Anushka, Aditya Bandopadhyay and Prasanta Kumar Das
Milk adulteration remains a significant public health concern in India, where conventional laboratory-based detection methods are often costly, time-consuming, and impractical for field use. This study introduces a novel paper-based microfluidic device designed for rapid, low-cost detection of multiple milk adulterants. The device comprises a 3D-printed strip holder and utilizes gravity-assisted capillary flow through porous paper, eliminating the need for hydrophobic barriers or external power sources. Its modular design allows for easy reuse of the holder while only replacing the paper strip for successive tests. The platform enables visual detection of common adulterants—including neutralizers, starch, hydrogen peroxide, urea, detergents, and boric acid—via reagent-specific colorimetric responses. The device meets the ASSURED criteria of World Health Organization for point-of-care diagnostics, offering a promising tool for decentralized milk quality monitoring and contributing to both consumer safety and improved supply chain transparency in the dairy industry. The device demonstrated a limit of detection (LOD) as low as 0.03% for urea and hydrogen peroxide, outperforming existing paper-based methods. The results were validated across five independent trials per condition, with high reproducibility and minimal cross-reactivity, confirming the diagnostic reliability of the platform.
{"title":"Portable paper-based microfluidic device for rapid on-site screening of milk adulterants","authors":"Anushka, Aditya Bandopadhyay and Prasanta Kumar Das","doi":"10.1039/D5SD00090D","DOIUrl":"https://doi.org/10.1039/D5SD00090D","url":null,"abstract":"<p >Milk adulteration remains a significant public health concern in India, where conventional laboratory-based detection methods are often costly, time-consuming, and impractical for field use. This study introduces a novel paper-based microfluidic device designed for rapid, low-cost detection of multiple milk adulterants. The device comprises a 3D-printed strip holder and utilizes gravity-assisted capillary flow through porous paper, eliminating the need for hydrophobic barriers or external power sources. Its modular design allows for easy reuse of the holder while only replacing the paper strip for successive tests. The platform enables visual detection of common adulterants—including neutralizers, starch, hydrogen peroxide, urea, detergents, and boric acid—<em>via</em> reagent-specific colorimetric responses. The device meets the ASSURED criteria of World Health Organization for point-of-care diagnostics, offering a promising tool for decentralized milk quality monitoring and contributing to both consumer safety and improved supply chain transparency in the dairy industry. The device demonstrated a limit of detection (LOD) as low as 0.03% for urea and hydrogen peroxide, outperforming existing paper-based methods. The results were validated across five independent trials per condition, with high reproducibility and minimal cross-reactivity, confirming the diagnostic reliability of the platform.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 902-916"},"PeriodicalIF":4.1,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145248170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zuzhe Kang, Chenxi Liu, JunYan Chen, Qiujin Wu, Yunyun Hu, Haonan Di and Xiaomei Yan
Iron, particularly redox-active ferrous ions (Fe2+), is essential for biological processes. Despite their pivotal roles, analysis of Fe2+ ions within individual extracellular vesicles (EVs) has been hindered by the ultralow Fe2+ content and substantial heterogeneity of EVs. To address this, we developed a novel approach by integrating an Fe2+-specific fluorescent chemosensor (Ac-FluNox) with nano-flow cytometry (nFCM) for precise single-EV Fe2+ mapping. Method specificity to Fe2+ was validated via Fe2+-loaded liposomal models at the single-particle level. Comprehensive profiling of Fe2+ distributions in HT-1080-derived EVs under varying ferroptotic stress conditions revealed the striking heterogeneity in Fe2+ loading among EVs and a strong positive correlation between EV Fe2+ levels and their parental cells. Notably, we identified an EV-mediated Fe2+ export mechanism that functionally parallels to ferroportin (FPN)-dependent iron efflux, suggesting EVs may serve as a compensatory iron-release pathway during FPN inhibition. The nFCM platform achieved superior detection sensitivity with high throughput (up to 104 particles per min), providing a powerful analytical tool for investigating EV heterogeneity and Fe2+-mediated regulatory networks in iron homeostasis and ferroptosis-related pathologies.
