首页 > 最新文献

Sensors & diagnostics最新文献

英文 中文
Red and NIR active dipod–SDS self-assemblies for “turn on” quantification of spermine in serum, urine and food: smart-phone assisted on-site determination of spermine in amine-rich foods† 用于 "开启 "血清、尿液和食品中精胺定量的红色和近红外活性二极体-SDS 自组装:智能手机辅助现场测定富含胺的食品中的精胺
Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-05-15 DOI: 10.1039/D3SD00300K
Nancy Singla, Sukhvinder Dhiman, Manzoor Ahmad, Satwinderjeet Kaur, Prabhpreet Singh and Subodh Kumar

Spermine is a vital biomarker for clinical diagnosis of cancer and estimating food spoilage. Here, supramolecular assemblies of two donor–π–acceptor dipods R-SPM (λem 640 nm) and NIR-SPM (λem 720 nm) with SDS have been discovered for the detection of spermine and spermidine under physiological conditions at nanomolar levels. The addition of SDS to R-SPM and NIR-SPM results in the formation of self-assemblies (DLS, zeta-potential and UV-vis studies) with no significant change in their fluorescence but further addition of spermine/spermidine to the R-SPMSDS and NIR-SPMSDS assemblies results in a 30–80 fold increase in fluorescence intensity, respectively at 640 nm and 720 nm. The LOD for spermine and spermidine detection is 22 nM (4.4 ppb) and 67 nM (9.7 ppb). The ensembles show nominal interference from other biogenic amines, amino acids, metal ions, and anions. Both R-SPMSDS and NIR-SPMSDS ensembles can be stored in the dark for >3 months without affecting their performance. The potential of these ensembles for real world applications like analysis of spermine in urine, human serum and food spoilage in the case of cheese, mushrooms, chicken and mutton has been demonstrated. The smartphone relied RGB analysis facilitates the on-site determination of spermine in food samples.

精胺是一种重要的生物标志物,可用于癌症的临床诊断和食品腐败的评估。在这里,我们发现了两种供体-π-受体二极体 R-SPM(λem 640 nm)和 NIR-SPM(λem 720 nm)与 SDS 的超分子组装体,可在生理条件下检测纳摩尔水平的精胺和亚精胺。在 R-SPM 和 NIR-SPM 中加入 SDS 会形成自组装(DLS、zeta 电位和 UV-vis 研究),其荧光没有显著变化,但在 R-SPM∩SDS 和 NIR-SPM∩SDS 组装中进一步加入精胺/亚精胺会使 640 纳米和 720 纳米波长处的荧光强度分别增加 30-80 倍。精胺和亚精胺的检测限分别为 22 nM(4.4 ppb)和 67 nM(9.7 ppb)。组合物显示,其他生物胺、氨基酸、金属离子和阴离子的干扰很小。R-SPM∩SDS 和 NIR-SPM∩SDS 组合可在黑暗中保存 3 个月而不影响其性能。这些组件在实际应用中的潜力已得到证实,如分析尿液中的精胺、人体血清以及奶酪、蘑菇、鸡肉和羊肉中的食品腐败。依靠智能手机进行的 RGB 分析有助于现场测定食品样本中的精胺。
{"title":"Red and NIR active dipod–SDS self-assemblies for “turn on” quantification of spermine in serum, urine and food: smart-phone assisted on-site determination of spermine in amine-rich foods†","authors":"Nancy Singla, Sukhvinder Dhiman, Manzoor Ahmad, Satwinderjeet Kaur, Prabhpreet Singh and Subodh Kumar","doi":"10.1039/D3SD00300K","DOIUrl":"10.1039/D3SD00300K","url":null,"abstract":"<p >Spermine is a vital biomarker for clinical diagnosis of cancer and estimating food spoilage. Here, supramolecular assemblies of two donor–π–acceptor dipods <strong>R-SPM</strong> (<em>λ</em><small><sub>em</sub></small> 640 nm) and <strong>NIR-SPM</strong> (<em>λ</em><small><sub>em</sub></small> 720 nm) with SDS have been discovered for the detection of spermine and spermidine under physiological conditions at nanomolar levels. The addition of SDS to <strong>R-SPM</strong> and <strong>NIR-SPM</strong> results in the formation of self-assemblies (DLS, zeta-potential and UV-vis studies) with no significant change in their fluorescence but further addition of spermine/spermidine to the <strong>R-SPM</strong>∩<strong>SDS</strong> and <strong>NIR-SPM</strong>∩<strong>SDS</strong> assemblies results in a 30–80 fold increase in fluorescence intensity, respectively at 640 nm and 720 nm. The LOD for spermine and spermidine detection is 22 nM (4.4 ppb) and 67 nM (9.7 ppb). The ensembles show nominal interference from other biogenic amines, amino acids, metal ions, and anions. Both <strong>R-SPM</strong>∩<strong>SDS</strong> and <strong>NIR-SPM</strong>∩<strong>SDS</strong> ensembles can be stored in the dark for &gt;3 months without affecting their performance. The potential of these ensembles for real world applications like analysis of spermine in urine, human serum and food spoilage in the case of cheese, mushrooms, chicken and mutton has been demonstrated. The smartphone relied RGB analysis facilitates the on-site determination of spermine in food samples.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 6","pages":" 1051-1061"},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d3sd00300k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141063005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of storage conditions on the performance of an electrochemical aptamer-based sensor† 储存条件对基于电化学贴体的传感器性能的影响
Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-05-14 DOI: 10.1039/D4SD00066H
Julia Chung, Adriana Billante, Charlotte Flatebo, Kaylyn K. Leung, Julian Gerson, Nicole Emmons, Tod E. Kippin, Lior Sepunaru and Kevin W. Plaxco

