Evan Reboli, Ajoke Williams, Ankan Biswas, Tianwei Jia, Ying Luo, Mukesh Kumar and Suri Iyer
Early and accurate detection of HIV-1 p24 antigen is crucial for timely diagnosis and treatment, particularly in resource-limited settings where traditional methods often lack the necessary sensitivity for early-stage detection or is expensive. Here, we developed a layer-by-layer signal amplification platform employing fluorescent silica nanoparticles functionalized via bioorthogonal TCO/TZ chemistry. We evaluated nanoparticles of different sizes (25, 50, and 100 nm) and two dye-doped nanoparticle formulations to optimize signal intensity, detection limits, and nonspecific binding. The 25 nm RITC-doped nanoparticles demonstrated superior performance, achieving an ultra-low detection limit of 7 fg mL−1 with a broad linear range up to 1 ng mL−1. Compared to FITC-doped nanoparticles, RITC-doped nanoparticles provided enhanced brightness and signal strength. Further optimization revealed that using 50 μg of 25 nm nanoparticles yielded the best sensitivity while minimizing nonspecific binding. This nanoparticle-based assay significantly outperformed commercial ELISA kits, offering a broad dynamic range and improved sensitivity. Our platform presents a highly sensitive and adaptable approach for HIV-1 p24 antigen detection, with broad potential applications in point-of-care diagnostics and detection of other low-abundance biomarkers, ultimately enhancing early disease detection and treatment accessibility.
{"title":"Comprehensive studies to improve ultrasensitive detection of HIV-1 p24 antigen†","authors":"Evan Reboli, Ajoke Williams, Ankan Biswas, Tianwei Jia, Ying Luo, Mukesh Kumar and Suri Iyer","doi":"10.1039/D5SD00011D","DOIUrl":"https://doi.org/10.1039/D5SD00011D","url":null,"abstract":"<p >Early and accurate detection of HIV-1 p24 antigen is crucial for timely diagnosis and treatment, particularly in resource-limited settings where traditional methods often lack the necessary sensitivity for early-stage detection or is expensive. Here, we developed a layer-by-layer signal amplification platform employing fluorescent silica nanoparticles functionalized <em>via</em> bioorthogonal TCO/TZ chemistry. We evaluated nanoparticles of different sizes (25, 50, and 100 nm) and two dye-doped nanoparticle formulations to optimize signal intensity, detection limits, and nonspecific binding. The 25 nm RITC-doped nanoparticles demonstrated superior performance, achieving an ultra-low detection limit of 7 fg mL<small><sup>−1</sup></small> with a broad linear range up to 1 ng mL<small><sup>−1</sup></small>. Compared to FITC-doped nanoparticles, RITC-doped nanoparticles provided enhanced brightness and signal strength. Further optimization revealed that using 50 μg of 25 nm nanoparticles yielded the best sensitivity while minimizing nonspecific binding. This nanoparticle-based assay significantly outperformed commercial ELISA kits, offering a broad dynamic range and improved sensitivity. Our platform presents a highly sensitive and adaptable approach for HIV-1 p24 antigen detection, with broad potential applications in point-of-care diagnostics and detection of other low-abundance biomarkers, ultimately enhancing early disease detection and treatment accessibility.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 7","pages":" 586-595"},"PeriodicalIF":3.5,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d5sd00011d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144589500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaping Zhang, Gao Si, Zhendong Wang, Yilong Wang, Xiaojing Cui, Huaixia Yang, Fuchun Si and Yanjiu Liu
The analysis of down-regulator of transcription 1 (DR1) offers significant information for the rapid and non-invasive diagnosis of Hashimoto's thyroiditis (HT). In this study, we report a novel dual-signal amplification electrochemical biosensor for the sensitive detection of DR1. Gold nanoparticle (AuNP)-modified molybdenum disulfide (MoS2@AuNPs), which has extremely strong electron transfer ability and abundant binding sites, is first modified on an electrode surface as a substrate material to implement the first signal amplification. After the formation of the sandwich structure based on the specific recognition of antigens and antibodies, the electroactive molecules hyaluronic acid-based thionine (HA@Thi) are introduced to achieve the second signal amplification. Using this dual-signal amplification strategy, the proposed biosensor achieves a linear range of 1 × 10−4–1 × 102 ng mL−1 with a low detection limit of 10.99 fg mL−1. In addition, the electrochemical biosensor has high selectivity and good stability, and is applicable to the assay of DR1 in the presence of complex biological matrices, which is expected to provide a scientific approach for the clinical application of serum DR1 monitoring. More importantly, our method may extend the application of protein-based biosensors in disease diagnosis techniques.