{"title":"Detection of ferrous ions in extracellular vesicles at the single-particle level by nano-flow cytometry","authors":"Zuzhe Kang, Chenxi Liu, JunYan Chen, Qiujin Wu, Yunyun Hu, Haonan Di and Xiaomei Yan","doi":"10.1039/D5SD00060B","DOIUrl":"https://doi.org/10.1039/D5SD00060B","url":null,"abstract":"<p >Iron, particularly redox-active ferrous ions (Fe<small><sup>2+</sup></small>), is essential for biological processes. Despite their pivotal roles, analysis of Fe<small><sup>2+</sup></small> ions within individual extracellular vesicles (EVs) has been hindered by the ultralow Fe<small><sup>2+</sup></small> content and substantial heterogeneity of EVs. To address this, we developed a novel approach by integrating an Fe<small><sup>2+</sup></small>-specific fluorescent chemosensor (<strong>Ac-FluNox</strong>) with nano-flow cytometry (nFCM) for precise single-EV Fe<small><sup>2+</sup></small> mapping. Method specificity to Fe<small><sup>2+</sup></small> was validated <em>via</em> Fe<small><sup>2+</sup></small>-loaded liposomal models at the single-particle level. Comprehensive profiling of Fe<small><sup>2+</sup></small> distributions in HT-1080-derived EVs under varying ferroptotic stress conditions revealed the striking heterogeneity in Fe<small><sup>2+</sup></small> loading among EVs and a strong positive correlation between EV Fe<small><sup>2+</sup></small> levels and their parental cells. Notably, we identified an EV-mediated Fe<small><sup>2+</sup></small> export mechanism that functionally parallels to ferroportin (FPN)-dependent iron efflux, suggesting EVs may serve as a compensatory iron-release pathway during FPN inhibition. The nFCM platform achieved superior detection sensitivity with high throughput (up to 10<small><sup>4</sup></small> particles per min), providing a powerful analytical tool for investigating EV heterogeneity and Fe<small><sup>2+</sup></small>-mediated regulatory networks in iron homeostasis and ferroptosis-related pathologies.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 895-901"},"PeriodicalIF":4.1,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d5sd00060b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145248169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. del Real Mata, Y. Lu, M. Jalali, A. Bocan, M. Khatami, L. Montermini, J. McCormack-Ilersich, W. W. Reisner, L. Garzia, J. Rak, D. Bzdok and S. Mahshid
Single extracellular vesicles (EVs) carry molecular signatures from their cell of origin, making them a pivotal non-invasive biomarker for cancer diagnosis and monitoring. However, analyzing the complex data associated with single-EVs, such as fingerprints generated via Surface-enhanced Raman Spectroscopy (SERS), remains challenging. To address this, a thorough comparison of machine learning models' implementations and their accuracy classification optimization is presented. A comprehensive single-EV spectral library collected with a SERS-assisted nanostructured platform including cell lines, healthy controls, and cancer patient samples is used. The performance of different learning models (random forests, support vector machines, convolutional neural networks, and linear regression as reference) was assessed for cancer detection tasks: i) multi-cell line classification and ii) cancerous versus non-cancerous binary classification. To improve their accuracy, we optimized spectra preprocessing, artificially increased the dataset, and implemented feature-driven classification. In sum, these methods enabled more interpretable models to perform on par with the complex one, increasing accuracy up to 12% percent-age points, even with datasets reduced to 66% of the original size. Achieving accuracies of 83% and 91% for Task-i and Task-ii, respectively.