The electrochemical aptamer-based (EAB) sensor platform is the only molecular monitoring approach yet reported that is (1) real time and effectively continuous, (2) selective enough to deploy in situ in the living body, and (3) independent of the chemical or enzymatic reactivity of its target, rendering it adaptable to a wide range of analytes. These attributes suggest the EAB platform will prove to be an important tool in both biomedical research and clinical practice. To advance this possibility, here we have explored the stability of EAB sensors upon storage, using retention of the target recognizing aptamer, the sensor's signal gain, and the affinity of the aptamer as our performance metrics. Doing so we find that low-temperature (−20 °C) storage is sufficient to preserve sensor functionality for at least six months without the need for exogenous preservatives.

基于电化学适配体(EAB)的传感器平台是目前报道的唯一一种分子监测方法,它具有以下特点:(1)实时性和有效的连续性;(2)选择性强,可在活体内原位部署;(3)不受其目标的化学或酶反应性影响,因此可适用于多种分析物。这些特性表明,EAB 平台将成为生物医学研究和临床实践的重要工具。为了推进这种可能性,我们在这里探索了 EAB 传感器在存储过程中的稳定性,并将目标识别适配体的保留、传感器的信号增益和适配体的亲和力作为我们的性能指标。我们发现,低温(-20 °C)储存足以在不使用外源防腐剂的情况下保持传感器功能至少六个月。
{"title":"Effects of storage conditions on the performance of an electrochemical aptamer-based sensor†","authors":"Julia Chung, Adriana Billante, Charlotte Flatebo, Kaylyn K. Leung, Julian Gerson, Nicole Emmons, Tod E. Kippin, Lior Sepunaru and Kevin W. Plaxco","doi":"10.1039/D4SD00066H","DOIUrl":"10.1039/D4SD00066H","url":null,"abstract":"<p >The electrochemical aptamer-based (EAB) sensor platform is the only molecular monitoring approach yet reported that is (1) real time and effectively continuous, (2) selective enough to deploy <em>in situ</em> in the living body, and (3) independent of the chemical or enzymatic reactivity of its target, rendering it adaptable to a wide range of analytes. These attributes suggest the EAB platform will prove to be an important tool in both biomedical research and clinical practice. To advance this possibility, here we have explored the stability of EAB sensors upon storage, using retention of the target recognizing aptamer, the sensor's signal gain, and the affinity of the aptamer as our performance metrics. Doing so we find that low-temperature (−20 °C) storage is sufficient to preserve sensor functionality for at least six months without the need for exogenous preservatives.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 6","pages":" 1044-1050"},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00066h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Highly sensitive solid-state nanopore aptasensor based on target-induced strand displacement for okadaic acid detection from shellfish samples 更正:基于目标诱导链位移的高灵敏度固态纳米孔准传感器用于检测贝类样品中的冈田酸
Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-05-14 DOI: 10.1039/D4SD90015D
Mohamed Amin Elaguech, Yajie Yin, Yunjiao Wang, Bing Shao, Chaker Tlili and Deqiang Wang

Correction for ‘Highly sensitive solid-state nanopore aptasensor based on target-induced strand displacement for okadaic acid detection from shellfish samples’ by Mohamed Amin Elaguech et al., Sens. Diagn., 2023, 2, 1612–1622, https://doi.org/10.1039/D3SD00199G.