转录下调因子1 (DR1)的分析为桥本甲状腺炎(HT)的快速、无创诊断提供了重要信息。在这项研究中,我们报道了一种新的双信号放大电化学生物传感器,用于灵敏检测DR1。纳米金(AuNP)修饰的二硫化钼(MoS2@AuNPs)具有极强的电子转移能力和丰富的结合位点,首先修饰在电极表面作为衬底材料,实现第一次信号放大。在形成基于抗原和抗体特异性识别的三明治结构后,引入电活性分子透明质酸基硫氨酸(HA@Thi),实现第二次信号放大。利用这种双信号放大策略,所提出的生物传感器的线性范围为1 × 10−4-1 × 102 ng mL−1,低检测限为10.99 fg mL−1。此外,电化学生物传感器具有高选择性和良好的稳定性,适用于复杂生物基质下的DR1检测,有望为血清DR1监测的临床应用提供科学的方法。更重要的是,我们的方法可以扩展基于蛋白质的生物传感器在疾病诊断技术中的应用。
{"title":"Sensitive electrochemical detection of DR1 based on gold nanoparticle-modified MoS2 and hyaluronic acid-based thionine","authors":"Yaping Zhang, Gao Si, Zhendong Wang, Yilong Wang, Xiaojing Cui, Huaixia Yang, Fuchun Si and Yanjiu Liu","doi":"10.1039/D4SD00286E","DOIUrl":"https://doi.org/10.1039/D4SD00286E","url":null,"abstract":"<p >The analysis of down-regulator of transcription 1 (DR1) offers significant information for the rapid and non-invasive diagnosis of Hashimoto's thyroiditis (HT). In this study, we report a novel dual-signal amplification electrochemical biosensor for the sensitive detection of DR1. Gold nanoparticle (AuNP)-modified molybdenum disulfide (MoS<small><sub>2</sub></small>@AuNPs), which has extremely strong electron transfer ability and abundant binding sites, is first modified on an electrode surface as a substrate material to implement the first signal amplification. After the formation of the sandwich structure based on the specific recognition of antigens and antibodies, the electroactive molecules hyaluronic acid-based thionine (HA@Thi) are introduced to achieve the second signal amplification. Using this dual-signal amplification strategy, the proposed biosensor achieves a linear range of 1 × 10<small><sup>−4</sup></small>–1 × 10<small><sup>2</sup></small> ng mL<small><sup>−1</sup></small> with a low detection limit of 10.99 fg mL<small><sup>−1</sup></small>. In addition, the electrochemical biosensor has high selectivity and good stability, and is applicable to the assay of DR1 in the presence of complex biological matrices, which is expected to provide a scientific approach for the clinical application of serum DR1 monitoring. More importantly, our method may extend the application of protein-based biosensors in disease diagnosis techniques.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 6","pages":" 529-537"},"PeriodicalIF":3.5,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d4sd00286e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144273012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Poisoning of agricultural products through the use of pesticides has created a high risk to the environment and human health. In recent years, substantial research has been devoted to replacing harmful chemical pesticides with naturally derived organic compounds and the safer detection of pernicious pesticide residues by selective and sensitive methods using suitable sensor systems has also been given equal priority. Among various sensing methods that are currently available, fluorescence-based sensing has acquired widespread acceptance and become a feasible technique for the trace analysis of pesticide residues due to several practical advantages. In this review article, we provide a systematic overview of the recent progress made in using fluorescence-based chemosensing of different classes of pesticides and their success in real-world applications. Various fluorescence chemosensors highlighted in this article are categorized based on their sensing propensity for a particular class of pesticides. In the initial section of the article, we have highlighted a detailed discussion on the classification of pesticides, and various methods available for pesticide detection, and the later sections report various chemosensors reported to date for sensing different classes of pesticides. Finally, we put forward a short discussion on the advantages and existing practical difficulties in employing fluorescent chemosensors for pesticide detection and also state the future perspective of this field toward developing practically useful sensing systems.
