acquisition from naturally occurring data. By combining deep learning and symbolic regression, it accurately identifies cognitive states and extracts algebraic equations.
技能习得是认知心理学的一个重要研究领域,因为它包含多种心理过程。在实验范式下发现的规律存在争议,缺乏普适性。本文旨在从大规模训练日志数据中发掘技能学习的规律。本文开发了一种两阶段算法,以解决认知状态不可观测和搜索算法爆炸的问题。首先采用深度学习模型来确定学习者的认知状态并评估特征的重要性。然后使用符号回归算法将神经网络模型解析为代数方程。实验结果表明,该算法能在连续反馈设置的噪声范围内准确还原预设规律。当应用于 Lumosity 训练数据时,该方法在适配性方面优于传统模型和最新模型。这项研究揭示了技能习得规律的两种新形式,并再次证实了之前的一些发现。
{"title":"Automated discovery of symbolic laws governing skill acquisition from naturally occurring data","authors":"Sannyuya Liu, Qing Li, Xiaoxuan Shen, Jianwen Sun, Zongkai Yang","doi":"10.1038/s43588-024-00629-0","DOIUrl":"10.1038/s43588-024-00629-0","url":null,"abstract":"Skill acquisition is a key area of research in cognitive psychology as it encompasses multiple psychological processes. The laws discovered under experimental paradigms are controversial and lack generalizability. This paper aims to unearth the laws of skill learning from large-scale training log data. A two-stage algorithm was developed to tackle the issues of unobservable cognitive states and an algorithmic explosion in searching. A deep learning model is initially employed to determine the learner’s cognitive state and assess the feature importance. Symbolic regression algorithms are then used to parse the neural network model into algebraic equations. Experimental results show that the algorithm can accurately restore preset laws within a noise range in continuous feedback settings. When applied to Lumosity training data, the method outperforms traditional and recent models in fitness terms. The study reveals two new forms of skill acquisition laws and reaffirms some previous findings. This paper introduces an algorithm to uncover laws of skill acquisition from naturally occurring data. By combining deep learning and symbolic regression, it accurately identifies cognitive states and extracts algebraic equations.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141147736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing semiconductor materials and devices in the post-Moore era by tackling computational challenges with data-driven strategies 通过数据驱动战略应对计算挑战,设计后摩尔时代的半导体材料和器件。
Pub Date : 2024-05-23 DOI: 10.1038/s43588-024-00632-5
Jiahao Xie, Yansong Zhou, Muhammad Faizan, Zewei Li, Tianshu Li, Yuhao Fu, Xinjiang Wang, Lijun Zhang
In the post-Moore’s law era, the progress of electronics relies on discovering superior semiconductor materials and optimizing device fabrication. Computational methods, augmented by emerging data-driven strategies, offer a promising alternative to the traditional trial-and-error approach. In this Perspective, we highlight data-driven computational frameworks for enhancing semiconductor discovery and device development by elaborating on their advances in exploring the materials design space, predicting semiconductor properties and optimizing device fabrication, with a concluding discussion on the challenges and opportunities in these areas. Discovering improved semiconductor materials is essential for optimal device fabrication. In this Perspective, data-driven computational frameworks for semiconductor discovery and device development are discussed, including the challenges and opportunities moving forward.
在后摩尔定律时代,电子技术的进步有赖于发现优异的半导体材料和优化设备制造。计算方法在新兴数据驱动策略的辅助下,为传统的试错法提供了一种前景广阔的替代方案。在本《视角》中,我们将重点介绍数据驱动的计算框架,通过阐述这些框架在探索材料设计空间、预测半导体特性和优化器件制造方面的进展,来加强半导体的发现和器件的开发,并对这些领域的挑战和机遇进行总结性讨论。
{"title":"Designing semiconductor materials and devices in the post-Moore era by tackling computational challenges with data-driven strategies","authors":"Jiahao Xie, Yansong Zhou, Muhammad Faizan, Zewei Li, Tianshu Li, Yuhao Fu, Xinjiang Wang, Lijun Zhang","doi":"10.1038/s43588-024-00632-5","DOIUrl":"10.1038/s43588-024-00632-5","url":null,"abstract":"In the post-Moore’s law era, the progress of electronics relies on discovering superior semiconductor materials and optimizing device fabrication. Computational methods, augmented by emerging data-driven strategies, offer a promising alternative to the traditional trial-and-error approach. In this Perspective, we highlight data-driven computational frameworks for enhancing semiconductor discovery and device development by elaborating on their advances in exploring the materials design space, predicting semiconductor properties and optimizing device fabrication, with a concluding discussion on the challenges and opportunities in these areas. Discovering improved semiconductor materials is essential for optimal device fabrication. In this Perspective, data-driven computational frameworks for semiconductor discovery and device development are discussed, including the challenges and opportunities moving forward.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shuffling haplotypes to share reference panels for imputation 对单倍型进行洗牌,以共享用于估算的参考面板。
Pub Date : 2024-05-22 DOI: 10.1038/s43588-024-00640-5
We present a method to alleviate re-identification risks behind sharing haplotype reference panels for imputation. In an anonymized reference panel, one might try to infer the genomes’ phenotypes to re-identify their owner. Our method protects against such attack by shuffling the reference panels genomes while maintaining imputation accuracy.