{"title":"Evaluation of machine learning and deep learning models for the classification of a single extracellular vesicles spectral library","authors":"C. del Real Mata, Y. Lu, M. Jalali, A. Bocan, M. Khatami, L. Montermini, J. McCormack-Ilersich, W. W. Reisner, L. Garzia, J. Rak, D. Bzdok and S. Mahshid","doi":"10.1039/D5SD00091B","DOIUrl":"https://doi.org/10.1039/D5SD00091B","url":null,"abstract":"<p >Single extracellular vesicles (EVs) carry molecular signatures from their cell of origin, making them a pivotal non-invasive biomarker for cancer diagnosis and monitoring. However, analyzing the complex data associated with single-EVs, such as fingerprints generated <em>via</em> Surface-enhanced Raman Spectroscopy (SERS), remains challenging. To address this, a thorough comparison of machine learning models' implementations and their accuracy classification optimization is presented. A comprehensive single-EV spectral library collected with a SERS-assisted nanostructured platform including cell lines, healthy controls, and cancer patient samples is used. The performance of different learning models (random forests, support vector machines, convolutional neural networks, and linear regression as reference) was assessed for cancer detection tasks: i) multi-cell line classification and ii) cancerous <em>versus</em> non-cancerous binary classification. To improve their accuracy, we optimized spectra preprocessing, artificially increased the dataset, and implemented feature-driven classification. In sum, these methods enabled more interpretable models to perform on par with the complex one, increasing accuracy up to 12% percent-age points, even with datasets reduced to 66% of the original size. Achieving accuracies of 83% and 91% for Task-i and Task-ii, respectively.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 869-883"},"PeriodicalIF":4.1,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d5sd00091b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145248137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A graphical abstract is available for this content
此内容的图形摘要可用
{"title":"Introduction to “Lateral Flow Assays: Methods and Applications”","authors":"Jing Wang, Jiangjiang Zhang and Yanmin Ju","doi":"10.1039/D5SD90027A","DOIUrl":"https://doi.org/10.1039/D5SD90027A","url":null,"abstract":"<p >A graphical abstract is available for this content</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 9","pages":" 721-722"},"PeriodicalIF":4.1,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d5sd90027a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145028065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Circulating cell-free DNA (cfDNA) has been established as a minimally invasive liquid biopsy biomarker with utility in the diagnosis of cancer, monitoring of treatment response, and detection of minimal residual disease. The clinical utility of cfDNA is currently constrained by the low abundance of circulating cfDNA fragments, high fragmentation rates, and short half-life, making it technically challenging to detect in a patient sample. Current molecular approaches for cfDNA detection, including ddPCR and NGS, are time-intensive, expensive, and unsuitable for low-resource settings and point-of-care testing. The CRISPR-Cas system offers a novel and operationally simple approach to cfDNA detection by being single nucleotide specific and compatible with isothermal and amplification-free workflows. In this review, we discuss CRISPR-based assays for cfDNA, beginning from Cas9 enrichment-type assays to promising collateral cleavage platforms employing Cas12a and Cas13a that have countered traditional bottlenecks concerning diagnostic testing. We also provide a comparative analysis of the emerging platforms for key cancer mutations with a discussion around translational scope, including implications from CRISPR-based diagnostic patents. The convergence of sensitivity, speed, multiplexing, and microfluidic integration of CRISPR diagnostics will undoubtedly constitute a next-generation approach for cfDNA analysis, presenting a great promise in impacting precision oncology and increasing access to cancer diagnostics across low-resource settings.
