The development of rapid and accurate pathogen detection methods is of paramount importance for slowing the evolution of antibiotic resistance in bacteria. However, the high similarity between different pathogens, especially between antibiotic-sensitive and antibiotic-resistant strains of the same species, presents great challenges for the precise discrimination of pathogens. In recent years, chemical nose strategies, i.e. sensor arrays, have achieved certain success in pathogen discrimination. Currently, chemical nose strategies for identifying pathogens are mainly designed from two perspectives: the disparity in extrinsic properties (biomolecules, charge, and hydrophobicity of the bacterial surface) and intrinsic properties (processes and products mediated by bacterial enzymes) among different pathogens. Biosensing probes capable of responding to these properties are introduced for pathogen detection. The output signals are then processed and analyzed by machine learning algorithms to visualize the multidimensional detection results and achieve pathogen discrimination. This paper introduces the latest developments in sensor arrays for pathogen identification based on the extrinsic and intrinsic nature of bacteria, highlights the recognition mechanism of probes for bacteria, and outlines the current challenges and prospects of sensor arrays for pathogen discrimination.
{"title":"Recent advances in sensor arrays aided by machine learning for pathogen identification","authors":"Xin Wang, Ting Yang and Jian-Hua Wang","doi":"10.1039/D4SD00229F","DOIUrl":"10.1039/D4SD00229F","url":null,"abstract":"<p >The development of rapid and accurate pathogen detection methods is of paramount importance for slowing the evolution of antibiotic resistance in bacteria. However, the high similarity between different pathogens, especially between antibiotic-sensitive and antibiotic-resistant strains of the same species, presents great challenges for the precise discrimination of pathogens. In recent years, chemical nose strategies, <em>i.e.</em> sensor arrays, have achieved certain success in pathogen discrimination. Currently, chemical nose strategies for identifying pathogens are mainly designed from two perspectives: the disparity in extrinsic properties (biomolecules, charge, and hydrophobicity of the bacterial surface) and intrinsic properties (processes and products mediated by bacterial enzymes) among different pathogens. Biosensing probes capable of responding to these properties are introduced for pathogen detection. The output signals are then processed and analyzed by machine learning algorithms to visualize the multidimensional detection results and achieve pathogen discrimination. This paper introduces the latest developments in sensor arrays for pathogen identification based on the extrinsic and intrinsic nature of bacteria, highlights the recognition mechanism of probes for bacteria, and outlines the current challenges and prospects of sensor arrays for pathogen discrimination.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1590-1612"},"PeriodicalIF":3.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00229f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lu Liu, Sheng Li, Wendan Luo, Jiashuang Yao, Taihong Liu, Molin Qin, Zhiyan Huang, Liping Ding and Yu Fang
Development of fluorescence indicators for efficient and accurate detection of lethal nerve agents has evoked extensive interest recently. Herein, we presented two spiranic 4,4-diaryloxy-BODIPY derivatives for efficient and fluorescence turn-on detection of sarin in solution media. A colorimetric mode featured the merits of obvious color changes from dark to greenish fluorescence under UV light. The generated new fluorescence emissions reached their maxima within several minutes and the peaks were assigned to the generated by-product oxo-BDP with a fluorescence quantum yield (ΦF) ∼ 20% in acetonitrile. The detection limits of two 4,4-diaryloxy-BODIPYs for a simulant diethylchlorophosphate (DCP) were determined to be 13.2 nM and 8.2 nM, respectively. The underlying sensing mechanism was clarified as the synergistic effect of 4,4-bond cleaving and fluorescence turn-on related to the photoinduced electron transfer process. Furthermore, a compact tubular sensor and a sensing platform prototype were fabricated properly. Superior detection results and further evaluation for real samples and simulants could be conducted at the sub-mM level on-site. Successful trials aid in understanding the structure–function relationship of 4,4-disubstituted BODIPY chromophores as well as the future development of a miniaturized device prototype for on-site detection of chemical warfare agents.