对 Mohamed Amin Elaguech 等人撰写的 "基于目标诱导链位移的高灵敏度固态纳米孔准传感器用于检测贝类样品中的冈田酸 "的更正,Sens.Diagn., 2023, 2, 1612-1622, https://doi.org/10.1039/D3SD00199G.
{"title":"Correction: Highly sensitive solid-state nanopore aptasensor based on target-induced strand displacement for okadaic acid detection from shellfish samples","authors":"Mohamed Amin Elaguech, Yajie Yin, Yunjiao Wang, Bing Shao, Chaker Tlili and Deqiang Wang","doi":"10.1039/D4SD90015D","DOIUrl":"10.1039/D4SD90015D","url":null,"abstract":"<p >Correction for ‘Highly sensitive solid-state nanopore aptasensor based on target-induced strand displacement for okadaic acid detection from shellfish samples’ by Mohamed Amin Elaguech <em>et al.</em>, <em>Sens. Diagn.</em>, 2023, <strong>2</strong>, 1612–1622, https://doi.org/10.1039/D3SD00199G.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 6","pages":" 1076-1076"},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd90015d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aptamer-functionalized nanopipettes: a promising approach for viral fragment detection via ion current rectification† 色素功能化纳米移液管:通过离子电流整流检测病毒片段的有效方法
Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-05-10 DOI: 10.1039/D4SD00097H
Shekemi Denuga, Dominik Duleba, Pallavi Dutta, Guerrino Macori, Damion K. Corrigan, Séamus Fanning and Robert P. Johnson

In this report, ion current rectification, an electrochemical phenomenon observed in asymmetric nanopipettes, is used for the label-free detection of SARS-CoV-2 viral fragments in nasopharyngeal samples. Quartz nanopipettes are functionalized with aptamers targeting the spike protein S1 domain, wherein changes to the surface charge magnitude, distribution, and ion transport behavior modulate the current–voltage response upon binding. The aptamer-modified nanopipette provides a selective and sensitive method for detecting SARS-CoV-2, with a limit of detection in the laboratory of 0.05 pg mL−1. The effectiveness of this low-cost platform was demonstrated by sensing SARS-CoV-2 in nasopharyngeal samples, successfully discriminating between positive and negative cases with minimal template preparation, highlighting the platform's potential as a versatile sensing strategy for infectious disease detection in clinical diagnosis.

本报告利用在不对称纳米吸头中观察到的电化学现象--离子电流整流,对鼻咽样本中的 SARS-CoV-2 病毒片段进行了无标记检测。石英纳米吸管用针对尖峰蛋白 S1 结构域的适配体进行了功能化处理,表面电荷量、分布和离子传输行为的变化调节了结合后的电流-电压响应。经aptamer修饰的纳米吸管为检测SARS-CoV-2提供了一种选择性强、灵敏度高的方法,在实验室中的检测限为0.05 pg/mL。通过检测鼻咽样本中的 SARS-CoV-2 证明了这一低成本平台的有效性,只需制备极少的模板就能成功区分阳性和阴性病例,凸显了该平台作为临床诊断中传染病检测的多功能传感策略的潜力。
{"title":"Aptamer-functionalized nanopipettes: a promising approach for viral fragment detection via ion current rectification†","authors":"Shekemi Denuga, Dominik Duleba, Pallavi Dutta, Guerrino Macori, Damion K. Corrigan, Séamus Fanning and Robert P. Johnson","doi":"10.1039/D4SD00097H","DOIUrl":"10.1039/D4SD00097H","url":null,"abstract":"<p >In this report, ion current rectification, an electrochemical phenomenon observed in asymmetric nanopipettes, is used for the label-free detection of SARS-CoV-2 viral fragments in nasopharyngeal samples. Quartz nanopipettes are functionalized with aptamers targeting the spike protein S1 domain, wherein changes to the surface charge magnitude, distribution, and ion transport behavior modulate the current–voltage response upon binding. The aptamer-modified nanopipette provides a selective and sensitive method for detecting SARS-CoV-2, with a limit of detection in the laboratory of 0.05 pg mL<small><sup>−1</sup></small>. The effectiveness of this low-cost platform was demonstrated by sensing SARS-CoV-2 in nasopharyngeal samples, successfully discriminating between positive and negative cases with minimal template preparation, highlighting the platform's potential as a versatile sensing strategy for infectious disease detection in clinical diagnosis.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 6","pages":" 1068-1075"},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00097h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of breathomics in pediatric asthma: a review 呼吸组学在小儿哮喘中的应用:综述
Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-05-09 DOI: 10.1039/D3SD00286A
Lei Chi, Xiaoli Wang, Yuxia Shan, Chonghui Zhu, Ling Leng, Rong Chen, Qing Xie, Zhenze Cui and Minghui Yang