{"title":"CRISPR-based diagnostics for circulating cell-free DNA: a paradigm shift in precision oncology","authors":"Sakshi Seth and K. Sudhakara Prasad","doi":"10.1039/D5SD00083A","DOIUrl":"https://doi.org/10.1039/D5SD00083A","url":null,"abstract":"<p >Circulating cell-free DNA (cfDNA) has been established as a minimally invasive liquid biopsy biomarker with utility in the diagnosis of cancer, monitoring of treatment response, and detection of minimal residual disease. The clinical utility of cfDNA is currently constrained by the low abundance of circulating cfDNA fragments, high fragmentation rates, and short half-life, making it technically challenging to detect in a patient sample. Current molecular approaches for cfDNA detection, including ddPCR and NGS, are time-intensive, expensive, and unsuitable for low-resource settings and point-of-care testing. The CRISPR-Cas system offers a novel and operationally simple approach to cfDNA detection by being single nucleotide specific and compatible with isothermal and amplification-free workflows. In this review, we discuss CRISPR-based assays for cfDNA, beginning from Cas9 enrichment-type assays to promising collateral cleavage platforms employing Cas12a and Cas13a that have countered traditional bottlenecks concerning diagnostic testing. We also provide a comparative analysis of the emerging platforms for key cancer mutations with a discussion around translational scope, including implications from CRISPR-based diagnostic patents. The convergence of sensitivity, speed, multiplexing, and microfluidic integration of CRISPR diagnostics will undoubtedly constitute a next-generation approach for cfDNA analysis, presenting a great promise in impacting precision oncology and increasing access to cancer diagnostics across low-resource settings.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 11","pages":" 925-938"},"PeriodicalIF":4.1,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d5sd00083a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145442781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conjugated microporous polymers (CMPs) possess extended π-conjugation combined with microporosity, enabling amplified sensing response even with ultra-trace solution or vapor-phase analytes, and their high sensing response output was demonstrated with several CMPs. However, CMPs exhibiting tandem detection properties, i.e., sequential detection of multiple analytes, are rarely reported and represent the next generation of CMP chemical sensors offering enhanced sensitivity and specificity. Herein, we report the design and synthesis of a salphen-conjugated microporous polymer (pTPE-salphen) for reversible dual-mode (fluorometric/colorimetric) nanomolar detection of Cu2+ ions and tandem capture of cysteine (Cys). pTPE-salphen synthesized via Schiff-base condensation between 1,1,2,2-tetrakis(4-hydroxy-3-formylphenyl)ethene and o-phenylenediamine, emits yellow photoluminescence (PL) at λmaxEm = 537 nm with a PL quantum yield of 5.41%. pTPE-salphen exhibited remarkable thermal stability up to 425 °C and a fused spherical nanoparticle morphology. pTPE-salphen showed strong PL quenching up to 92% when exposed to Cu2+ (50 μM), selectively among other metal ions, due to the ground-state complex formation of Cu2+@pTPE-salphen. pTPE-salphen was highly sensitive to Cu2+ with a detection limit of 5.69 nM and exhibited a high Stern–Volmer constant (KSV) value of 8.12 × 106 M−1. Notably, the pTPE-salphen-based paper strip sensor showed appreciable sensitivity up to 10−11 M Cu2+. In addition, strong colorimetric changes from yellow (R/B is 1.9) to black (R/B is 0.53) were also observed upon the formation of Cu2+@pTPE-salphen, and the binding of Cu2+ was confirmed by XPS analysis. Interestingly, Cu2+@pTPE-salphen exposed to cysteine (Cys) exhibited reversible colorimetric response from black to orange (R/B is 1.8) both in dispersion and paper strip sensors due to the formation of Cys–Cu2+@pTPE-salphen where Cys binds with Cu2+ anchored on the pore surface of pTPE-salphen, and the entire colorimetric process (yellow ⇌ black ⇌ red) is reversible. The binding of Cys to Cu2+ and its tandem capture were systematically studied using XPS and NMR. Such sequential detection and capture (tandem process) of Cu2+ and Cys using a conjugated microporous polymer sensor is unique and of high significance in environmental and biological applications.