{"title":"Recent progress in fluorescence-based chemosensing of pesticides","authors":"Giriraj Kalaiarasi, Ananthu Shanmughan, Yohaeswari Jegadeesan, Mannanthara Kunhumon Noushija, Alenthwar Vamshi Krishna, Harsha Gangadharan, Deivasigamani Umadevi and Sankarasekaran Shanmugaraju","doi":"10.1039/D4SD00364K","DOIUrl":"https://doi.org/10.1039/D4SD00364K","url":null,"abstract":"<p >Poisoning of agricultural products through the use of pesticides has created a high risk to the environment and human health. In recent years, substantial research has been devoted to replacing harmful chemical pesticides with naturally derived organic compounds and the safer detection of pernicious pesticide residues by selective and sensitive methods using suitable sensor systems has also been given equal priority. Among various sensing methods that are currently available, fluorescence-based sensing has acquired widespread acceptance and become a feasible technique for the trace analysis of pesticide residues due to several practical advantages. In this review article, we provide a systematic overview of the recent progress made in using fluorescence-based chemosensing of different classes of pesticides and their success in real-world applications. Various fluorescence chemosensors highlighted in this article are categorized based on their sensing propensity for a particular class of pesticides. In the initial section of the article, we have highlighted a detailed discussion on the classification of pesticides, and various methods available for pesticide detection, and the later sections report various chemosensors reported to date for sensing different classes of pesticides. Finally, we put forward a short discussion on the advantages and existing practical difficulties in employing fluorescent chemosensors for pesticide detection and also state the future perspective of this field toward developing practically useful sensing systems.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 6","pages":" 460-488"},"PeriodicalIF":3.5,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d4sd00364k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144273008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fahui Hu, Linjun Zhang, Weiqing Qiu, Jing Wang, Yonsheng Liu, Wanhe Wang and Jin-Biao Liu
Photodynamic therapy (PDT) represents an innovative and highly promising modality for tumor treatment, attracting considerable attention within the medical community. However, it still faces several challenges, including limited selectivity, inadequate tissue penetration of light, and suboptimal generation of reactive oxygen species (ROS). The utilization of probes, which are activated by nitroreductase (NTR) , an enzyme that is overexpressed in hypoxic tumor tissues, for imaging and PDT represents a compelling strategy for diagnosing and treating cancerous tumors. In this review, we summarize and discuss the current progress in NTR-responsive photosensitizers for cancer imaging and therapy. We also discuss current challenges and perspectives for NTR-activatable photosensitizers. We believe these probes offer promising modalities for precise cancer therapy.
{"title":"Recent advances in nitroreductase-activatable small molecule-based photosensitizers for precise cancer therapy","authors":"Fahui Hu, Linjun Zhang, Weiqing Qiu, Jing Wang, Yonsheng Liu, Wanhe Wang and Jin-Biao Liu","doi":"10.1039/D5SD00014A","DOIUrl":"https://doi.org/10.1039/D5SD00014A","url":null,"abstract":"<p >Photodynamic therapy (PDT) represents an innovative and highly promising modality for tumor treatment, attracting considerable attention within the medical community. However, it still faces several challenges, including limited selectivity, inadequate tissue penetration of light, and suboptimal generation of reactive oxygen species (ROS). The utilization of probes, which are activated by nitroreductase (NTR) , an enzyme that is overexpressed in hypoxic tumor tissues, for imaging and PDT represents a compelling strategy for diagnosing and treating cancerous tumors. In this review, we summarize and discuss the current progress in NTR-responsive photosensitizers for cancer imaging and therapy. We also discuss current challenges and perspectives for NTR-activatable photosensitizers. We believe these probes offer promising modalities for precise cancer therapy.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 6","pages":" 451-459"},"PeriodicalIF":3.5,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d5sd00014a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144273007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua Rainbow, Emily P. Judd-Cooper, Simon J. A. Pope, Niklaas J. Buurma and Pedro Estrela
This paper reports the development of a highly sensitive and rapid electrochemical biosensor for the detection of pathogen nucleic acids. The primary objective was to enhance the detection sensitivity of DNA biosensors for pathogen nucleic acids commonly found in fresh and wastewaters, the food industry, and clinical samples. This enhanced sensitivity was achieved through the addition of a [Co(GA)2(aqphen)]Cl intercalating complex to increase the electrostatic field at the sensor surface/solution interface. Voltammetric and impedance-based detection techniques were employed to characterize the intercalation and redox-active properties of the compound. Additionally, non-faradaic impedance and voltammetric methods were characterized as appropriate techniques for electrochemical detection. Implementing the [Co(GA)2(aqphen)]Cl intercalator led to increased voltammetric signal output using DPV, facilitating the rapid and sensitive detection of target DNA sequences. Notably, the [Co(GA)2(aqphen)]Cl permitted detection using non-faradaic impedance in the absence of [Fe(CN)6]3−/4−. Characterization by cyclic voltammetric measurements revealed a surface-controlled redox mechanism and reversible electrochemistry of the compound intercalated with double-stranded DNA (dsDNA). Upon binding of 1 μM target DNA and 200 μM [Co(GA)2(aqphen)]Cl, a 2250% current peak increase was achieved. This increase enabled the sensitive detection of a target DNA sequence representative of E. coli DNA in buffer with an LOD of 67.5 pM, 100-fold more sensitive than the standard unlabeled assay while maintaining assay simplicity, low cost, and quick response. The use of [Co(GA)2(aqphen)]Cl among similar compounds in DNA biosensors offers a cost-effective and sensitive method for detecting waterborne pathogens such as E. coli. This approach could significantly improve environmental monitoring and pollution control by enabling more reliable and rapid monitoring of pathogens in water sources. Additionally, it has the potential to be of great use within the food industry and in point-of-care clinical settings.
