首页 > 最新文献

Sensors & diagnostics最新文献

英文 中文
An rGO-doped laser induced graphene electrochemical biosensor for highly sensitive exosome detection 用于高灵敏度外泌体检测的掺杂 rGO 的激光诱导石墨烯电化学生物传感器
IF 3.5 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-09-02 DOI: 10.1039/D4SD00181H
Xiaoshuang Chen, Xiaohui Yan, Jiaoyan Qiu, Xue Zhang, Yunhong Zhang, Hongpeng Zhou, Yujuan Zhao, Lin Han and Yu Zhang

In this study, we developed a novel electrochemical sensing chip integrated with reduced graphene oxide (rGO) with laser-induced graphene (LIG) for the detection of exosomes associated with breast cancer biomarkers. Employing laser-induced technology, a three-dimensional porous graphene material is fabricated on the surface of a flexible polyimide film, which is subsequently combined with rGO through π–π stacking. This integration facilitates the doping of two-dimensional and three-dimensional material (2D/3D) structures, significantly enhancing the conductivity of the electrode material. Additionally, this approach markedly improves the surface hydrophobicity and biomolecule affinity of LIG, optimizing the immobilization of specific antibodies for exosomes. Importantly, this experiment marks the first occasion of merging two-dimensional rGO with three-dimensional LIG, resulting in the construction of a high-performance biosensing chip that enables specific capture and highly sensitive detection of exosomes. Under optimized conditions, the quantitative detection range for exosomes is established at 5 × 102 to 5 × 105 particles per μL, with a limit of detection (LOD) of 166 particles per μL. The biosensor is successfully used to analyze exosomes in breast cancer cell lines and patient serum samples, proving its practical application. This electrochemical biosensing chip offers significant practical application value in the early screening and diagnosis of diseases.

在这项研究中,我们开发了一种集成了还原氧化石墨烯(rGO)和激光诱导石墨烯(LIG)的新型电化学传感芯片,用于检测与乳腺癌生物标志物相关的外泌体。利用激光诱导技术,在柔性聚酰亚胺薄膜表面制造出三维多孔石墨烯材料,随后通过π-π堆叠将其与还原型氧化石墨烯结合在一起。这种整合方式有助于掺杂二维和三维材料(2D/3D)结构,从而显著提高电极材料的导电性。此外,这种方法还明显改善了 LIG 的表面疏水性和生物大分子亲和性,优化了外泌体特异性抗体的固定。重要的是,该实验首次将二维 rGO 与三维 LIG 相结合,从而构建了一种高性能生物传感芯片,可实现外泌体的特异性捕获和高灵敏度检测。在优化条件下,外泌体的定量检测范围为每微升 5 × 102 至 5 × 105 个颗粒,检测限(LOD)为每微升 166 个颗粒。该生物传感器成功用于分析乳腺癌细胞系和患者血清样本中的外泌体,证明了它的实际应用价值。这种电化学生物传感芯片在疾病的早期筛查和诊断方面具有重要的实际应用价值。
{"title":"An rGO-doped laser induced graphene electrochemical biosensor for highly sensitive exosome detection","authors":"Xiaoshuang Chen, Xiaohui Yan, Jiaoyan Qiu, Xue Zhang, Yunhong Zhang, Hongpeng Zhou, Yujuan Zhao, Lin Han and Yu Zhang","doi":"10.1039/D4SD00181H","DOIUrl":"10.1039/D4SD00181H","url":null,"abstract":"<p >In this study, we developed a novel electrochemical sensing chip integrated with reduced graphene oxide (rGO) with laser-induced graphene (LIG) for the detection of exosomes associated with breast cancer biomarkers. Employing laser-induced technology, a three-dimensional porous graphene material is fabricated on the surface of a flexible polyimide film, which is subsequently combined with rGO through π–π stacking. This integration facilitates the doping of two-dimensional and three-dimensional material (2D/3D) structures, significantly enhancing the conductivity of the electrode material. Additionally, this approach markedly improves the surface hydrophobicity and biomolecule affinity of LIG, optimizing the immobilization of specific antibodies for exosomes. Importantly, this experiment marks the first occasion of merging two-dimensional rGO with three-dimensional LIG, resulting in the construction of a high-performance biosensing chip that enables specific capture and highly sensitive detection of exosomes. Under optimized conditions, the quantitative detection range for exosomes is established at 5 × 10<small><sup>2</sup></small> to 5 × 10<small><sup>5</sup></small> particles per μL, with a limit of detection (LOD) of 166 particles per μL. The biosensor is successfully used to analyze exosomes in breast cancer cell lines and patient serum samples, proving its practical application. This electrochemical biosensing chip offers significant practical application value in the early screening and diagnosis of diseases.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1724-1732"},"PeriodicalIF":3.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00181h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clozapine sensing through paper-based microfluidic sensors directly modified via electro-deposition and electro-polymerization† 通过电沉积和电聚合直接修饰的纸基微流体传感器传感氯氮平
IF 3.5 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-28 DOI: 10.1039/D4SD00252K
Mohammad Hossein Ghanbari, Markus Biesalski, Oliver Friedrich and Bastian J. M. Etzold