{"title":"Reversible dual-mode detection of Cu2+ and tandem capture of cysteine using a salphen-conjugated microporous polymer","authors":"Nilojyoti Sahoo, Atul Kapoor, Monika Yadav, Saurabh Kumar Rajput and Venkata Suresh Mothika","doi":"10.1039/D5SD00097A","DOIUrl":"https://doi.org/10.1039/D5SD00097A","url":null,"abstract":"<p >Conjugated microporous polymers (CMPs) possess extended π-conjugation combined with microporosity, enabling amplified sensing response even with ultra-trace solution or vapor-phase analytes, and their high sensing response output was demonstrated with several CMPs. However, CMPs exhibiting tandem detection properties, <em>i.e.</em>, sequential detection of multiple analytes, are rarely reported and represent the next generation of CMP chemical sensors offering enhanced sensitivity and specificity. Herein, we report the design and synthesis of a salphen-conjugated microporous polymer (pTPE-salphen) for reversible dual-mode (fluorometric/colorimetric) nanomolar detection of Cu<small><sup>2+</sup></small> ions and tandem capture of cysteine (Cys). pTPE-salphen synthesized <em>via</em> Schiff-base condensation between 1,1,2,2-tetrakis(4-hydroxy-3-formylphenyl)ethene and <em>o</em>-phenylenediamine, emits yellow photoluminescence (PL) at <em>λ</em><small><sup>max</sup></small><small><sub>Em</sub></small> = 537 nm with a PL quantum yield of 5.41%. pTPE-salphen exhibited remarkable thermal stability up to 425 °C and a fused spherical nanoparticle morphology. pTPE-salphen showed strong PL quenching up to 92% when exposed to Cu<small><sup>2+</sup></small> (50 μM), selectively among other metal ions, due to the ground-state complex formation of Cu<small><sup>2+</sup></small>@pTPE-salphen. pTPE-salphen was highly sensitive to Cu<small><sup>2+</sup></small> with a detection limit of 5.69 nM and exhibited a high Stern–Volmer constant (<em>K</em><small><sub>SV</sub></small>) value of 8.12 × 10<small><sup>6</sup></small> M<small><sup>−1</sup></small>. Notably, the pTPE-salphen-based paper strip sensor showed appreciable sensitivity up to 10<small><sup>−11</sup></small> M Cu<small><sup>2+</sup></small>. In addition, strong colorimetric changes from yellow (R/B is 1.9) to black (R/B is 0.53) were also observed upon the formation of Cu<small><sup>2+</sup></small>@pTPE-salphen, and the binding of Cu<small><sup>2+</sup></small> was confirmed by XPS analysis. Interestingly, Cu<small><sup>2+</sup></small>@pTPE-salphen exposed to cysteine (Cys) exhibited reversible colorimetric response from black to orange (R/B is 1.8) both in dispersion and paper strip sensors due to the formation of Cys–Cu<small><sup>2+</sup></small>@pTPE-salphen where Cys binds with Cu<small><sup>2+</sup></small> anchored on the pore surface of pTPE-salphen, and the entire colorimetric process (yellow ⇌ black ⇌ red) is reversible. The binding of Cys to Cu<small><sup>2+</sup></small> and its tandem capture were systematically studied using XPS and NMR. Such sequential detection and capture (tandem process) of Cu<small><sup>2+</sup></small> and Cys using a conjugated microporous polymer sensor is unique and of high significance in environmental and biological applications.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 846-855"},"PeriodicalIF":4.1,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d5sd00097a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145248135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Yu, Aditi Dey Poonam, Amy Halbing, Shengwei Zhang, Yingmiao Liu, Zheng Li, William Marx, Andrew B. Nixon and Qingshan Wei
Few point-of-care (POC) molecular methods exist that are as sensitive as polymerase chain reaction (PCR) while maintaining the simplicity, portability, and robustness for detecting specific nucleic acids in complex sample media. Here, we developed an isothermal nonenzymatic amplification cascade, named sequential nonenzymatic amplification (SENA), and its digital assay version (dSENA), for the ultrasensitive detection of cell-free microRNAs (miRNAs) in diluted human serum with a >95% recovery rate. SENA consists of two layers of DNA circuit-based amplifiers, in which the hybridization chain reaction (HCR) and catalyzed hairpin assembly (CHA) were concatenated to amplify the signals by more than 4000-fold. The sensitivity was further improved in dSENA, where a limit of detection (LOD) down to 5 fM was achieved under the optimized conditions. SENA and dSENA together demonstrated a broad detection dynamic range over 6 logs of analyte concentrations (10 fM – 10 nM), and high specificity for discriminating target miRNAs from point mutations and other interference sequences. dSENA was demonstrated to quantify expression levels of miR-21 and miR-92 in colorectal cancer patient serum with accuracy comparable to RT-PCR. Given its simplicity, compactness, and PCR-like performance, SENA holds great potential in POC miRNA or ssDNA analysis.