Breathomics involves the use of non-invasive methods for diagnosing asthma by analyzing exhaled breath. While significant progress has been made in applying this approach to adult asthma, extending its application to pediatric asthma is crucial due to the increasing concern in this population. This review delineates five potential clinical applications: asthma diagnosis, differential diagnosis of asthma, assessment of asthma control levels, prediction of asthma exacerbation, and asthma phenotyping. Additionally, it highlights the moderate to reasonable predictive accuracy of exhaled breath volatile organic compounds (VOCs) breathomics in childhood asthma. However, it acknowledges that this field is still in its nascent stage of development, with particularly limited data available for Asian populations. Moreover, the identification of VOC biomarkers in pediatric asthma patients remains inconclusive, with varying reports. Therefore, large-scale data collection and standardization are imperative. Refinement and methodological improvements are necessary before integrating breathomics into clinical practice. This article provides clear directions for future research to optimize the clinical applicability of breathomics in evaluating asthma in children.

呼吸组学是一种通过分析呼出的气体来诊断哮喘的非侵入性方法。虽然在将这种方法应用于成人哮喘方面已经取得了重大进展,但将其应用扩展到小儿哮喘至关重要,因为小儿哮喘日益受到关注。本综述阐述了五种潜在的临床应用:哮喘诊断、哮喘鉴别诊断、哮喘控制水平评估、哮喘恶化预测和哮喘表型。此外,该研究还强调了呼出气体挥发性有机化合物(VOCs)呼吸组学对儿童哮喘的预测准确性为中等至合理水平。不过,该研究承认,这一领域仍处于发展的初级阶段,尤其是针对亚洲人群的数据非常有限。此外,儿科哮喘患者体内挥发性有机化合物生物标志物的鉴定仍无定论,报告也不尽相同。因此,大规模的数据收集和标准化工作势在必行。在将呼吸组学应用于临床实践之前,有必要对方法进行完善和改进。本文为未来的研究提供了明确的方向,以优化呼吸组学在儿童哮喘评估中的临床应用。
{"title":"Application of breathomics in pediatric asthma: a review","authors":"Lei Chi, Xiaoli Wang, Yuxia Shan, Chonghui Zhu, Ling Leng, Rong Chen, Qing Xie, Zhenze Cui and Minghui Yang","doi":"10.1039/D3SD00286A","DOIUrl":"10.1039/D3SD00286A","url":null,"abstract":"<p >Breathomics involves the use of non-invasive methods for diagnosing asthma by analyzing exhaled breath. While significant progress has been made in applying this approach to adult asthma, extending its application to pediatric asthma is crucial due to the increasing concern in this population. This review delineates five potential clinical applications: asthma diagnosis, differential diagnosis of asthma, assessment of asthma control levels, prediction of asthma exacerbation, and asthma phenotyping. Additionally, it highlights the moderate to reasonable predictive accuracy of exhaled breath volatile organic compounds (VOCs) breathomics in childhood asthma. However, it acknowledges that this field is still in its nascent stage of development, with particularly limited data available for Asian populations. Moreover, the identification of VOC biomarkers in pediatric asthma patients remains inconclusive, with varying reports. Therefore, large-scale data collection and standardization are imperative. Refinement and methodological improvements are necessary before integrating breathomics into clinical practice. This article provides clear directions for future research to optimize the clinical applicability of breathomics in evaluating asthma in children.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 6","pages":" 933-945"},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d3sd00286a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in electrochemical sensors for real-time glucose monitoring 用于实时葡萄糖监测的电化学传感器的进展
Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-05-08 DOI: 10.1039/D4SD00086B
Md. Harun-Or-Rashid, Most. Nazmin Aktar, Veronica Preda and Noushin Nasiri