Microfluidic electrochemical sensors (μCS) can be portable, highly sensitive, and low-cost but are less frequently studied nor applied. Additionally, simultaneous electro-deposition of gold nanoparticles (ED (AuNPs)) and electro-polymerization of L-cysteine (EP (L-cys)) are introduced for the first time for modifying the surface of the working electrode through a paper-based microfluidic sensor. This study depicts that by employing such modification, the electrochemically active surface area (ECSA) and the electron transfer rate are increased together and result in improved sensitivity. The modified μCS is depicted to enable sensitive voltametric determination of, e.g., clozapine (CLZ), an anti-psychotic drug to treat schizophrenia. The proposed sensor was characterized by different techniques, and several key parameters were optimized. Under the optimum conditions and using square-wave voltametry (SWV), a linear dose–response for a concentration range from 0.5 to 10.0 μM of CLZ was achieved. The limit of detection and sensitivity resulted in 70.0 nM and 0.045 mA cm−2 μM−1, respectively. Besides, this excellent sensitivity combines with high stability, which was tested for six repetitive measurements with a single device resulting in high reproducibility. Additionally, this procedure was validated with measurements of clozapine in human blood plasma, which demonstrated the excellent applicability of the device, rendering it a promising platform for point-of-care diagnostics and environmental monitoring.

微流控电化学传感器(μCS)具有便携、高灵敏度和低成本等特点,但研究和应用都不多。此外,该研究首次引入了同时电沉积金纳米粒子(ED (AuNPs))和电聚合 L-半胱氨酸(EP (L-cys))的方法,通过纸基微流体传感器对工作电极表面进行改性。这项研究表明,通过采用这种改性方法,电化学活性表面积(ECSA)和电子转移率同时增加,从而提高了灵敏度。改进后的μCS可灵敏地测定氯氮平(CLZ)等药物的伏安测定,氯氮平是一种治疗精神分裂症的抗精神病药物。通过不同的技术对所提出的传感器进行了表征,并对几个关键参数进行了优化。在最佳条件下,利用方波伏安法(SWV),在 0.5 至 10.0 μM 的 CLZ 浓度范围内实现了线性剂量反应。检测限和灵敏度分别为 70.0 nM 和 0.045 mA cm-2 μM-1。此外,这种出色的灵敏度与高稳定性相结合,通过对单个装置进行六次重复测量的测试,结果表明具有很高的重现性。此外,该程序还通过测量人血浆中的氯氮平进行了验证,证明了该装置的卓越适用性,使其成为一个很有前途的床旁诊断和环境监测平台。
{"title":"Clozapine sensing through paper-based microfluidic sensors directly modified via electro-deposition and electro-polymerization†","authors":"Mohammad Hossein Ghanbari, Markus Biesalski, Oliver Friedrich and Bastian J. M. Etzold","doi":"10.1039/D4SD00252K","DOIUrl":"10.1039/D4SD00252K","url":null,"abstract":"<p >Microfluidic electrochemical sensors (μCS) can be portable, highly sensitive, and low-cost but are less frequently studied nor applied. Additionally, simultaneous electro-deposition of gold nanoparticles (ED (AuNPs)) and electro-polymerization of <small>L</small>-cysteine (EP (<small>L</small>-cys)) are introduced for the first time for modifying the surface of the working electrode through a paper-based microfluidic sensor. This study depicts that by employing such modification, the electrochemically active surface area (ECSA) and the electron transfer rate are increased together and result in improved sensitivity. The modified μCS is depicted to enable sensitive voltametric determination of, <em>e.g.</em>, clozapine (CLZ), an anti-psychotic drug to treat schizophrenia. The proposed sensor was characterized by different techniques, and several key parameters were optimized. Under the optimum conditions and using square-wave voltametry (SWV), a linear dose–response for a concentration range from 0.5 to 10.0 μM of CLZ was achieved. The limit of detection and sensitivity resulted in 70.0 nM and 0.045 mA cm<small><sup>−2</sup></small> μM<small><sup>−1</sup></small>, respectively. Besides, this excellent sensitivity combines with high stability, which was tested for six repetitive measurements with a single device resulting in high reproducibility. Additionally, this procedure was validated with measurements of clozapine in human blood plasma, which demonstrated the excellent applicability of the device, rendering it a promising platform for point-of-care diagnostics and environmental monitoring.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1749-1758"},"PeriodicalIF":3.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00252k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a portable electrochemical sensing platform for impedance spectroscopy-based biosensing using an ARM-based microcontroller† 利用基于 ARM 的微控制器开发基于阻抗光谱生物传感的便携式电化学传感平台
IF 3.5 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-24 DOI: 10.1039/D4SD00234B
Joseph Charles Khavul Spiro, Kundan Kumar Mishra, Vikram Narayanan Dhamu, Avi Bhatia, Sriram Muthukumar and Shalini Prasad

Detecting pesticides like atrazine is a significant global health challenge due to their association with numerous foodborne illnesses. Traditional detection methods often lack sensitivity and time efficiency, highlighting the urgent need for improved early detection techniques to mitigate pesticide contamination and outbreaks. This study introduces a novel portable electrochemical prototype that integrates an ARM-based microcontroller with an impedance spectroscopy (EIS)-based biosensing system. The data processed through the algorithm generates easily interpretable impedance values. The platform demonstrates a broad detection range for atrazine (1 fg mL−1 to 10 ng mL−1) with a limit of detection (LoD) of 1 fg mL−1 and an assay processing time of approximately 5 minutes, showcasing its remarkable efficiency. The sensor consistently maintains cross-reactivity variation below 20%, ensuring reliable performance. This research aims to offer a low-cost, replicable mobile platform for biosensing applications, thereby enhancing access for individuals with limited lab-based research experience and broadening the scope of proactive pesticide monitoring.