很少有护理点(POC)分子方法存在像聚合酶链反应(PCR)一样敏感,同时保持简单性,便携性和鲁棒性,用于检测复杂样品介质中的特定核酸。在这里,我们开发了一种等温非酶扩增级联,称为顺序非酶扩增(SENA)及其数字分析版本(dSENA),用于超灵敏检测稀释后的人血清中的无细胞microRNAs (miRNAs),回收率为95%。SENA由两层基于DNA电路的放大器组成,其中杂交链反应(HCR)和催化发夹组装(CHA)串联在一起,将信号放大4000倍以上。在dSENA中,灵敏度进一步提高,在优化条件下,检测限(LOD)低至5 fM。SENA和dSENA在6个log的分析物浓度(10 fM - 10 nM)范围内显示出较宽的检测动态范围,并具有从点突变和其他干扰序列中区分目标mirna的高特异性。dSENA被证明可以量化结直肠癌患者血清中miR-21和miR-92的表达水平,其准确性与RT-PCR相当。由于其简单、紧凑和类似pcr的性能,SENA在POC miRNA或ssDNA分析中具有很大的潜力。
{"title":"A digital nonenzymatic nucleic acid amplification assay for ultrasensitive detection of cell-free microRNA in human serum","authors":"Tao Yu, Aditi Dey Poonam, Amy Halbing, Shengwei Zhang, Yingmiao Liu, Zheng Li, William Marx, Andrew B. Nixon and Qingshan Wei","doi":"10.1039/D5SD00057B","DOIUrl":"https://doi.org/10.1039/D5SD00057B","url":null,"abstract":"<p >Few point-of-care (POC) molecular methods exist that are as sensitive as polymerase chain reaction (PCR) while maintaining the simplicity, portability, and robustness for detecting specific nucleic acids in complex sample media. Here, we developed an isothermal nonenzymatic amplification cascade, named sequential nonenzymatic amplification (SENA), and its digital assay version (dSENA), for the ultrasensitive detection of cell-free microRNAs (miRNAs) in diluted human serum with a >95% recovery rate. SENA consists of two layers of DNA circuit-based amplifiers, in which the hybridization chain reaction (HCR) and catalyzed hairpin assembly (CHA) were concatenated to amplify the signals by more than 4000-fold. The sensitivity was further improved in dSENA, where a limit of detection (LOD) down to 5 fM was achieved under the optimized conditions. SENA and dSENA together demonstrated a broad detection dynamic range over 6 logs of analyte concentrations (10 fM – 10 nM), and high specificity for discriminating target miRNAs from point mutations and other interference sequences. dSENA was demonstrated to quantify expression levels of miR-21 and miR-92 in colorectal cancer patient serum with accuracy comparable to RT-PCR. Given its simplicity, compactness, and PCR-like performance, SENA holds great potential in POC miRNA or ssDNA analysis.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 856-868"},"PeriodicalIF":4.1,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d5sd00057b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145248136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai-Yu Zheng, Jia-Wei Kuo, Cheng-Yan Yeh, Yang-Wei Lin and Chong-You Chen
Developing nanozyme-based sensors enables the upcycling of waste printed circuit boards (WPCBs) into functional sensing materials, offering both environmental sustainability and practical analytical capabilities. However, unlike natural enzymes with inherent target recognition, nanozymes often lack molecular selectivity, limiting their broader sensing applications. Moreover, developing waste-derived nanozymes with target recognition abilities presents considerable obstacles due to their uncontrolled and underexplored surface functionalities. In this study, we developed pyrophosphate (PPi)-responsive carbon nanozymes (CNZs) derived from WPCBs and investigated their intrinsic target-binding behavior. The peroxidase-mimicking CNZs were synthesized via simple carbonization of non-metallic fractions of WPCBs, followed by refluxing in alkaline solutions. Notably, the peroxidase-mimicking activity of CNZs was significantly suppressed by PPi, an important anionic biomarker in physiological processes and disease monitoring. Kinetic studies and comparative assays revealed the inhibition mechanism underlying the unique interaction between PPi and WPCB-derived CNZs. Upon the H2O2–CNZ complex formation, PPi subsequently interacts with the active carbonyl sites (CO) on the CNZ surface, resulting in target-responsive inhibition. Built upon this unique binding behavior, the CNZ-based system achieved highly sensitive and selective colorimetric PPi sensing with a detection limit of 8.7 nM, with negligible interference even from structurally similar phosphate analogs. This work not only demonstrates the feasibility of converting waste into functional enzyme mimics, but also highlights a strategy for achieving intrinsic molecular selectivity in nanozyme-based sensors without relying on external recognition elements.