{"title":"Compact device prototype for turn-on fluorescence detection of sarin based on reactive 4,4-diaryloxy-BODIPY derivatives†","authors":"Lu Liu, Sheng Li, Wendan Luo, Jiashuang Yao, Taihong Liu, Molin Qin, Zhiyan Huang, Liping Ding and Yu Fang","doi":"10.1039/D4SD00228H","DOIUrl":"10.1039/D4SD00228H","url":null,"abstract":"<p >Development of fluorescence indicators for efficient and accurate detection of lethal nerve agents has evoked extensive interest recently. Herein, we presented two spiranic 4,4-diaryloxy-BODIPY derivatives for efficient and fluorescence turn-on detection of sarin in solution media. A colorimetric mode featured the merits of obvious color changes from dark to greenish fluorescence under UV light. The generated new fluorescence emissions reached their maxima within several minutes and the peaks were assigned to the generated by-product oxo-BDP with a fluorescence quantum yield (<em>Φ</em><small><sub>F</sub></small>) ∼ 20% in acetonitrile. The detection limits of two 4,4-diaryloxy-BODIPYs for a simulant diethylchlorophosphate (DCP) were determined to be 13.2 nM and 8.2 nM, respectively. The underlying sensing mechanism was clarified as the synergistic effect of 4,4-bond cleaving and fluorescence turn-on related to the photoinduced electron transfer process. Furthermore, a compact tubular sensor and a sensing platform prototype were fabricated properly. Superior detection results and further evaluation for real samples and simulants could be conducted at the sub-mM level on-site. Successful trials aid in understanding the structure–function relationship of 4,4-disubstituted BODIPY chromophores as well as the future development of a miniaturized device prototype for on-site detection of chemical warfare agents.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1651-1658"},"PeriodicalIF":3.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00228h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We would like to take this opportunity to thank all of Sensors & Diagnostics's reviewers for helping to preserve quality and integrity in chemical science literature. We would also like to highlight the Outstanding Reviewers for Sensors & Diagnostics in 2023.
{"title":"Outstanding Reviewers for Sensors & Diagnostics in 2023","authors":"","doi":"10.1039/D4SD90030H","DOIUrl":"10.1039/D4SD90030H","url":null,"abstract":"<p >We would like to take this opportunity to thank all of <em>Sensors & Diagnostics</em>'s reviewers for helping to preserve quality and integrity in chemical science literature. We would also like to highlight the Outstanding Reviewers for <em>Sensors & Diagnostics</em> in 2023.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1589-1589"},"PeriodicalIF":3.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd90030h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoshuang Chen, Xiaohui Yan, Jiaoyan Qiu, Xue Zhang, Yunhong Zhang, Hongpeng Zhou, Yujuan Zhao, Lin Han and Yu Zhang
In this study, we developed a novel electrochemical sensing chip integrated with reduced graphene oxide (rGO) with laser-induced graphene (LIG) for the detection of exosomes associated with breast cancer biomarkers. Employing laser-induced technology, a three-dimensional porous graphene material is fabricated on the surface of a flexible polyimide film, which is subsequently combined with rGO through π–π stacking. This integration facilitates the doping of two-dimensional and three-dimensional material (2D/3D) structures, significantly enhancing the conductivity of the electrode material. Additionally, this approach markedly improves the surface hydrophobicity and biomolecule affinity of LIG, optimizing the immobilization of specific antibodies for exosomes. Importantly, this experiment marks the first occasion of merging two-dimensional rGO with three-dimensional LIG, resulting in the construction of a high-performance biosensing chip that enables specific capture and highly sensitive detection of exosomes. Under optimized conditions, the quantitative detection range for exosomes is established at 5 × 102 to 5 × 105 particles per μL, with a limit of detection (LOD) of 166 particles per μL. The biosensor is successfully used to analyze exosomes in breast cancer cell lines and patient serum samples, proving its practical application. This electrochemical biosensing chip offers significant practical application value in the early screening and diagnosis of diseases.