{"title":"Electrochemical signal amplification for pathogen nucleic acid detection utilizing a cobalt-based DNA-binding metallo-intercalator†","authors":"Joshua Rainbow, Emily P. Judd-Cooper, Simon J. A. Pope, Niklaas J. Buurma and Pedro Estrela","doi":"10.1039/D4SD00322E","DOIUrl":"https://doi.org/10.1039/D4SD00322E","url":null,"abstract":"<p >This paper reports the development of a highly sensitive and rapid electrochemical biosensor for the detection of pathogen nucleic acids. The primary objective was to enhance the detection sensitivity of DNA biosensors for pathogen nucleic acids commonly found in fresh and wastewaters, the food industry, and clinical samples. This enhanced sensitivity was achieved through the addition of a [Co(GA)<small><sub>2</sub></small>(aqphen)]Cl intercalating complex to increase the electrostatic field at the sensor surface/solution interface. Voltammetric and impedance-based detection techniques were employed to characterize the intercalation and redox-active properties of the compound. Additionally, non-faradaic impedance and voltammetric methods were characterized as appropriate techniques for electrochemical detection. Implementing the [Co(GA)<small><sub>2</sub></small>(aqphen)]Cl intercalator led to increased voltammetric signal output using DPV, facilitating the rapid and sensitive detection of target DNA sequences. Notably, the [Co(GA)<small><sub>2</sub></small>(aqphen)]Cl permitted detection using non-faradaic impedance in the absence of [Fe(CN)<small><sub>6</sub></small>]<small><sup>3−/4−</sup></small>. Characterization by cyclic voltammetric measurements revealed a surface-controlled redox mechanism and reversible electrochemistry of the compound intercalated with double-stranded DNA (dsDNA). Upon binding of 1 μM target DNA and 200 μM [Co(GA)<small><sub>2</sub></small>(aqphen)]Cl, a 2250% current peak increase was achieved. This increase enabled the sensitive detection of a target DNA sequence representative of <em>E. coli</em> DNA in buffer with an LOD of 67.5 pM, 100-fold more sensitive than the standard unlabeled assay while maintaining assay simplicity, low cost, and quick response. The use of [Co(GA)<small><sub>2</sub></small>(aqphen)]Cl among similar compounds in DNA biosensors offers a cost-effective and sensitive method for detecting waterborne pathogens such as <em>E. coli</em>. This approach could significantly improve environmental monitoring and pollution control by enabling more reliable and rapid monitoring of pathogens in water sources. Additionally, it has the potential to be of great use within the food industry and in point-of-care clinical settings.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 6","pages":" 519-528"},"PeriodicalIF":3.5,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d4sd00322e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144273011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maede Chabi, Binh Vu, Kristen Brosamer, Sophia Song, Vijay Maranholkar, Zihua Zeng, Youli Zu, Rashmi Kanagal-Shamanna, Jacinta C. Conrad, Richard C. Willson and Katerina Kourentzi
Due to the slow progression of most cancers, speed of diagnosis is not of primary concern. However, the diagnosis of acute promyelocytic leukemia (APL) is unusually urgent because its hemorrhagic complications can result in death within a few days. APL is highly treatable, but the turnaround time for standard molecular testing often exceeds the window for life-saving treatment, even in advanced medical centers. The hallmark of APL is the fusion of the PML and RARα genes (t(15;17)) resulting in the expression of a growth-promoting PML–RARα fusion protein. Toward timely screening for APL, we have developed a sensitive europium-based lateral flow immunoassay for direct detection of nuclear PML–RARα fusion oncoprotein. We demonstrated a limit of detection of 11% fusion protein positive NB4 cells spiked into healthy peripheral blood mononuclear cells and an integrated filter-based sample preparation workflow showcasing its potential for clinically actionable utility in prompt APL screening. With further validation with clinical human samples this lateral flow immunoassay has the potential to enable fusion-protein based cancer diagnostics at true point-of-care.