我们提出了一种方法来降低共享单倍型参考面板进行归因时的再识别风险。在匿名参考面板中,人们可能会试图推断基因组的表型来重新识别其所有者。我们的方法在保持估算准确性的同时,通过洗牌参考面板基因组来防止这种攻击。
{"title":"Shuffling haplotypes to share reference panels for imputation","authors":"","doi":"10.1038/s43588-024-00640-5","DOIUrl":"10.1038/s43588-024-00640-5","url":null,"abstract":"We present a method to alleviate re-identification risks behind sharing haplotype reference panels for imputation. In an anonymized reference panel, one might try to infer the genomes’ phenotypes to re-identify their owner. Our method protects against such attack by shuffling the reference panels genomes while maintaining imputation accuracy.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A resampling-based approach to share reference panels 基于重采样的共享参考面板方法。
Pub Date : 2024-05-14 DOI: 10.1038/s43588-024-00630-7
Théo Cavinato, Simone Rubinacci, Anna-Sapfo Malaspinas, Olivier Delaneau
For many genome-wide association studies, imputing genotypes from a haplotype reference panel is a necessary step. Over the past 15 years, reference panels have become larger and more diverse, leading to improvements in imputation accuracy. However, the latest generation of reference panels is subject to restrictions on data sharing due to concerns about privacy, limiting their usefulness for genotype imputation. In this context, here we propose RESHAPE, a method that employs a recombination Poisson process on a reference panel to simulate the genomes of hypothetical descendants after multiple generations. This data transformation helps to protect against re-identification threats and preserves data attributes, such as linkage disequilibrium patterns and, to some degree, identity-by-descent sharing, allowing for genotype imputation. Our experiments on gold-standard datasets show that simulated descendants up to eight generations can serve as reference panels without substantially reducing genotype imputation accuracy. The authors develop the tool RESHAPE to share reference panels in a safer way. The genome–phenome links in reference panels can generate re-identification threats and RESHAPE breaks these links by shuffling haplotypes while preserving imputation accuracy.
对于许多全基因组关联研究来说,从单倍型参考面板推算基因型是一个必要的步骤。在过去的 15 年中,参考面板的规模越来越大,种类也越来越多,从而提高了归因的准确性。然而,由于对隐私的担忧,最新一代的参考面板在数据共享方面受到了限制,从而限制了它们在基因型推算方面的作用。在这种情况下,我们在这里提出了 RESHAPE,一种在参考面板上采用重组泊松过程来模拟多代后假设后代基因组的方法。这种数据转换有助于防止再识别威胁,并保留数据属性,如连锁不平衡模式,以及一定程度上的后代身份共享,从而实现基因型估算。我们在黄金标准数据集上的实验表明,长达八代的模拟后代可以作为参考面板,而不会大大降低基因型估算的准确性。
{"title":"A resampling-based approach to share reference panels","authors":"Théo Cavinato, Simone Rubinacci, Anna-Sapfo Malaspinas, Olivier Delaneau","doi":"10.1038/s43588-024-00630-7","DOIUrl":"10.1038/s43588-024-00630-7","url":null,"abstract":"For many genome-wide association studies, imputing genotypes from a haplotype reference panel is a necessary step. Over the past 15 years, reference panels have become larger and more diverse, leading to improvements in imputation accuracy. However, the latest generation of reference panels is subject to restrictions on data sharing due to concerns about privacy, limiting their usefulness for genotype imputation. In this context, here we propose RESHAPE, a method that employs a recombination Poisson process on a reference panel to simulate the genomes of hypothetical descendants after multiple generations. This data transformation helps to protect against re-identification threats and preserves data attributes, such as linkage disequilibrium patterns and, to some degree, identity-by-descent sharing, allowing for genotype imputation. Our experiments on gold-standard datasets show that simulated descendants up to eight generations can serve as reference panels without substantially reducing genotype imputation accuracy. The authors develop the tool RESHAPE to share reference panels in a safer way. The genome–phenome links in reference panels can generate re-identification threats and RESHAPE breaks these links by shuffling haplotypes while preserving imputation accuracy.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43588-024-00630-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140924051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature computational science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1