{"title":"Deciphering target-binding selectivity of waste printed circuit board-derived carbon nanozymes for pyrophosphate sensing","authors":"Kai-Yu Zheng, Jia-Wei Kuo, Cheng-Yan Yeh, Yang-Wei Lin and Chong-You Chen","doi":"10.1039/D5SD00070J","DOIUrl":"https://doi.org/10.1039/D5SD00070J","url":null,"abstract":"<p >Developing nanozyme-based sensors enables the upcycling of waste printed circuit boards (WPCBs) into functional sensing materials, offering both environmental sustainability and practical analytical capabilities. However, unlike natural enzymes with inherent target recognition, nanozymes often lack molecular selectivity, limiting their broader sensing applications. Moreover, developing waste-derived nanozymes with target recognition abilities presents considerable obstacles due to their uncontrolled and underexplored surface functionalities. In this study, we developed pyrophosphate (PPi)-responsive carbon nanozymes (CNZs) derived from WPCBs and investigated their intrinsic target-binding behavior. The peroxidase-mimicking CNZs were synthesized <em>via</em> simple carbonization of non-metallic fractions of WPCBs, followed by refluxing in alkaline solutions. Notably, the peroxidase-mimicking activity of CNZs was significantly suppressed by PPi, an important anionic biomarker in physiological processes and disease monitoring. Kinetic studies and comparative assays revealed the inhibition mechanism underlying the unique interaction between PPi and WPCB-derived CNZs. Upon the H<small><sub>2</sub></small>O<small><sub>2</sub></small>–CNZ complex formation, PPi subsequently interacts with the active carbonyl sites (C<img>O) on the CNZ surface, resulting in target-responsive inhibition. Built upon this unique binding behavior, the CNZ-based system achieved highly sensitive and selective colorimetric PPi sensing with a detection limit of 8.7 nM, with negligible interference even from structurally similar phosphate analogs. This work not only demonstrates the feasibility of converting waste into functional enzyme mimics, but also highlights a strategy for achieving intrinsic molecular selectivity in nanozyme-based sensors without relying on external recognition elements.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 884-894"},"PeriodicalIF":4.1,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d5sd00070j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145248148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rate-limiting step in a recently reported glucose sensor strip incorporating a water-soluble quinone mediator with high enzyme reactivity was proposed to be substrate diffusion. This mechanism is expected to lead to sensors requiring smaller mediator amounts but possessing higher sensitivity and a wider measurement range than conventional sensor strips containing mediators with low enzyme reactivity. A general finite element method-based simulation model for mediator-type enzyme electrodes was employed in this study to obtain the concentration distribution profiles of this specific glucose sensor strip and clarify its action mechanism. The obtained profiles showed that the mediator forms a very thin diffusion layer on the electrode surface and that the diffusion layer of the substrate gradually covers the entire solution. The results of this study confirmed that the rate-limiting step of the glucose sensor strip is substrate diffusion.