由于阿特拉津等农药与多种食源性疾病有关,因此检测这类农药是一项重大的全球健康挑战。传统的检测方法往往缺乏灵敏度和时间效率,因此迫切需要改进早期检测技术,以减少农药污染和疫情爆发。本研究介绍了一种新型便携式电化学原型,它将基于 ARM 的微控制器与基于阻抗光谱(EIS)的生物传感系统集成在一起。通过算法处理的数据可生成易于解释的阻抗值。该平台对阿特拉津的检测范围很广(1 fg mL-1 至 10 ng mL-1),检测限(LoD)为 1 fg mL-1,检测处理时间约为 5 分钟,显示了其卓越的效率。该传感器的交叉反应变异始终保持在 20% 以下,确保了可靠的性能。这项研究旨在为生物传感应用提供一个低成本、可复制的移动平台,从而为实验室研究经验有限的人员提供更多机会,并扩大农药主动监测的范围。
{"title":"Development of a portable electrochemical sensing platform for impedance spectroscopy-based biosensing using an ARM-based microcontroller†","authors":"Joseph Charles Khavul Spiro, Kundan Kumar Mishra, Vikram Narayanan Dhamu, Avi Bhatia, Sriram Muthukumar and Shalini Prasad","doi":"10.1039/D4SD00234B","DOIUrl":"10.1039/D4SD00234B","url":null,"abstract":"<p >Detecting pesticides like atrazine is a significant global health challenge due to their association with numerous foodborne illnesses. Traditional detection methods often lack sensitivity and time efficiency, highlighting the urgent need for improved early detection techniques to mitigate pesticide contamination and outbreaks. This study introduces a novel portable electrochemical prototype that integrates an ARM-based microcontroller with an impedance spectroscopy (EIS)-based biosensing system. The data processed through the algorithm generates easily interpretable impedance values. The platform demonstrates a broad detection range for atrazine (1 fg mL<small><sup>−1</sup></small> to 10 ng mL<small><sup>−1</sup></small>) with a limit of detection (LoD) of 1 fg mL<small><sup>−1</sup></small> and an assay processing time of approximately 5 minutes, showcasing its remarkable efficiency. The sensor consistently maintains cross-reactivity variation below 20%, ensuring reliable performance. This research aims to offer a low-cost, replicable mobile platform for biosensing applications, thereby enhancing access for individuals with limited lab-based research experience and broadening the scope of proactive pesticide monitoring.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 11","pages":" 1835-1842"},"PeriodicalIF":3.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00234b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The importance of antibody orientation for enhancing sensitivity and selectivity in lateral flow immunoassays 抗体定向对提高横向流动免疫测定灵敏度和选择性的重要性
IF 3.5 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-23 DOI: 10.1039/D4SD00206G
Zhao-Yu Lu and Yang-Hsiang Chan

In the field of point-of-care diagnostics, lateral flow assays (LFAs) stand out as highly promising due to their compact size, ease of use, and rapid analysis times. These attributes make LFAs invaluable, especially in urgent situations or resource-limited regions. However, their Achilles' heel has always been their limited sensitivity and selectivity. To address these issues, various innovative approaches, including sample enrichment, assay optimization, and signal amplification, have been developed and are extensively discussed in the literature. Despite these advancements, the importance of antibody orientation is often neglected, even though improper orientation can significantly impair detection performance. This review article first explores well-established traditional methodologies, such as minor physical adjustments and non-specific chemical bond formations. It then shifts focus to the oriented immobilization of antibodies on probe surfaces. This approach aims to enhance sensitivity and selectivity fundamentally by leveraging protein affinities or complementary amino acid sequences. The review summarizes the impact of antibody orientation on the analytical performance of LFAs in terms of sensitivity, specificity, speed, reliability, cost-effectiveness, and stability. Additionally, we introduce recent modifications to assay membrane materials and discuss the current limitations and future prospects of LFAs.