Technological advancements are revolutionizing diabetic care worldwide, particularly in the realm of glucose monitoring. Traditionally invasive and cumbersome, glucose monitoring is shifting towards less invasive methods, enhancing patient quality of life and reducing risks associated with hypo- and hyperglycemia. Wearable biosensors, focusing on sweat and interstitial fluid, offer novel avenues for early disease detection and personalized point-of-care testing. This review paper provides a comprehensive overview of recent strides in wearable sweat sensors, including historical perspectives, electrochemical sensing mechanisms, material advancements, and the role of nanomaterials in enhancing sensor performance. By examining the evolution of glucose monitoring devices and highlighting commercially available devices, the review underscores the wide-ranging utility of electrochemical sensors in glucose monitoring. Enzymatic and non-enzymatic sensing mechanisms, potentiometric, amperometric/voltammetric sensors, ion-selective electrodes, and biosensors are discussed in detail, alongside various materials employed to optimize sensor performance. The burgeoning interest in nanomaterial-enabled sensor platforms signifies a promising future for sweat-based glucose monitoring, with potential implications for personalized healthcare and disease management.

技术进步正在彻底改变全世界的糖尿病护理,尤其是在血糖监测领域。传统的血糖监测既有创又繁琐,现在正向微创方法转变,从而提高了患者的生活质量,降低了与低血糖和高血糖相关的风险。以汗液和组织间液为重点的可穿戴生物传感器为早期疾病检测和个性化护理点检测提供了新的途径。本综述全面概述了可穿戴汗液传感器的最新进展,包括历史观点、电化学传感机制、材料进步以及纳米材料在提高传感器性能方面的作用。通过研究葡萄糖监测设备的演变过程和重点介绍市售设备,该综述强调了电化学传感器在葡萄糖监测中的广泛用途。文章详细讨论了酶和非酶传感机制、电位传感器、安培/伏安传感器、离子选择性电极和生物传感器,以及用于优化传感器性能的各种材料。人们对纳米材料传感器平台的兴趣日益浓厚,这标志着基于汗液的葡萄糖监测前景广阔,对个性化医疗保健和疾病管理具有潜在影响。
{"title":"Advances in electrochemical sensors for real-time glucose monitoring","authors":"Md. Harun-Or-Rashid, Most. Nazmin Aktar, Veronica Preda and Noushin Nasiri","doi":"10.1039/D4SD00086B","DOIUrl":"10.1039/D4SD00086B","url":null,"abstract":"<p >Technological advancements are revolutionizing diabetic care worldwide, particularly in the realm of glucose monitoring. Traditionally invasive and cumbersome, glucose monitoring is shifting towards less invasive methods, enhancing patient quality of life and reducing risks associated with hypo- and hyperglycemia. Wearable biosensors, focusing on sweat and interstitial fluid, offer novel avenues for early disease detection and personalized point-of-care testing. This review paper provides a comprehensive overview of recent strides in wearable sweat sensors, including historical perspectives, electrochemical sensing mechanisms, material advancements, and the role of nanomaterials in enhancing sensor performance. By examining the evolution of glucose monitoring devices and highlighting commercially available devices, the review underscores the wide-ranging utility of electrochemical sensors in glucose monitoring. Enzymatic and non-enzymatic sensing mechanisms, potentiometric, amperometric/voltammetric sensors, ion-selective electrodes, and biosensors are discussed in detail, alongside various materials employed to optimize sensor performance. The burgeoning interest in nanomaterial-enabled sensor platforms signifies a promising future for sweat-based glucose monitoring, with potential implications for personalized healthcare and disease management.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 6","pages":" 893-913"},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00086b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contactless vital sign monitoring systems: a comprehensive survey of remote health sensing for heart rate and respiration in internet of things and sleep applications 非接触式生命体征监测系统:全面调查
IF 3.5 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-05-08 DOI: 10.1039/D4SD00073K
Muhammad Salman Raheel, Faisel Tubbal, Raad Raad, Philip Ogunbona, James Coyte, Christopher Patterson, Dana Perlman, Saeid Iranmanesh, Nidhal Odeh and Javad Foroughi