{"title":"Lateral flow assay-based detection of nuclear fusion oncoprotein: implications for screening of acute promyelocytic leukemia†","authors":"Maede Chabi, Binh Vu, Kristen Brosamer, Sophia Song, Vijay Maranholkar, Zihua Zeng, Youli Zu, Rashmi Kanagal-Shamanna, Jacinta C. Conrad, Richard C. Willson and Katerina Kourentzi","doi":"10.1039/D4SD00357H","DOIUrl":"10.1039/D4SD00357H","url":null,"abstract":"<p >Due to the slow progression of most cancers, speed of diagnosis is not of primary concern. However, the diagnosis of acute promyelocytic leukemia (APL) is unusually urgent because its hemorrhagic complications can result in death within a few days. APL is highly treatable, but the turnaround time for standard molecular testing often exceeds the window for life-saving treatment, even in advanced medical centers. The hallmark of APL is the fusion of the PML and RARα genes (t(15;17)) resulting in the expression of a growth-promoting PML–RARα fusion protein. Toward timely screening for APL, we have developed a sensitive europium-based lateral flow immunoassay for direct detection of nuclear PML–RARα fusion oncoprotein. We demonstrated a limit of detection of 11% fusion protein positive NB4 cells spiked into healthy peripheral blood mononuclear cells and an integrated filter-based sample preparation workflow showcasing its potential for clinically actionable utility in prompt APL screening. With further validation with clinical human samples this lateral flow immunoassay has the potential to enable fusion-protein based cancer diagnostics at true point-of-care.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 5","pages":" 416-424"},"PeriodicalIF":3.5,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938210/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143756311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conventional diagnosis for male-factor infertility primarily comprises standard microscopic semen analysis, including sperm count or concentration, motility, and morphology of sperm. Unfortunately, this standard analysis offers limited predictive value for pregnancy or the success of assisted reproduction treatments. There is an urgent need for diagnostic tools that effectively probe sperm function. This study discloses a novel diagnostic tool, JUNO-Checked, comprising an electrochemical biosensor for sperm function inspired by the molecular mechanisms of fertilization, utilizing immobilized JUNO protein of oocyte origin. We show that the JUNO-Checked biosensor can quantify sperm binding to the JUNO functionalized biosensor, represented here as the JUNOScore. This score provides a unique insight into sperm function that is inaccessible through standard microscopic semen analysis. Our results underscore the novelty and potential utility of the JUNO-Checked biosensor in clinical settings for diagnostics and personalized assisted reproduction treatments.
{"title":"JUNO-Checked – a live cell electrochemical biosensor for sperm function diagnostics†","authors":"Kushagr Punyani, Ingela Liljeqvist Soltic, Maria Liljander, Panchami Pradeepkumar, Carolin Psota, Frida Lundbland, Tore Duvold, Donogh FitzGerald, Jaime Castillo-León and Jae Shin","doi":"10.1039/D5SD00009B","DOIUrl":"https://doi.org/10.1039/D5SD00009B","url":null,"abstract":"<p >Conventional diagnosis for male-factor infertility primarily comprises standard microscopic semen analysis, including sperm count or concentration, motility, and morphology of sperm. Unfortunately, this standard analysis offers limited predictive value for pregnancy or the success of assisted reproduction treatments. There is an urgent need for diagnostic tools that effectively probe sperm function. This study discloses a novel diagnostic tool, JUNO-<em>Checked</em>, comprising an electrochemical biosensor for sperm function inspired by the molecular mechanisms of fertilization, utilizing immobilized JUNO protein of oocyte origin. We show that the JUNO-<em>Checked</em> biosensor can quantify sperm binding to the JUNO functionalized biosensor, represented here as the JUNO<em>Score</em>. This score provides a unique insight into sperm function that is inaccessible through standard microscopic semen analysis. Our results underscore the novelty and potential utility of the JUNO-<em>Checked</em> biosensor in clinical settings for diagnostics and personalized assisted reproduction treatments.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 7","pages":" 579-585"},"PeriodicalIF":3.5,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d5sd00009b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144589483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mizuki Tomizawa, Kiwako Watanabe, Kaori Tsukakoshi and Kazunori Ikebukuro
A method for detecting CpG methylation is required in clinical settings because CpG methylation is associated with various diseases. CpG methylation leads to structural changes in single-stranded DNA and also changes the stability of double-stranded DNA. We hypothesized that the amplification efficiency of DNA polymerase, with its strand displacement ability, might be altered by CpG methylation. We chose loop-mediated isothermal amplification (LAMP), which uses strand displacement DNA synthesis, for its validation. The LAMP products from the synthetic DNA of the upstream region of the dopamine receptor D2 (DRD2) and the androgen receptor (AR) promoter region were detected by turbidity and fluorescence intensity measurements. The methylated synthetic DNA was amplified more slowly than the unmethylated synthetic DNA. The LAMP products from the human genomic DNA were detected by fluorescence intensity measurement and electrophoresis. The highly methylated genomic DNA was amplified slower than the less methylated genomic DNA in the AR promoter region. CpG methylation detection through differences in the amplification efficiency of LAMP reaction may be used for a rapid and easy detection method of CpG methylation.