在护理点诊断领域,横向流动分析法(LFA)因其体积小、使用方便和分析时间快而大有可为。这些特性使 LFA 具有无价之宝的价值,尤其是在紧急情况下或资源有限的地区。然而,它们的致命弱点始终是灵敏度和选择性有限。为了解决这些问题,人们开发了各种创新方法,包括样品富集、检测优化和信号放大,并在文献中进行了广泛讨论。尽管取得了这些进步,但抗体定向的重要性往往被忽视,尽管不正确的定向会严重影响检测性能。这篇综述文章首先探讨了成熟的传统方法,如微小的物理调整和非特异性化学键的形成。然后将重点转向探针表面抗体的定向固定。这种方法旨在利用蛋白质亲和性或互补氨基酸序列,从根本上提高灵敏度和选择性。综述总结了抗体定向在灵敏度、特异性、速度、可靠性、成本效益和稳定性等方面对 LFA 分析性能的影响。此外,我们还介绍了最近对检测膜材料的改良,并讨论了 LFA 目前的局限性和未来前景。
{"title":"The importance of antibody orientation for enhancing sensitivity and selectivity in lateral flow immunoassays","authors":"Zhao-Yu Lu and Yang-Hsiang Chan","doi":"10.1039/D4SD00206G","DOIUrl":"10.1039/D4SD00206G","url":null,"abstract":"<p >In the field of point-of-care diagnostics, lateral flow assays (LFAs) stand out as highly promising due to their compact size, ease of use, and rapid analysis times. These attributes make LFAs invaluable, especially in urgent situations or resource-limited regions. However, their Achilles' heel has always been their limited sensitivity and selectivity. To address these issues, various innovative approaches, including sample enrichment, assay optimization, and signal amplification, have been developed and are extensively discussed in the literature. Despite these advancements, the importance of antibody orientation is often neglected, even though improper orientation can significantly impair detection performance. This review article first explores well-established traditional methodologies, such as minor physical adjustments and non-specific chemical bond formations. It then shifts focus to the oriented immobilization of antibodies on probe surfaces. This approach aims to enhance sensitivity and selectivity fundamentally by leveraging protein affinities or complementary amino acid sequences. The review summarizes the impact of antibody orientation on the analytical performance of LFAs in terms of sensitivity, specificity, speed, reliability, cost-effectiveness, and stability. Additionally, we introduce recent modifications to assay membrane materials and discuss the current limitations and future prospects of LFAs.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1613-1634"},"PeriodicalIF":3.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00206g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colorimetric nano-biosensor for low-resource settings: insulin as a model biomarker 用于低资源环境的比色纳米生物传感器:以胰岛素为模型生物标记物
IF 3.5 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-23 DOI: 10.1039/D4SD00197D
Zia ul Quasim Syed, Sathya Samaraweera, Zhuo Wang and Sadagopan Krishnan

Biomarkers provide critical molecular insights into diseases and abnormal conditions. However, detecting them at ultra-low concentrations is a challenge, particularly in areas with limited resources and access to sophisticated instruments. Our research is primarily focused on mitigating this challenge. In this report, we introduce a colorimetric immunosensor for detecting insulin, an essential hormone biomarker that regulates glucose metabolism, at picomolar concentrations using citrate-functionalized magnetic particles. This immunosensor utilizes a two-antibody sandwich immunoassay: one antibody is covalently conjugated to the nanoparticles to capture and isolate the target marker, while the other is labeled with horseradish peroxidase for colorimetric detection of insulin. We conducted comparative analyses of insulin detection in buffer, saliva, and serum samples, offering valuable analytical insights. Our findings indicate a detection limit of 10 pM, with dynamic ranges of 10 pM to 1 nM, 10 pM to 10 nM, and 50 pM to 1 nM for insulin detection in buffer solution, 2-fold diluted serum, and 20-fold diluted artificial saliva, respectively. We demonstrate the application of the color immunosensor to type 1 diabetes and healthy human serum samples. For human saliva analysis, the detection limit needs to be improved in our future studies. Overall, our study enhances biomarker analysis in biofluids through an equipment-free colorimetric method, which is particularly relevant for point-of-need applications.

生物标记物提供了有关疾病和异常状况的重要分子信息。然而,在超低浓度下检测它们是一项挑战,尤其是在资源和精密仪器有限的地区。我们的研究主要集中在缓解这一挑战上。在本报告中,我们介绍了一种比色免疫传感器,利用柠檬酸盐功能化磁性微粒在皮摩尔浓度下检测胰岛素(一种调节葡萄糖代谢的重要激素生物标志物)。这种免疫传感器采用双抗体夹心免疫测定法:一种抗体与纳米粒子共价结合以捕获和分离目标标记物,另一种抗体用辣根过氧化物酶标记,用于胰岛素的比色检测。我们对缓冲液、唾液和血清样品中的胰岛素检测进行了比较分析,从而提供了宝贵的分析见解。我们的研究结果表明,在缓冲溶液、稀释 2 倍的血清和稀释 20 倍的人工唾液中检测胰岛素的检测限为 10 pM,动态范围分别为 10 pM 至 1 nM、10 pM 至 10 nM 和 50 pM 至 1 nM。我们展示了彩色免疫传感器在 1 型糖尿病和健康人血清样本中的应用。在人体唾液分析方面,我们需要在今后的研究中提高检测限。总之,我们的研究通过一种无需设备的比色法提高了生物流体中生物标记物的分析能力,尤其适用于需求点应用。
{"title":"Colorimetric nano-biosensor for low-resource settings: insulin as a model biomarker","authors":"Zia ul Quasim Syed, Sathya Samaraweera, Zhuo Wang and Sadagopan Krishnan","doi":"10.1039/D4SD00197D","DOIUrl":"10.1039/D4SD00197D","url":null,"abstract":"<p >Biomarkers provide critical molecular insights into diseases and abnormal conditions. However, detecting them at ultra-low concentrations is a challenge, particularly in areas with limited resources and access to sophisticated instruments. Our research is primarily focused on mitigating this challenge. In this report, we introduce a colorimetric immunosensor for detecting insulin, an essential hormone biomarker that regulates glucose metabolism, at picomolar concentrations using citrate-functionalized magnetic particles. This immunosensor utilizes a two-antibody sandwich immunoassay: one antibody is covalently conjugated to the nanoparticles to capture and isolate the target marker, while the other is labeled with horseradish peroxidase for colorimetric detection of insulin. We conducted comparative analyses of insulin detection in buffer, saliva, and serum samples, offering valuable analytical insights. Our findings indicate a detection limit of 10 pM, with dynamic ranges of 10 pM to 1 nM, 10 pM to 10 nM, and 50 pM to 1 nM for insulin detection in buffer solution, 2-fold diluted serum, and 20-fold diluted artificial saliva, respectively. We demonstrate the application of the color immunosensor to type 1 diabetes and healthy human serum samples. For human saliva analysis, the detection limit needs to be improved in our future studies. Overall, our study enhances biomarker analysis in biofluids through an equipment-free colorimetric method, which is particularly relevant for point-of-need applications.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1659-1671"},"PeriodicalIF":3.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00197d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-state nanopore counting of amplicons from recombinase polymerase isothermal amplification† 对重组酶聚合酶等温扩增产生的扩增子进行固态纳米孔计数
IF 3.5 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-23 DOI: 10.1039/D4SD00159A
Breeana Elliott, Martin Charron, John Pezacki, Erin McConnell and Vincent Tabard-Cossa