在这项研究中,我们开发了一种集成了还原氧化石墨烯(rGO)和激光诱导石墨烯(LIG)的新型电化学传感芯片,用于检测与乳腺癌生物标志物相关的外泌体。利用激光诱导技术,在柔性聚酰亚胺薄膜表面制造出三维多孔石墨烯材料,随后通过π-π堆叠将其与还原型氧化石墨烯结合在一起。这种整合方式有助于掺杂二维和三维材料(2D/3D)结构,从而显著提高电极材料的导电性。此外,这种方法还明显改善了 LIG 的表面疏水性和生物大分子亲和性,优化了外泌体特异性抗体的固定。重要的是,该实验首次将二维 rGO 与三维 LIG 相结合,从而构建了一种高性能生物传感芯片,可实现外泌体的特异性捕获和高灵敏度检测。在优化条件下,外泌体的定量检测范围为每微升 5 × 102 至 5 × 105 个颗粒,检测限(LOD)为每微升 166 个颗粒。该生物传感器成功用于分析乳腺癌细胞系和患者血清样本中的外泌体,证明了它的实际应用价值。这种电化学生物传感芯片在疾病的早期筛查和诊断方面具有重要的实际应用价值。
{"title":"An rGO-doped laser induced graphene electrochemical biosensor for highly sensitive exosome detection","authors":"Xiaoshuang Chen, Xiaohui Yan, Jiaoyan Qiu, Xue Zhang, Yunhong Zhang, Hongpeng Zhou, Yujuan Zhao, Lin Han and Yu Zhang","doi":"10.1039/D4SD00181H","DOIUrl":"10.1039/D4SD00181H","url":null,"abstract":"<p >In this study, we developed a novel electrochemical sensing chip integrated with reduced graphene oxide (rGO) with laser-induced graphene (LIG) for the detection of exosomes associated with breast cancer biomarkers. Employing laser-induced technology, a three-dimensional porous graphene material is fabricated on the surface of a flexible polyimide film, which is subsequently combined with rGO through π–π stacking. This integration facilitates the doping of two-dimensional and three-dimensional material (2D/3D) structures, significantly enhancing the conductivity of the electrode material. Additionally, this approach markedly improves the surface hydrophobicity and biomolecule affinity of LIG, optimizing the immobilization of specific antibodies for exosomes. Importantly, this experiment marks the first occasion of merging two-dimensional rGO with three-dimensional LIG, resulting in the construction of a high-performance biosensing chip that enables specific capture and highly sensitive detection of exosomes. Under optimized conditions, the quantitative detection range for exosomes is established at 5 × 10<small><sup>2</sup></small> to 5 × 10<small><sup>5</sup></small> particles per μL, with a limit of detection (LOD) of 166 particles per μL. The biosensor is successfully used to analyze exosomes in breast cancer cell lines and patient serum samples, proving its practical application. This electrochemical biosensing chip offers significant practical application value in the early screening and diagnosis of diseases.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1724-1732"},"PeriodicalIF":3.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00181h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Hossein Ghanbari, Markus Biesalski, Oliver Friedrich and Bastian J. M. Etzold
Microfluidic electrochemical sensors (μCS) can be portable, highly sensitive, and low-cost but are less frequently studied nor applied. Additionally, simultaneous electro-deposition of gold nanoparticles (ED (AuNPs)) and electro-polymerization of L-cysteine (EP (L-cys)) are introduced for the first time for modifying the surface of the working electrode through a paper-based microfluidic sensor. This study depicts that by employing such modification, the electrochemically active surface area (ECSA) and the electron transfer rate are increased together and result in improved sensitivity. The modified μCS is depicted to enable sensitive voltametric determination of, e.g., clozapine (CLZ), an anti-psychotic drug to treat schizophrenia. The proposed sensor was characterized by different techniques, and several key parameters were optimized. Under the optimum conditions and using square-wave voltametry (SWV), a linear dose–response for a concentration range from 0.5 to 10.0 μM of CLZ was achieved. The limit of detection and sensitivity resulted in 70.0 nM and 0.045 mA cm−2 μM−1, respectively. Besides, this excellent sensitivity combines with high stability, which was tested for six repetitive measurements with a single device resulting in high reproducibility. Additionally, this procedure was validated with measurements of clozapine in human blood plasma, which demonstrated the excellent applicability of the device, rendering it a promising platform for point-of-care diagnostics and environmental monitoring.