With the coronavirus pandemic, companies and governments around the world have been investing millions of dollars in the development of contactless sensor technologies that minimize the need for physical interactions between patients and healthcare providers. This has led to rapid progress in healthcare research on innovative contactless technologies, particularly for infants and elderly individuals with chronic diseases that require continuous, real-time monitoring and control. The combination of sensing technology and wireless communication has emerged as a promising research area, as patients often find it unpleasant or anxiety-provoking to wear sensor devices, and physical contact can exacerbate the spread of contagious diseases. To address these issues, research has focused on sensor-less or contactless technology to send and analyse wireless signals to remotely monitor and measure vital signs without requiring physical contact or sensor devices. Herein, we have provided a comprehensive survey and study of non-invasive/contactless vital sign monitoring systems, particularly the heart rate and the respiration rate monitoring systems to achieve accurate and reliable measurements. We have found that there is a lack of a comprehensive comparison and analysis over existing contactless vital sign monitoring systems. Therefore, we first present and classify the existing non-invasive monitoring designs based on their approaches and techniques, and then compare them based on the performance and accuracy.

随着冠状病毒的大流行,世界各地的公司和政府纷纷投资数百万美元开发非接触式传感器技术,以最大限度地减少病人和医疗服务提供者之间的物理交互。这促使创新型非接触式技术的医疗保健研究取得了快速进展,尤其是针对需要持续、实时监测和控制的婴儿和患有慢性疾病的老年人。传感技术与无线通信的结合已成为一个前景广阔的研究领域,因为患者通常会觉得佩戴传感设备令人不快或焦虑,而且身体接触会加剧传染病的传播。为了解决这些问题,研究重点放在了无传感器或非接触式技术上,以发送和分析无线信号,从而在不需要身体接触或传感器设备的情况下远程监控和测量生命体征。在此,我们对无创/非接触式生命体征监测系统进行了全面调查和研究,特别是心率和呼吸率监测系统,以实现准确可靠的测量。我们发现,对现有的非接触式生命体征监测系统缺乏全面的比较和分析。因此,我们首先根据方法和技术对现有的无创监测设计进行了介绍和分类,然后根据性能和准确性对它们的性能进行了比较。
{"title":"Contactless vital sign monitoring systems: a comprehensive survey of remote health sensing for heart rate and respiration in internet of things and sleep applications","authors":"Muhammad Salman Raheel, Faisel Tubbal, Raad Raad, Philip Ogunbona, James Coyte, Christopher Patterson, Dana Perlman, Saeid Iranmanesh, Nidhal Odeh and Javad Foroughi","doi":"10.1039/D4SD00073K","DOIUrl":"10.1039/D4SD00073K","url":null,"abstract":"<p >With the coronavirus pandemic, companies and governments around the world have been investing millions of dollars in the development of contactless sensor technologies that minimize the need for physical interactions between patients and healthcare providers. This has led to rapid progress in healthcare research on innovative contactless technologies, particularly for infants and elderly individuals with chronic diseases that require continuous, real-time monitoring and control. The combination of sensing technology and wireless communication has emerged as a promising research area, as patients often find it unpleasant or anxiety-provoking to wear sensor devices, and physical contact can exacerbate the spread of contagious diseases. To address these issues, research has focused on sensor-less or contactless technology to send and analyse wireless signals to remotely monitor and measure vital signs without requiring physical contact or sensor devices. Herein, we have provided a comprehensive survey and study of non-invasive/contactless vital sign monitoring systems, particularly the heart rate and the respiration rate monitoring systems to achieve accurate and reliable measurements. We have found that there is a lack of a comprehensive comparison and analysis over existing contactless vital sign monitoring systems. Therefore, we first present and classify the existing non-invasive monitoring designs based on their approaches and techniques, and then compare them based on the performance and accuracy.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 7","pages":" 1085-1118"},"PeriodicalIF":3.5,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00073k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical immunomagnetic assay for interleukin-6 detection in human plasma 用于检测人体血浆中白细胞介素-6 的电化学免疫磁分析法
Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-05-08 DOI: 10.1039/D4SD00058G
Grace Buckey, Olivia E. Owens, Hannah A. Richards and David E. Cliffel

An electrochemical immunoassay for interleukin-6 (IL-6) was developed based on IL-6 capture using magnetic beads and electrochemical signal production using horseradish peroxidase/tetramethylbenzidine. We achieved IL-6 detection from the 50–1000 pg mL−1 range, which is a physiologically relevant IL-6 range for a variety of biological systems. The sandwich assay performed well in phosphate buffered solution as well as in cellular media and human plasma spiked with IL-6, and decreased time to IL-6 concentration readout to approximately one hour. There is also future potential to apply this assay to real-time point-of-care human disease diagnostics.