Single-molecule detection methods based on electrical readout can transform disease diagnostics by miniaturizing the downstream sensor to enable sensitive and rapid biomarker quantification at the point-of-care. In particular, solid-state nanopores can be used as single-molecule electrical counters for a variety of biomedical applications, including biomarker detection. Integrating nanopores with efficient DNA amplification methods can improve upon sensitivity and accessibility concerns often present in disease detection. Here, we present nanopores as biosensors downstream of a reverse-transcription recombinase polymerase amplification (RT-RPA)-based assay targeting synthetic SARS-CoV-2 RNA. We demonstrate the efficacy of nanopore-integrated RT-RPA for the direct electrical detection of target amplicons, and discuss challenges from RPA-based assays and adaptations that facilitate solid-state nanopore readout.

基于电读出的单分子检测方法可通过微型化下游传感器,在医疗点实现灵敏、快速的生物标记物定量,从而改变疾病诊断方法。特别是,固态纳米孔可用作单分子电计数器,用于各种生物医学应用,包括生物标记物检测。将纳米孔与高效的 DNA 扩增方法相结合,可以改善疾病检测中经常出现的灵敏度和可及性问题。在这里,我们将纳米孔作为生物传感器,用于基于反转录重组聚合酶扩增(RT-RPA)的以合成 SARS-CoV-2 RNA 为目标的检测。我们展示了集成纳米孔的 RT-RPA 在直接电学检测目标扩增子方面的功效,并讨论了基于 RPA 的检测方法所面临的挑战以及促进固态纳米孔读出的适应性。
{"title":"Solid-state nanopore counting of amplicons from recombinase polymerase isothermal amplification†","authors":"Breeana Elliott, Martin Charron, John Pezacki, Erin McConnell and Vincent Tabard-Cossa","doi":"10.1039/D4SD00159A","DOIUrl":"10.1039/D4SD00159A","url":null,"abstract":"<p >Single-molecule detection methods based on electrical readout can transform disease diagnostics by miniaturizing the downstream sensor to enable sensitive and rapid biomarker quantification at the point-of-care. In particular, solid-state nanopores can be used as single-molecule electrical counters for a variety of biomedical applications, including biomarker detection. Integrating nanopores with efficient DNA amplification methods can improve upon sensitivity and accessibility concerns often present in disease detection. Here, we present nanopores as biosensors downstream of a reverse-transcription recombinase polymerase amplification (RT-RPA)-based assay targeting synthetic SARS-CoV-2 RNA. We demonstrate the efficacy of nanopore-integrated RT-RPA for the direct electrical detection of target amplicons, and discuss challenges from RPA-based assays and adaptations that facilitate solid-state nanopore readout.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1733-1742"},"PeriodicalIF":3.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00159a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ interface reaction-enabled electrochemiluminescence imaging for single-cell formaldehyde release analysis† 用于单细胞甲醛释放分析的原位界面反应电化学发光成像†.
IF 3.5 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-20 DOI: 10.1039/D4SD00177J
Juanhua Zhou and Yang Liu

Monitoring metabolites in situ at the single-cell scale is important for revealing cellular heterogeneity and dynamic changes of cell status, which provides new possibilities for disease research. Benefiting from the advantages of both electrochemical and optical methods, electrochemiluminescence (ECL) has great potential in this field. However, developing real-time in situ imaging methods is full of challenges. In this study, an ECL imaging method for formaldehyde (FA), a kind of cellular metabolite, was developed based on the in situ generation of co-reactants at the electrode interface and was successfully applied to the monitoring of single-cell FA release. Amino groups can undergo a rapid nucleophilic addition reaction with FA to form amino alcohol intermediates, which can be used as co-reactants for tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+] to significantly enhance the strength of ECL. Poly(amidoamine) (PAMAM), with a large number of amino groups, and reduced graphene oxide (rGO), with excellent electrical conductivity and electrocatalytic properties, were introduced as the modification layer on the electrode surface to realize the “turn on” detection of FA. This sensing method also eliminated the use of the classic toxic co-reactant tripropylamine (TPrA) and was further applied to in situ imaging of single-cell FA release. It successfully obtained ECL images at different time points after the stimulation of HeLa cells with thapsigargin (TG), revealing the change pattern in drug efficacy over time. This work proposes a new ECL imaging approach for real-time in situ monitoring of FA release from single cells, further broadening the application of ECL imaging in single-cell analysis.