{"title":"Clozapine sensing through paper-based microfluidic sensors directly modified via electro-deposition and electro-polymerization†","authors":"Mohammad Hossein Ghanbari, Markus Biesalski, Oliver Friedrich and Bastian J. M. Etzold","doi":"10.1039/D4SD00252K","DOIUrl":"10.1039/D4SD00252K","url":null,"abstract":"<p >Microfluidic electrochemical sensors (μCS) can be portable, highly sensitive, and low-cost but are less frequently studied nor applied. Additionally, simultaneous electro-deposition of gold nanoparticles (ED (AuNPs)) and electro-polymerization of <small>L</small>-cysteine (EP (<small>L</small>-cys)) are introduced for the first time for modifying the surface of the working electrode through a paper-based microfluidic sensor. This study depicts that by employing such modification, the electrochemically active surface area (ECSA) and the electron transfer rate are increased together and result in improved sensitivity. The modified μCS is depicted to enable sensitive voltametric determination of, <em>e.g.</em>, clozapine (CLZ), an anti-psychotic drug to treat schizophrenia. The proposed sensor was characterized by different techniques, and several key parameters were optimized. Under the optimum conditions and using square-wave voltametry (SWV), a linear dose–response for a concentration range from 0.5 to 10.0 μM of CLZ was achieved. The limit of detection and sensitivity resulted in 70.0 nM and 0.045 mA cm<small><sup>−2</sup></small> μM<small><sup>−1</sup></small>, respectively. Besides, this excellent sensitivity combines with high stability, which was tested for six repetitive measurements with a single device resulting in high reproducibility. Additionally, this procedure was validated with measurements of clozapine in human blood plasma, which demonstrated the excellent applicability of the device, rendering it a promising platform for point-of-care diagnostics and environmental monitoring.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1749-1758"},"PeriodicalIF":3.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00252k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph Charles Khavul Spiro, Kundan Kumar Mishra, Vikram Narayanan Dhamu, Avi Bhatia, Sriram Muthukumar and Shalini Prasad
Detecting pesticides like atrazine is a significant global health challenge due to their association with numerous foodborne illnesses. Traditional detection methods often lack sensitivity and time efficiency, highlighting the urgent need for improved early detection techniques to mitigate pesticide contamination and outbreaks. This study introduces a novel portable electrochemical prototype that integrates an ARM-based microcontroller with an impedance spectroscopy (EIS)-based biosensing system. The data processed through the algorithm generates easily interpretable impedance values. The platform demonstrates a broad detection range for atrazine (1 fg mL−1 to 10 ng mL−1) with a limit of detection (LoD) of 1 fg mL−1 and an assay processing time of approximately 5 minutes, showcasing its remarkable efficiency. The sensor consistently maintains cross-reactivity variation below 20%, ensuring reliable performance. This research aims to offer a low-cost, replicable mobile platform for biosensing applications, thereby enhancing access for individuals with limited lab-based research experience and broadening the scope of proactive pesticide monitoring.