{"title":"Detection of CpG methylation based on the change in amplification efficiency of strand-displacement DNA polymerase by CpG methylation†","authors":"Mizuki Tomizawa, Kiwako Watanabe, Kaori Tsukakoshi and Kazunori Ikebukuro","doi":"10.1039/D5SD00012B","DOIUrl":"https://doi.org/10.1039/D5SD00012B","url":null,"abstract":"<p >A method for detecting CpG methylation is required in clinical settings because CpG methylation is associated with various diseases. CpG methylation leads to structural changes in single-stranded DNA and also changes the stability of double-stranded DNA. We hypothesized that the amplification efficiency of DNA polymerase, with its strand displacement ability, might be altered by CpG methylation. We chose loop-mediated isothermal amplification (LAMP), which uses strand displacement DNA synthesis, for its validation. The LAMP products from the synthetic DNA of the upstream region of the dopamine receptor D2 (<em>DRD2</em>) and the androgen receptor (<em>AR</em>) promoter region were detected by turbidity and fluorescence intensity measurements. The methylated synthetic DNA was amplified more slowly than the unmethylated synthetic DNA. The LAMP products from the human genomic DNA were detected by fluorescence intensity measurement and electrophoresis. The highly methylated genomic DNA was amplified slower than the less methylated genomic DNA in the <em>AR</em> promoter region. CpG methylation detection through differences in the amplification efficiency of LAMP reaction may be used for a rapid and easy detection method of CpG methylation.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 5","pages":" 397-406"},"PeriodicalIF":3.5,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d5sd00012b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144073549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Supreeth Setty, Heeyeong Jang, Jungyoup Han, Joo Youn Park, Nogi Park, Keun Seok Seo and Chong Ahn
Recently, there has been a growing demand for the development of lab-on-a-chip (LOC) platforms with new assays and detection protocols for point-of-care-test (POCT) applications. So far, chemiluminescence (CL) detection-based immunoassays have shown promising performance for the high-sensitive POCT, but they require automated machines or multiple manual steps to perform the CL-based assay. In this work, a fully automated CL-based immunoassay was developed using a new sequential dual flow LOC with on-chip lyophilized CL substrate, and then a highly specific and sensitive immunoassay using a pair of single chain variable fragment (scFv) capture and detection antibodies was successfully performed. The concept of sequential and automatic control of dual flows, which was strongly desired for ensuring that the reconstituted detection antibody conjugated with horseradish peroxidase flowed first through the reaction zones and then the reconstituted CL substrate flowed, was newly developed and implemented on the LOC. In addition, a new one-component CL substrate in liquid format was introduced and lyophilized for the on-chip lyophilized substrate, developing a new lyophilization process. To evaluate the assay performance on the developed new LOC platform, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was chosen as a demonstration vehicle. The nucleocapsid (N) protein of SARS-CoV-2 was analyzed using the custom-developed scFv antibody pair from a phage display library system, which showed a better limit of detection (LoD) over the commercially available rapid diagnostic test (RDT) kits for detecting SARS-CoV-2. Finally, a portable reader for reading the CL signal from the CL-based microchannel lateral flow assay (CL-mLFA) was developed and used for evaluating the performance of the SARS-CoV-2 assay on the developed LOC platform. An LoD of approximately 1.6 ng mL−1 was achieved, which was acceptable for the early diagnosis of SARS-CoV-2 infection. The new CL-mLFA platform developed in this work, adopting the sequential dual flow LOC and the lyophilized one-component CL substrate, can be applied to other high-sensitive immunoassays in POCT for diagnosing various chronic or infectious diseases.