{"title":"Insights into the performance-determining aspects of electrochemical biosensor strips by diffusion profile visualization using finite element method simulation","authors":"Isao Shitanda, Masaki Mizuno, Noya Loew, Hikari Watanabe, Masayuki Itagaki and Seiya Tsujimura","doi":"10.1039/D5SD00095E","DOIUrl":"https://doi.org/10.1039/D5SD00095E","url":null,"abstract":"<p >The rate-limiting step in a recently reported glucose sensor strip incorporating a water-soluble quinone mediator with high enzyme reactivity was proposed to be substrate diffusion. This mechanism is expected to lead to sensors requiring smaller mediator amounts but possessing higher sensitivity and a wider measurement range than conventional sensor strips containing mediators with low enzyme reactivity. A general finite element method-based simulation model for mediator-type enzyme electrodes was employed in this study to obtain the concentration distribution profiles of this specific glucose sensor strip and clarify its action mechanism. The obtained profiles showed that the mediator forms a very thin diffusion layer on the electrode surface and that the diffusion layer of the substrate gradually covers the entire solution. The results of this study confirmed that the rate-limiting step of the glucose sensor strip is substrate diffusion.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 839-845"},"PeriodicalIF":4.1,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d5sd00095e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145248134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Co(II) and Cr(III) salicylidene Schiff base-based complexes as novel ionophores were evaluated for the fabrication of bromide-selective electrodes. By incorporating a cation excluder along with various plasticizers (dibutyl phthalate, dioctyl phthalate, 1-chloronapthalene), optimized sensors (CoC7 and CrC7) exhibiting near-Nernstian slopes being 59.4 ± 0.07 and 59.2 ± 0.04 mV decade−1, with a broad linear range (1 × 10−2 to 6.0 × 10−7 and 1 × 10−2 to 8.7 × 10−7 mol L−1), with low detection limits (5.5 ± 0.13 × 10−7 and 6.5 ± 0.07 × 10−7 mol L−1) respectively, were successfully designed. Selectivity coefficient values of order 10−1 or less indicate that the proposed electrodes have superior selectivity for bromide ions over various interfering anions. The developed bromide electrodes demonstrated robust performance within a pH range of 4.0 to 9.0, as well as showing a sufficient shelf life (4 and 5 weeks) with up to 20% (v/v) non-aqueous tolerance and quick response times (12 and 16 s). These electrodes also served as indicator electrodes in the potentiometric titration of bromide ions against AgNO3 and were used in the determination of bromide ion concentration in water samples.
{"title":"Use of cobalt(ii) and chromium(iii) metal-based Schiff base complexes for the preparation of potentiometric sensors to determine bromide at ultra-low concentrations","authors":"Mohsin Ali, Kousar Jahan, Jitendra Singh, Ratnesh Kumar Singh, Sudhir Kumar Shoora, Xu Feng and Yanfeng Yue","doi":"10.1039/D5SD00088B","DOIUrl":"https://doi.org/10.1039/D5SD00088B","url":null,"abstract":"<p >Co(<small>II</small>) and Cr(<small>III</small>) salicylidene Schiff base-based complexes as novel ionophores were evaluated for the fabrication of bromide-selective electrodes. By incorporating a cation excluder along with various plasticizers (dibutyl phthalate, dioctyl phthalate, 1-chloronapthalene), optimized sensors (CoC7 and CrC7) exhibiting near-Nernstian slopes being 59.4 ± 0.07 and 59.2 ± 0.04 mV decade<small><sup>−1</sup></small>, with a broad linear range (1 × 10<small><sup>−2</sup></small> to 6.0 × 10<small><sup>−7</sup></small> and 1 × 10<small><sup>−2</sup></small> to 8.7 × 10<small><sup>−7</sup></small> mol L<small><sup>−1</sup></small>), with low detection limits (5.5 ± 0.13 × 10<small><sup>−7</sup></small> and 6.5 ± 0.07 × 10<small><sup>−7</sup></small> mol L<small><sup>−1</sup></small>) respectively, were successfully designed. Selectivity coefficient values of order 10<small><sup>−1</sup></small> or less indicate that the proposed electrodes have superior selectivity for bromide ions over various interfering anions. The developed bromide electrodes demonstrated robust performance within a pH range of 4.0 to 9.0, as well as showing a sufficient shelf life (4 and 5 weeks) with up to 20% (v/v) non-aqueous tolerance and quick response times (12 and 16 s). These electrodes also served as indicator electrodes in the potentiometric titration of bromide ions against AgNO<small><sub>3</sub></small> and were used in the determination of bromide ion concentration in water samples.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 11","pages":" 995-1005"},"PeriodicalIF":4.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d5sd00088b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145442786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}