由于阿特拉津等农药与多种食源性疾病有关,因此检测这类农药是一项重大的全球健康挑战。传统的检测方法往往缺乏灵敏度和时间效率,因此迫切需要改进早期检测技术,以减少农药污染和疫情爆发。本研究介绍了一种新型便携式电化学原型,它将基于 ARM 的微控制器与基于阻抗光谱(EIS)的生物传感系统集成在一起。通过算法处理的数据可生成易于解释的阻抗值。该平台对阿特拉津的检测范围很广(1 fg mL-1 至 10 ng mL-1),检测限(LoD)为 1 fg mL-1,检测处理时间约为 5 分钟,显示了其卓越的效率。该传感器的交叉反应变异始终保持在 20% 以下,确保了可靠的性能。这项研究旨在为生物传感应用提供一个低成本、可复制的移动平台,从而为实验室研究经验有限的人员提供更多机会,并扩大农药主动监测的范围。
{"title":"Development of a portable electrochemical sensing platform for impedance spectroscopy-based biosensing using an ARM-based microcontroller†","authors":"Joseph Charles Khavul Spiro, Kundan Kumar Mishra, Vikram Narayanan Dhamu, Avi Bhatia, Sriram Muthukumar and Shalini Prasad","doi":"10.1039/D4SD00234B","DOIUrl":"10.1039/D4SD00234B","url":null,"abstract":"<p >Detecting pesticides like atrazine is a significant global health challenge due to their association with numerous foodborne illnesses. Traditional detection methods often lack sensitivity and time efficiency, highlighting the urgent need for improved early detection techniques to mitigate pesticide contamination and outbreaks. This study introduces a novel portable electrochemical prototype that integrates an ARM-based microcontroller with an impedance spectroscopy (EIS)-based biosensing system. The data processed through the algorithm generates easily interpretable impedance values. The platform demonstrates a broad detection range for atrazine (1 fg mL<small><sup>−1</sup></small> to 10 ng mL<small><sup>−1</sup></small>) with a limit of detection (LoD) of 1 fg mL<small><sup>−1</sup></small> and an assay processing time of approximately 5 minutes, showcasing its remarkable efficiency. The sensor consistently maintains cross-reactivity variation below 20%, ensuring reliable performance. This research aims to offer a low-cost, replicable mobile platform for biosensing applications, thereby enhancing access for individuals with limited lab-based research experience and broadening the scope of proactive pesticide monitoring.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 11","pages":" 1835-1842"},"PeriodicalIF":3.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00234b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the field of point-of-care diagnostics, lateral flow assays (LFAs) stand out as highly promising due to their compact size, ease of use, and rapid analysis times. These attributes make LFAs invaluable, especially in urgent situations or resource-limited regions. However, their Achilles' heel has always been their limited sensitivity and selectivity. To address these issues, various innovative approaches, including sample enrichment, assay optimization, and signal amplification, have been developed and are extensively discussed in the literature. Despite these advancements, the importance of antibody orientation is often neglected, even though improper orientation can significantly impair detection performance. This review article first explores well-established traditional methodologies, such as minor physical adjustments and non-specific chemical bond formations. It then shifts focus to the oriented immobilization of antibodies on probe surfaces. This approach aims to enhance sensitivity and selectivity fundamentally by leveraging protein affinities or complementary amino acid sequences. The review summarizes the impact of antibody orientation on the analytical performance of LFAs in terms of sensitivity, specificity, speed, reliability, cost-effectiveness, and stability. Additionally, we introduce recent modifications to assay membrane materials and discuss the current limitations and future prospects of LFAs.