在单细胞尺度上原位监测代谢物对于揭示细胞异质性和细胞状态的动态变化非常重要,这为疾病研究提供了新的可能性。得益于电化学和光学方法的优势,电化学发光(ECL)在这一领域具有巨大潜力。然而,开发实时原位成像方法充满挑战。本研究基于电极界面原位生成共反应物的原理,开发了一种针对细胞代谢物甲醛(FA)的 ECL 成像方法,并成功应用于单细胞 FA 释放的监测。氨基可与 FA 发生快速亲核加成反应,形成氨基醇中间体,这些中间体可用作三(2,2′-联吡啶)钌(II) [Ru(bpy)32+] 的共反应物,从而显著增强 ECL 的强度。电极表面引入了具有大量氨基的聚氨基胺(PAMAM)和具有优异导电性和电催化性能的还原氧化石墨烯(rGO)作为修饰层,实现了 FA 的 "开启 "检测。这种传感方法还省去了传统的有毒共反应物三丙胺(TPrA),并进一步应用于单细胞 FA 释放的原位成像。该方法成功地获得了用硫代甘氨酸(TG)刺激 HeLa 细胞后不同时间点的 ECL 图像,揭示了药效随时间的变化规律。这项工作提出了一种新的 ECL 成像方法,用于实时原位监测单细胞中 FA 的释放,进一步拓宽了 ECL 成像在单细胞分析中的应用。
{"title":"In situ interface reaction-enabled electrochemiluminescence imaging for single-cell formaldehyde release analysis†","authors":"Juanhua Zhou and Yang Liu","doi":"10.1039/D4SD00177J","DOIUrl":"https://doi.org/10.1039/D4SD00177J","url":null,"abstract":"<p >Monitoring metabolites <em>in situ</em> at the single-cell scale is important for revealing cellular heterogeneity and dynamic changes of cell status, which provides new possibilities for disease research. Benefiting from the advantages of both electrochemical and optical methods, electrochemiluminescence (ECL) has great potential in this field. However, developing real-time <em>in situ</em> imaging methods is full of challenges. In this study, an ECL imaging method for formaldehyde (FA), a kind of cellular metabolite, was developed based on the <em>in situ</em> generation of co-reactants at the electrode interface and was successfully applied to the monitoring of single-cell FA release. Amino groups can undergo a rapid nucleophilic addition reaction with FA to form amino alcohol intermediates, which can be used as co-reactants for tris(2,2′-bipyridyl)ruthenium(<small>II</small>) [Ru(bpy)<small><sub>3</sub></small><small><sup>2+</sup></small>] to significantly enhance the strength of ECL. Poly(amidoamine) (PAMAM), with a large number of amino groups, and reduced graphene oxide (rGO), with excellent electrical conductivity and electrocatalytic properties, were introduced as the modification layer on the electrode surface to realize the “turn on” detection of FA. This sensing method also eliminated the use of the classic toxic co-reactant tripropylamine (TPrA) and was further applied to <em>in situ</em> imaging of single-cell FA release. It successfully obtained ECL images at different time points after the stimulation of HeLa cells with thapsigargin (TG), revealing the change pattern in drug efficacy over time. This work proposes a new ECL imaging approach for real-time <em>in situ</em> monitoring of FA release from single cells, further broadening the application of ECL imaging in single-cell analysis.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 9","pages":" 1571-1578"},"PeriodicalIF":3.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00177j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A genetically encoded probe for monitoring and detection of iron in real-time† 用于实时监测和检测铁的基因编码探针
IF 3.5 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-20 DOI: 10.1039/D4SD00091A
Neha Soleja and Mohd. Mohsin

Iron, the most abundant transition metal in the body, regulates cellular function but can be harmful in excess, leading to reactive oxygen species production and cellular damage. Intracellular Fe2+ exerts a significant impact on cellular function, potentially contributing to various critical diseases. To address this, detection methods need high selectivity, sensitivity, and real-time monitoring capabilities, essential for comprehending disease progression. This necessitates advancements beyond conventional detection approaches. Frataxin, a crucial mitochondrial protein, is indispensable for sustaining life, contributing not only to iron metabolism but also to the formation of iron–sulfur clusters critical for cellular function. Its deficiency is implicated in neurodegenerative diseases. We have developed a nanosensor, based on fluorescence resonance energy transfer (FRET), designed to probe iron efflux mechanisms and facilitate dynamic monitoring of iron concentration and its spatial distribution within living cells. To construct this nanosensor, we strategically positioned CyaY, a bacterial frataxin ortholog, between ECFP and Venus, forming a FRET pair. This innovative nanosensor, designated as FeOS (iron optical sensor), demonstrates exceptional selectivity for iron and maintains stability under physiological pH conditions. Additionally, we engineered three mutant variants: I17C, AD10-I17C, and D76H, with A10D-I17C displaying the highest affinity for iron and a broad detection range. The distinguishing feature of this sensor is that it is genetically encoded, facilitating real-time detection of iron levels within living cells.