最近,对芯片实验室(LOC)平台的开发需求不断增长,该平台具有用于护理点测试(POCT)应用的新分析和检测协议。到目前为止,基于化学发光(CL)检测的免疫分析显示出高灵敏度POCT的良好性能,但它们需要自动化机器或多个手动步骤来执行基于CL的分析。在这项工作中,开发了一种全自动的基于CL的免疫分析方法,使用一种新的序列双流LOC和片上冻干CL底物,然后使用一对单链可变片段(scFv)捕获和检测抗体成功地进行了高度特异性和敏感性的免疫分析。为了确保重组的辣根过氧化物酶偶联检测抗体首先通过反应区,然后重组的CL底物流动,迫切需要双流顺序和自动控制的概念,在LOC上得到了新发展和实施。此外,还介绍了一种新的液态单组分CL基板,并对片上冻干基板进行了冻干,开发了一种新的冻干工艺。为评价在开发的新型LOC平台上的检测性能,选择了严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)作为示范载体。采用噬菌体展示库系统定制的scFv抗体对对SARS-CoV-2的核衣壳(N)蛋白进行分析,该抗体对的检测限(LoD)优于市售的SARS-CoV-2快速诊断试验(RDT)试剂盒。最后,开发了一种便携式读取器,用于读取基于CL的微通道横向流动检测(CL- mlfa)的CL信号,并用于评估开发的LOC平台上SARS-CoV-2检测的性能。LoD约为1.6 ng mL−1,可用于SARS-CoV-2感染的早期诊断。本研究开发的新型CL- mlfa平台采用序贯双流LOC和冻干单组分CL底物,可应用于POCT中其他高灵敏度的免疫检测,用于诊断各种慢性或感染性疾病。
{"title":"A new sequential dual flow lab-on-a-chip with a lyophilized one-component chemiluminescence substrate for high-sensitive microchannel lateral flow assay (mLFA)","authors":"Supreeth Setty, Heeyeong Jang, Jungyoup Han, Joo Youn Park, Nogi Park, Keun Seok Seo and Chong Ahn","doi":"10.1039/D4SD00352G","DOIUrl":"https://doi.org/10.1039/D4SD00352G","url":null,"abstract":"<p >Recently, there has been a growing demand for the development of lab-on-a-chip (LOC) platforms with new assays and detection protocols for point-of-care-test (POCT) applications. So far, chemiluminescence (CL) detection-based immunoassays have shown promising performance for the high-sensitive POCT, but they require automated machines or multiple manual steps to perform the CL-based assay. In this work, a fully automated CL-based immunoassay was developed using a new sequential dual flow LOC with on-chip lyophilized CL substrate, and then a highly specific and sensitive immunoassay using a pair of single chain variable fragment (scFv) capture and detection antibodies was successfully performed. The concept of sequential and automatic control of dual flows, which was strongly desired for ensuring that the reconstituted detection antibody conjugated with horseradish peroxidase flowed first through the reaction zones and then the reconstituted CL substrate flowed, was newly developed and implemented on the LOC. In addition, a new one-component CL substrate in liquid format was introduced and lyophilized for the on-chip lyophilized substrate, developing a new lyophilization process. To evaluate the assay performance on the developed new LOC platform, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was chosen as a demonstration vehicle. The nucleocapsid (N) protein of SARS-CoV-2 was analyzed using the custom-developed scFv antibody pair from a phage display library system, which showed a better limit of detection (LoD) over the commercially available rapid diagnostic test (RDT) kits for detecting SARS-CoV-2. Finally, a portable reader for reading the CL signal from the CL-based microchannel lateral flow assay (CL-mLFA) was developed and used for evaluating the performance of the SARS-CoV-2 assay on the developed LOC platform. An LoD of approximately 1.6 ng mL<small><sup>−1</sup></small> was achieved, which was acceptable for the early diagnosis of SARS-CoV-2 infection. The new CL-mLFA platform developed in this work, adopting the sequential dual flow LOC and the lyophilized one-component CL substrate, can be applied to other high-sensitive immunoassays in POCT for diagnosing various chronic or infectious diseases.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 4","pages":" 320-335"},"PeriodicalIF":3.5,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d4sd00352g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevin Alexander Janus, Madita Zach, Stefan Achtsnicht, Aleksander Drinic, Alexander Kopp, Michael Keusgen and Michael Josef Schöning