基于使用磁珠捕获 IL-6 和使用辣根过氧化物酶/四甲基联苯胺产生电化学信号的方法,我们开发了一种白细胞介素-6(IL-6)电化学免疫测定。我们实现了 50-1000 pg mL-1 范围内的 IL-6 检测,这是多种生物系统中与生理相关的 IL-6 检测范围。夹心检测法在磷酸盐缓冲溶液、细胞介质和加有 IL-6 的人体血浆中均表现良好,而且读出 IL-6 浓度的时间缩短到约一小时。未来,这种测定法还有可能应用于人类疾病的实时护理点诊断。
{"title":"Electrochemical immunomagnetic assay for interleukin-6 detection in human plasma","authors":"Grace Buckey, Olivia E. Owens, Hannah A. Richards and David E. Cliffel","doi":"10.1039/D4SD00058G","DOIUrl":"10.1039/D4SD00058G","url":null,"abstract":"<p >An electrochemical immunoassay for interleukin-6 (IL-6) was developed based on IL-6 capture using magnetic beads and electrochemical signal production using horseradish peroxidase/tetramethylbenzidine. We achieved IL-6 detection from the 50–1000 pg mL<small><sup>−1</sup></small> range, which is a physiologically relevant IL-6 range for a variety of biological systems. The sandwich assay performed well in phosphate buffered solution as well as in cellular media and human plasma spiked with IL-6, and decreased time to IL-6 concentration readout to approximately one hour. There is also future potential to apply this assay to real-time point-of-care human disease diagnostics.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 6","pages":" 1039-1043"},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00058g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent developments in pyrene-based fluorescence recognition and imaging of Ag+ and Pb2+ ions: Synthesis, applications and challenges 基于芘的 Ag+ 和 Pb2+ 离子荧光识别和成像的最新进展:合成、应用与挑战
Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-05-07 DOI: 10.1039/D3SD00289F
Suvendu Paul, Prasenjit Barman, Nilanjan Dey and Michael Watkinson

Contamination of heavy metals in the environment is a burning and contemporary issue of modern life. Whilst lead contamination is historic, the ongoing extensive use of lead in batteries is likely to continue to cause serious environmental problems. Silver ions also present multiple environmental issues, such as bioaccumulation and toxicity. As a result, these two heavy metal ions have a high impact from an environmental and industrial point of view. Thus, the colorimetric and fluorescence detection of these two metal ions has been the subject of intense research during the last decade and pyrene-based fluorophores have played a crucial role in their detection. This review article summarizes the recent chronological progress on pyrene moiety integrated small molecule chemosensors for the colorimetric and fluorescent detection of silver and lead ions. Herein, the different strategies that have been utilized for the recognition of lead and silver ions are discussed. Throughout, the juxtaposition of structural aspects of the chemosensors and their sensitivity has been scrutinized together with an overview and future vision.

重金属环境污染是现代生活中一个紧迫的当代问题。虽然铅污染具有历史性,但目前电池中铅的广泛使用可能会继续造成严重的环境问题。银离子也会带来多种环境问题,如生物蓄积性和毒性。因此,从环境和工业的角度来看,这两种重金属离子的影响很大。因此,对这两种金属离子的比色和荧光检测在过去十年中一直是研究的热点,而基于芘的荧光团在这两种金属离子的检测中起到了至关重要的作用。这篇综述文章按时间顺序总结了芘分子集成小分子化学传感器用于银离子和铅离子比色和荧光检测的最新进展。文章讨论了识别铅离子和银离子的不同策略。此外,还仔细研究了化学传感器的结构及其灵敏度,以及概述和未来展望。
{"title":"Recent developments in pyrene-based fluorescence recognition and imaging of Ag+ and Pb2+ ions: Synthesis, applications and challenges","authors":"Suvendu Paul, Prasenjit Barman, Nilanjan Dey and Michael Watkinson","doi":"10.1039/D3SD00289F","DOIUrl":"10.1039/D3SD00289F","url":null,"abstract":"<p >Contamination of heavy metals in the environment is a burning and contemporary issue of modern life. Whilst lead contamination is historic, the ongoing extensive use of lead in batteries is likely to continue to cause serious environmental problems. Silver ions also present multiple environmental issues, such as bioaccumulation and toxicity. As a result, these two heavy metal ions have a high impact from an environmental and industrial point of view. Thus, the colorimetric and fluorescence detection of these two metal ions has been the subject of intense research during the last decade and pyrene-based fluorophores have played a crucial role in their detection. This review article summarizes the recent chronological progress on pyrene moiety integrated small molecule chemosensors for the colorimetric and fluorescent detection of silver and lead ions. Herein, the different strategies that have been utilized for the recognition of lead and silver ions are discussed. Throughout, the juxtaposition of structural aspects of the chemosensors and their sensitivity has been scrutinized together with an overview and future vision.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 6","pages":" 946-967"},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d3sd00289f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydroxypyridinone based chelators: a molecular tool for fluorescence sensing and sensitization 基于羟基吡啶酮的螯合剂:荧光传感和敏化的分子工具
Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-05-06 DOI: 10.1039/D3SD00346A
Shalini Singh, Neha Kumari, B. K. Kanungo and Minati Baral