{"title":"The importance of antibody orientation for enhancing sensitivity and selectivity in lateral flow immunoassays","authors":"Zhao-Yu Lu and Yang-Hsiang Chan","doi":"10.1039/D4SD00206G","DOIUrl":"10.1039/D4SD00206G","url":null,"abstract":"<p >In the field of point-of-care diagnostics, lateral flow assays (LFAs) stand out as highly promising due to their compact size, ease of use, and rapid analysis times. These attributes make LFAs invaluable, especially in urgent situations or resource-limited regions. However, their Achilles' heel has always been their limited sensitivity and selectivity. To address these issues, various innovative approaches, including sample enrichment, assay optimization, and signal amplification, have been developed and are extensively discussed in the literature. Despite these advancements, the importance of antibody orientation is often neglected, even though improper orientation can significantly impair detection performance. This review article first explores well-established traditional methodologies, such as minor physical adjustments and non-specific chemical bond formations. It then shifts focus to the oriented immobilization of antibodies on probe surfaces. This approach aims to enhance sensitivity and selectivity fundamentally by leveraging protein affinities or complementary amino acid sequences. The review summarizes the impact of antibody orientation on the analytical performance of LFAs in terms of sensitivity, specificity, speed, reliability, cost-effectiveness, and stability. Additionally, we introduce recent modifications to assay membrane materials and discuss the current limitations and future prospects of LFAs.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1613-1634"},"PeriodicalIF":3.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00206g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zia ul Quasim Syed, Sathya Samaraweera, Zhuo Wang and Sadagopan Krishnan
Biomarkers provide critical molecular insights into diseases and abnormal conditions. However, detecting them at ultra-low concentrations is a challenge, particularly in areas with limited resources and access to sophisticated instruments. Our research is primarily focused on mitigating this challenge. In this report, we introduce a colorimetric immunosensor for detecting insulin, an essential hormone biomarker that regulates glucose metabolism, at picomolar concentrations using citrate-functionalized magnetic particles. This immunosensor utilizes a two-antibody sandwich immunoassay: one antibody is covalently conjugated to the nanoparticles to capture and isolate the target marker, while the other is labeled with horseradish peroxidase for colorimetric detection of insulin. We conducted comparative analyses of insulin detection in buffer, saliva, and serum samples, offering valuable analytical insights. Our findings indicate a detection limit of 10 pM, with dynamic ranges of 10 pM to 1 nM, 10 pM to 10 nM, and 50 pM to 1 nM for insulin detection in buffer solution, 2-fold diluted serum, and 20-fold diluted artificial saliva, respectively. We demonstrate the application of the color immunosensor to type 1 diabetes and healthy human serum samples. For human saliva analysis, the detection limit needs to be improved in our future studies. Overall, our study enhances biomarker analysis in biofluids through an equipment-free colorimetric method, which is particularly relevant for point-of-need applications.
{"title":"Colorimetric nano-biosensor for low-resource settings: insulin as a model biomarker","authors":"Zia ul Quasim Syed, Sathya Samaraweera, Zhuo Wang and Sadagopan Krishnan","doi":"10.1039/D4SD00197D","DOIUrl":"10.1039/D4SD00197D","url":null,"abstract":"<p >Biomarkers provide critical molecular insights into diseases and abnormal conditions. However, detecting them at ultra-low concentrations is a challenge, particularly in areas with limited resources and access to sophisticated instruments. Our research is primarily focused on mitigating this challenge. In this report, we introduce a colorimetric immunosensor for detecting insulin, an essential hormone biomarker that regulates glucose metabolism, at picomolar concentrations using citrate-functionalized magnetic particles. This immunosensor utilizes a two-antibody sandwich immunoassay: one antibody is covalently conjugated to the nanoparticles to capture and isolate the target marker, while the other is labeled with horseradish peroxidase for colorimetric detection of insulin. We conducted comparative analyses of insulin detection in buffer, saliva, and serum samples, offering valuable analytical insights. Our findings indicate a detection limit of 10 pM, with dynamic ranges of 10 pM to 1 nM, 10 pM to 10 nM, and 50 pM to 1 nM for insulin detection in buffer solution, 2-fold diluted serum, and 20-fold diluted artificial saliva, respectively. We demonstrate the application of the color immunosensor to type 1 diabetes and healthy human serum samples. For human saliva analysis, the detection limit needs to be improved in our future studies. Overall, our study enhances biomarker analysis in biofluids through an equipment-free colorimetric method, which is particularly relevant for point-of-need applications.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1659-1671"},"PeriodicalIF":3.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00197d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Breeana Elliott, Martin Charron, John Pezacki, Erin McConnell and Vincent Tabard-Cossa
Single-molecule detection methods based on electrical readout can transform disease diagnostics by miniaturizing the downstream sensor to enable sensitive and rapid biomarker quantification at the point-of-care. In particular, solid-state nanopores can be used as single-molecule electrical counters for a variety of biomedical applications, including biomarker detection. Integrating nanopores with efficient DNA amplification methods can improve upon sensitivity and accessibility concerns often present in disease detection. Here, we present nanopores as biosensors downstream of a reverse-transcription recombinase polymerase amplification (RT-RPA)-based assay targeting synthetic SARS-CoV-2 RNA. We demonstrate the efficacy of nanopore-integrated RT-RPA for the direct electrical detection of target amplicons, and discuss challenges from RPA-based assays and adaptations that facilitate solid-state nanopore readout.