In this work, different surface treatment and modification procedures (KCl, Na2CO3, H2O2, O2 plasma, multi-walled carbon nanotubes (MWCNTs)) are applied to a screen-printed carbon-based electrode on bioabsorbable silk-fibroin, aiming to reduce the applied working potential in operation. The screen-printed carbon electrode houses the enzyme glucose oxidase for glucose monitoring, and is encapsulated by the biocompatible material Ecoflex. The working electrode is characterized amperometrically at different working potentials (0.6 to 1.2 V vs. the Ag/AgCl reference electrode) at physiological glucose concentrations ranging from 0.5 to 10 mM. The surface morphology of the electrode is analyzed utilizing scanning electron microscopy and contact angle measurements. Addition of 2 wt% MWCNTs to the carbon screen-printing paste allowed the reduction of the applied working potential from 1.2 to 0.8 V, resulting in a mean glucose sensitivity of 2.5 ± 0.6 μA cm−2 mM−1. Moreover, the bioabsorbability (i.e., the degradation behavior) of the different surface-treated carbon electrodes on silk-fibroin is studied over several months using the enzyme protease XIV from Streptomyces griseus.
本研究将不同的表面处理和修饰工艺(KCl、Na2CO3、H2O2、O2等离子体、多壁碳纳米管(MWCNTs))应用于生物可吸收丝素丝网印刷碳基电极上,旨在降低其运行中的应用工作电位。丝网印刷的碳电极容纳葡萄糖氧化酶用于葡萄糖监测,并由生物相容性材料Ecoflex封装。在生理葡萄糖浓度范围为0.5至10 mM时,对工作电极在不同工作电位(0.6至1.2 V vs. Ag/AgCl参比电极)下的安培特性进行了表征。利用扫描电子显微镜和接触角测量分析了电极的表面形貌。在碳丝网印刷浆料中加入2wt %的MWCNTs,使所施加的工作电位从1.2 V降低到0.8 V,导致平均葡萄糖敏感性为2.5±0.6 μA cm−2 mM−1。此外,使用来自灰色链霉菌的蛋白酶XIV,在几个月的时间里研究了不同表面处理的碳电极在丝素蛋白上的生物吸收性(即降解行为)。
{"title":"Modification of a bioabsorbable carbon electrode on silk-fibroin carriers: setting the composition and adjustment of the working potential†","authors":"Kevin Alexander Janus, Madita Zach, Stefan Achtsnicht, Aleksander Drinic, Alexander Kopp, Michael Keusgen and Michael Josef Schöning","doi":"10.1039/D4SD00371C","DOIUrl":"https://doi.org/10.1039/D4SD00371C","url":null,"abstract":"<p >In this work, different surface treatment and modification procedures (KCl, Na<small><sub>2</sub></small>CO<small><sub>3</sub></small>, H<small><sub>2</sub></small>O<small><sub>2</sub></small>, O<small><sub>2</sub></small> plasma, multi-walled carbon nanotubes (MWCNTs)) are applied to a screen-printed carbon-based electrode on bioabsorbable silk-fibroin, aiming to reduce the applied working potential in operation. The screen-printed carbon electrode houses the enzyme glucose oxidase for glucose monitoring, and is encapsulated by the biocompatible material Ecoflex. The working electrode is characterized amperometrically at different working potentials (0.6 to 1.2 V <em>vs.</em> the Ag/AgCl reference electrode) at physiological glucose concentrations ranging from 0.5 to 10 mM. The surface morphology of the electrode is analyzed utilizing scanning electron microscopy and contact angle measurements. Addition of 2 wt% MWCNTs to the carbon screen-printing paste allowed the reduction of the applied working potential from 1.2 to 0.8 V, resulting in a mean glucose sensitivity of 2.5 ± 0.6 μA cm<small><sup>−2</sup></small> mM<small><sup>−1</sup></small>. Moreover, the bioabsorbability (<em>i.e.</em>, the degradation behavior) of the different surface-treated carbon electrodes on silk-fibroin is studied over several months using the enzyme protease XIV from <em>Streptomyces griseus</em>.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 4","pages":" 353-362"},"PeriodicalIF":3.5,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d4sd00371c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}