铁是人体内含量最丰富的过渡金属,它能调节细胞功能,但过量也会对人体有害,导致活性氧生成和细胞损伤。细胞内的 Fe2+ 对细胞功能有重大影响,可能导致各种严重疾病。为此,检测方法需要具有高选择性、高灵敏度和实时监测能力,这对了解疾病的进展情况至关重要。这就需要超越传统的检测方法。Frataxin是一种重要的线粒体蛋白,是维持生命不可或缺的物质,它不仅有助于铁代谢,还有助于形成对细胞功能至关重要的铁硫簇。它的缺乏与神经退行性疾病有关。我们开发了一种基于荧光共振能量转移(FRET)的纳米传感器,旨在探测铁外流机制,并促进对铁浓度及其在活细胞内空间分布的动态监测。为了构建这种纳米传感器,我们战略性地将细菌 frataxin 同源物 CyaY 放在 ECFP 和 Venus 之间,形成一对 FRET。这种创新型纳米传感器被命名为 FeOS(铁光学传感器),它对铁具有卓越的选择性,并能在生理 pH 条件下保持稳定。此外,我们还设计了三种突变变体:其中 A10D-I17C 对铁的亲和力最高,检测范围也最广。这种传感器的显著特点是它是基因编码的,便于实时检测活细胞内的铁含量。
{"title":"A genetically encoded probe for monitoring and detection of iron in real-time†","authors":"Neha Soleja and Mohd. Mohsin","doi":"10.1039/D4SD00091A","DOIUrl":"10.1039/D4SD00091A","url":null,"abstract":"<p >Iron, the most abundant transition metal in the body, regulates cellular function but can be harmful in excess, leading to reactive oxygen species production and cellular damage. Intracellular Fe<small><sup>2+</sup></small> exerts a significant impact on cellular function, potentially contributing to various critical diseases. To address this, detection methods need high selectivity, sensitivity, and real-time monitoring capabilities, essential for comprehending disease progression. This necessitates advancements beyond conventional detection approaches. Frataxin, a crucial mitochondrial protein, is indispensable for sustaining life, contributing not only to iron metabolism but also to the formation of iron–sulfur clusters critical for cellular function. Its deficiency is implicated in neurodegenerative diseases. We have developed a nanosensor, based on fluorescence resonance energy transfer (FRET), designed to probe iron efflux mechanisms and facilitate dynamic monitoring of iron concentration and its spatial distribution within living cells. To construct this nanosensor, we strategically positioned CyaY, a bacterial frataxin ortholog, between ECFP and Venus, forming a FRET pair. This innovative nanosensor, designated as FeOS (iron optical sensor), demonstrates exceptional selectivity for iron and maintains stability under physiological pH conditions. Additionally, we engineered three mutant variants: I17C, AD10-I17C, and D76H, with A10D-I17C displaying the highest affinity for iron and a broad detection range. The distinguishing feature of this sensor is that it is genetically encoded, facilitating real-time detection of iron levels within living cells.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1714-1723"},"PeriodicalIF":3.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00091a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computationally predicting the performance of gas sensor arrays for anomaly detection† 计算预测气体传感器阵列的异常检测性能
IF 3.5 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-19 DOI: 10.1039/D4SD00121D
Paul Morris and Cory M. Simon

In many gas sensing tasks, we simply wish to become aware of gas compositions that deviate from normal, “business-as-usual” conditions. We provide a methodology, illustrated by example, to computationally predict the performance of a gas sensor array design for detecting anomalous gas compositions. Specifically, we consider a sensor array of two zeolitic imidazolate frameworks (ZIFs) as gravimetric sensing elements for detecting anomalous gas compositions in a fruit ripening room. First, we define the probability distribution of the concentrations of the key gas species (CO2, C2H4, H2O) we expect to encounter under normal conditions. Next, we construct a thermodynamic model to predict gas adsorption in the ZIF sensing elements in response to these gas compositions. Then, we generate a synthetic training data set of sensor array responses to “normal” gas compositions. Finally, we train a support vector data description to flag anomalous sensor array responses and test its false alarm and missed-anomaly rates under conceived anomalies. We find the performance of the anomaly detector diminishes with (i) greater variance in humidity, which can mask CO2 and C2H4 anomalies or cause false alarms, (ii) higher levels of noise emanating from the transducers, and (iii) smaller training data sets. Our exploratory study is a step towards computational design of gas sensor arrays for anomaly detection.

在许多气体传感任务中,我们只是希望了解偏离正常 "常规 "条件的气体成分。我们提供了一种方法,以实例说明如何通过计算预测气体传感器阵列设计的性能,以检测异常气体成分。具体来说,我们考虑将两个沸石咪唑框架(ZIF)作为重力感应元件的传感器阵列,用于检测水果成熟室中的异常气体成分。首先,我们定义了在正常条件下预计会遇到的主要气体种类(CO2、C2H4、H2O)浓度的概率分布。接着,我们构建了一个热力学模型,以预测 ZIF 传感元件对这些气体成分的吸附情况。然后,我们生成传感器阵列对 "正常 "气体成分响应的合成训练数据集。最后,我们对支持向量数据描述进行训练,以标记异常传感器阵列响应,并测试其在设想异常情况下的误报率和漏报率。我们发现,在以下情况下,异常检测器的性能会下降:(i) 湿度变化较大,这可能会掩盖 CO2 和 C2H4 异常或导致误报;(ii) 传感器发出的噪声水平较高;(iii) 训练数据集较小。我们的探索性研究为异常检测气体传感器阵列的计算设计迈出了一步。
{"title":"Computationally predicting the performance of gas sensor arrays for anomaly detection†","authors":"Paul Morris and Cory M. Simon","doi":"10.1039/D4SD00121D","DOIUrl":"10.1039/D4SD00121D","url":null,"abstract":"<p >In many gas sensing tasks, we simply wish to become aware of gas compositions that deviate from normal, “business-as-usual” conditions. We provide a methodology, illustrated by example, to computationally predict the performance of a gas sensor array design for detecting anomalous gas compositions. Specifically, we consider a sensor array of two zeolitic imidazolate frameworks (ZIFs) as gravimetric sensing elements for detecting anomalous gas compositions in a fruit ripening room. First, we define the probability distribution of the concentrations of the key gas species (CO<small><sub>2</sub></small>, C<small><sub>2</sub></small>H<small><sub>4</sub></small>, H<small><sub>2</sub></small>O) we expect to encounter under normal conditions. Next, we construct a thermodynamic model to predict gas adsorption in the ZIF sensing elements in response to these gas compositions. Then, we generate a synthetic training data set of sensor array responses to “normal” gas compositions. Finally, we train a support vector data description to flag anomalous sensor array responses and test its false alarm and missed-anomaly rates under conceived anomalies. We find the performance of the anomaly detector diminishes with (i) greater variance in humidity, which can mask CO<small><sub>2</sub></small> and C<small><sub>2</sub></small>H<small><sub>4</sub></small> anomalies or cause false alarms, (ii) higher levels of noise emanating from the transducers, and (iii) smaller training data sets. Our exploratory study is a step towards computational design of gas sensor arrays for anomaly detection.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1699-1713"},"PeriodicalIF":3.5,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00121d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonwoven-fabric-based microfluidic devices for solution viscosity measurements† 用于溶液粘度测量的基于无纺布的微流控装置†。
IF 3.5 Q2 CHEMISTRY, ANALYTICAL Pub Date : 2024-08-16 DOI: 10.1039/D4SD00188E
Mayumi Otoba Uno, Mariko Omori and Kenji Sakamoto