基于电读出的单分子检测方法可通过微型化下游传感器,在医疗点实现灵敏、快速的生物标记物定量,从而改变疾病诊断方法。特别是,固态纳米孔可用作单分子电计数器,用于各种生物医学应用,包括生物标记物检测。将纳米孔与高效的 DNA 扩增方法相结合,可以改善疾病检测中经常出现的灵敏度和可及性问题。在这里,我们将纳米孔作为生物传感器,用于基于反转录重组聚合酶扩增(RT-RPA)的以合成 SARS-CoV-2 RNA 为目标的检测。我们展示了集成纳米孔的 RT-RPA 在直接电学检测目标扩增子方面的功效,并讨论了基于 RPA 的检测方法所面临的挑战以及促进固态纳米孔读出的适应性。
{"title":"Solid-state nanopore counting of amplicons from recombinase polymerase isothermal amplification†","authors":"Breeana Elliott, Martin Charron, John Pezacki, Erin McConnell and Vincent Tabard-Cossa","doi":"10.1039/D4SD00159A","DOIUrl":"10.1039/D4SD00159A","url":null,"abstract":"<p >Single-molecule detection methods based on electrical readout can transform disease diagnostics by miniaturizing the downstream sensor to enable sensitive and rapid biomarker quantification at the point-of-care. In particular, solid-state nanopores can be used as single-molecule electrical counters for a variety of biomedical applications, including biomarker detection. Integrating nanopores with efficient DNA amplification methods can improve upon sensitivity and accessibility concerns often present in disease detection. Here, we present nanopores as biosensors downstream of a reverse-transcription recombinase polymerase amplification (RT-RPA)-based assay targeting synthetic SARS-CoV-2 RNA. We demonstrate the efficacy of nanopore-integrated RT-RPA for the direct electrical detection of target amplicons, and discuss challenges from RPA-based assays and adaptations that facilitate solid-state nanopore readout.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1733-1742"},"PeriodicalIF":3.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00159a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monitoring metabolites in situ at the single-cell scale is important for revealing cellular heterogeneity and dynamic changes of cell status, which provides new possibilities for disease research. Benefiting from the advantages of both electrochemical and optical methods, electrochemiluminescence (ECL) has great potential in this field. However, developing real-time in situ imaging methods is full of challenges. In this study, an ECL imaging method for formaldehyde (FA), a kind of cellular metabolite, was developed based on the in situ generation of co-reactants at the electrode interface and was successfully applied to the monitoring of single-cell FA release. Amino groups can undergo a rapid nucleophilic addition reaction with FA to form amino alcohol intermediates, which can be used as co-reactants for tris(2,2′-bipyridyl)ruthenium(II) [Ru(bpy)32+] to significantly enhance the strength of ECL. Poly(amidoamine) (PAMAM), with a large number of amino groups, and reduced graphene oxide (rGO), with excellent electrical conductivity and electrocatalytic properties, were introduced as the modification layer on the electrode surface to realize the “turn on” detection of FA. This sensing method also eliminated the use of the classic toxic co-reactant tripropylamine (TPrA) and was further applied to in situ imaging of single-cell FA release. It successfully obtained ECL images at different time points after the stimulation of HeLa cells with thapsigargin (TG), revealing the change pattern in drug efficacy over time. This work proposes a new ECL imaging approach for real-time in situ monitoring of FA release from single cells, further broadening the application of ECL imaging in single-cell analysis.