Among the currently developed analytical tools, sensors based on fluorescence detection have received immense recognition owing to their high sensitivity, low cost, fast response, and simplicity. The design and synthesis of fluorescence chemosensors to sense metals that are of environmental and biological relevance are of appreciable interest. The efficacy of fluorescent sensors relies on two crucial features: a metal binding unit and a fluorophore that can absorb and emit light. The electronic structure of the sensor is altered upon complexation, leading to a change in light emission or absorption intensity and wavelength. Hydroxypyridinones, a class of N-heterocyclic metal chelators, are appreciated as magnificent chemical tools in metal chelation with a higher affinity towards hard metals, displaying various medical, biological, and industrial applications. However, such compounds are scarcely used as sensors. This article outlines the recent invention of fluorescence chemosensors related to hydroxypyridinone based chelators for the selective sensing of analytes of biological and environmental importance. This discussion involves the structural parameters, coordination mode, and other approaches that helped develop highly selective fluorescence sensors for the ions. In addition, the luminescence properties of the hydroxypyridinones in the energy transfer process of lanthanide chelates as sensitizers are determined.

在目前开发的各种分析工具中,基于荧光检测的传感器因其灵敏度高、成本低、反应快和操作简单而受到广泛认可。设计和合成荧光化学传感器来感知与环境和生物相关的金属,引起了人们极大的兴趣。荧光传感器的功效取决于两个关键特征:结合单元和能够吸收和发射光的荧光团。络合时,传感器的电子结构会发生改变,从而导致光发射或吸收的强度和波长发生变化。羟基吡啶酮是一类 N-杂环金属螯合剂,对硬金属具有较高的亲和力,是金属螯合领域的重要化学工具,在医疗、生物和工业领域有着广泛的应用。然而,此类化合物很少用作传感器。本文概述了最近发明的与羟基吡啶酮基螯合剂有关的荧光化学传感器,用于选择性地感知对生物和环境具有重要意义的分析物。讨论涉及有助于开发高选择性离子荧光传感器的结构参数、配位模式和其他方法。此外,还探讨了羟基吡啶酮在镧系元素螯合物作为敏化剂的能量转移过程中的发光特性。
{"title":"Hydroxypyridinone based chelators: a molecular tool for fluorescence sensing and sensitization","authors":"Shalini Singh, Neha Kumari, B. K. Kanungo and Minati Baral","doi":"10.1039/D3SD00346A","DOIUrl":"10.1039/D3SD00346A","url":null,"abstract":"<p >Among the currently developed analytical tools, sensors based on fluorescence detection have received immense recognition owing to their high sensitivity, low cost, fast response, and simplicity. The design and synthesis of fluorescence chemosensors to sense metals that are of environmental and biological relevance are of appreciable interest. The efficacy of fluorescent sensors relies on two crucial features: a metal binding unit and a fluorophore that can absorb and emit light. The electronic structure of the sensor is altered upon complexation, leading to a change in light emission or absorption intensity and wavelength. Hydroxypyridinones, a class of N-heterocyclic metal chelators, are appreciated as magnificent chemical tools in metal chelation with a higher affinity towards hard metals, displaying various medical, biological, and industrial applications. However, such compounds are scarcely used as sensors. This article outlines the recent invention of fluorescence chemosensors related to hydroxypyridinone based chelators for the selective sensing of analytes of biological and environmental importance. This discussion involves the structural parameters, coordination mode, and other approaches that helped develop highly selective fluorescence sensors for the ions. In addition, the luminescence properties of the hydroxypyridinones in the energy transfer process of lanthanide chelates as sensitizers are determined.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 6","pages":" 968-986"},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d3sd00346a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140941930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Sensors & diagnostics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1