Microfluidic chips designed to measure viscosity with extremely small amounts of liquids are expected to examine biological fluids, such as for the prediction of disease states and stress assessment, and for the evaluation of the physical properties of novel synthetic materials. However, these devices typically require sample volumes of several tens of μL or more, which has limitations when collecting biological samples from individuals nearly non-invasively. In this study, we fabricated a flow channel on a nonwoven fabric substrate with tailored hydrophilic and hydrophobic properties to enable viscosity measurements with the small-volume flow of aqueous solutions, such as 3 μL of saline. By measuring the electrical conductivity of the liquid using comb-shaped printed electrodes in contact with the flow path, we quantified the time and distance of liquid flow driven by capillary action to estimate solution viscosity. Using a mixture of glycerol and saline solution with varying viscosities, while maintaining a constant ion concentration, we demonstrated the capability to assess the relative viscosity of solutions. This was achieved by evaluating the correlation coefficient between the flow time and distance, and the net electrical conductivity, which is influenced by the viscosity and ion concentration of the solutions. This study lays the groundwork for developing a low-cost technique to measure the viscosity of solutions with a few μL, offering potential for routine health monitoring and disease prevention.

用于测量极微量液体粘度的微流控芯片有望用于检查生物液体,如预测疾病状态和压力评估,以及评估新型合成材料的物理性质。然而,这些设备通常需要几十微升或更多的样本量,这对近乎无创地采集个人生物样本造成了限制。在这项研究中,我们在无纺布基底上制作了一个具有定制亲水和疏水特性的流道,以便能用小体积的水溶液(如 3 μL 的生理盐水)流进行粘度测量。通过使用与流动路径接触的梳状印刷电极测量液体的导电性,我们量化了毛细作用驱动液体流动的时间和距离,从而估算出溶液的粘度。我们使用不同粘度的甘油和生理盐水混合物,同时保持恒定的离子浓度,展示了评估溶液相对粘度的能力。这是通过评估流动时间和距离与净电导率之间的相关系数实现的,而净电导率受溶液粘度和离子浓度的影响。这项研究为开发一种测量几微升溶液粘度的低成本技术奠定了基础,为常规健康监测和疾病预防提供了潜力。
{"title":"Nonwoven-fabric-based microfluidic devices for solution viscosity measurements†","authors":"Mayumi Otoba Uno, Mariko Omori and Kenji Sakamoto","doi":"10.1039/D4SD00188E","DOIUrl":"https://doi.org/10.1039/D4SD00188E","url":null,"abstract":"<p >Microfluidic chips designed to measure viscosity with extremely small amounts of liquids are expected to examine biological fluids, such as for the prediction of disease states and stress assessment, and for the evaluation of the physical properties of novel synthetic materials. However, these devices typically require sample volumes of several tens of μL or more, which has limitations when collecting biological samples from individuals nearly non-invasively. In this study, we fabricated a flow channel on a nonwoven fabric substrate with tailored hydrophilic and hydrophobic properties to enable viscosity measurements with the small-volume flow of aqueous solutions, such as 3 μL of saline. By measuring the electrical conductivity of the liquid using comb-shaped printed electrodes in contact with the flow path, we quantified the time and distance of liquid flow driven by capillary action to estimate solution viscosity. Using a mixture of glycerol and saline solution with varying viscosities, while maintaining a constant ion concentration, we demonstrated the capability to assess the relative viscosity of solutions. This was achieved by evaluating the correlation coefficient between the flow time and distance, and the net electrical conductivity, which is influenced by the viscosity and ion concentration of the solutions. This study lays the groundwork for developing a low-cost technique to measure the viscosity of solutions with a few μL, offering potential for routine health monitoring and disease prevention.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 9","pages":" 1551-1561"},"PeriodicalIF":3.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00188e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Sensors & diagnostics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1