在单细胞尺度上原位监测代谢物对于揭示细胞异质性和细胞状态的动态变化非常重要,这为疾病研究提供了新的可能性。得益于电化学和光学方法的优势,电化学发光(ECL)在这一领域具有巨大潜力。然而,开发实时原位成像方法充满挑战。本研究基于电极界面原位生成共反应物的原理,开发了一种针对细胞代谢物甲醛(FA)的 ECL 成像方法,并成功应用于单细胞 FA 释放的监测。氨基可与 FA 发生快速亲核加成反应,形成氨基醇中间体,这些中间体可用作三(2,2′-联吡啶)钌(II) [Ru(bpy)32+] 的共反应物,从而显著增强 ECL 的强度。电极表面引入了具有大量氨基的聚氨基胺(PAMAM)和具有优异导电性和电催化性能的还原氧化石墨烯(rGO)作为修饰层,实现了 FA 的 "开启 "检测。这种传感方法还省去了传统的有毒共反应物三丙胺(TPrA),并进一步应用于单细胞 FA 释放的原位成像。该方法成功地获得了用硫代甘氨酸(TG)刺激 HeLa 细胞后不同时间点的 ECL 图像,揭示了药效随时间的变化规律。这项工作提出了一种新的 ECL 成像方法,用于实时原位监测单细胞中 FA 的释放,进一步拓宽了 ECL 成像在单细胞分析中的应用。
{"title":"In situ interface reaction-enabled electrochemiluminescence imaging for single-cell formaldehyde release analysis†","authors":"Juanhua Zhou and Yang Liu","doi":"10.1039/D4SD00177J","DOIUrl":"https://doi.org/10.1039/D4SD00177J","url":null,"abstract":"<p >Monitoring metabolites <em>in situ</em> at the single-cell scale is important for revealing cellular heterogeneity and dynamic changes of cell status, which provides new possibilities for disease research. Benefiting from the advantages of both electrochemical and optical methods, electrochemiluminescence (ECL) has great potential in this field. However, developing real-time <em>in situ</em> imaging methods is full of challenges. In this study, an ECL imaging method for formaldehyde (FA), a kind of cellular metabolite, was developed based on the <em>in situ</em> generation of co-reactants at the electrode interface and was successfully applied to the monitoring of single-cell FA release. Amino groups can undergo a rapid nucleophilic addition reaction with FA to form amino alcohol intermediates, which can be used as co-reactants for tris(2,2′-bipyridyl)ruthenium(<small>II</small>) [Ru(bpy)<small><sub>3</sub></small><small><sup>2+</sup></small>] to significantly enhance the strength of ECL. Poly(amidoamine) (PAMAM), with a large number of amino groups, and reduced graphene oxide (rGO), with excellent electrical conductivity and electrocatalytic properties, were introduced as the modification layer on the electrode surface to realize the “turn on” detection of FA. This sensing method also eliminated the use of the classic toxic co-reactant tripropylamine (TPrA) and was further applied to <em>in situ</em> imaging of single-cell FA release. It successfully obtained ECL images at different time points after the stimulation of HeLa cells with thapsigargin (TG), revealing the change pattern in drug efficacy over time. This work proposes a new ECL imaging approach for real-time <em>in situ</em> monitoring of FA release from single cells, further broadening the application of ECL imaging in single-cell analysis.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 9","pages":" 1571-1578"},"PeriodicalIF":3.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00177j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}