Pub Date : 2023-10-15DOI: 10.3390/vibration6040054
Chunyan Deng, Lidong He, Zhifu Tan, Xingyun Jia
Taking a type of test centrifuge as the research object, the finite element model of the test centrifuge was established, the vibration characteristics and aerodynamic performance of the test centrifuge were analyzed, and a structural optimization design of the test centrifuge was carried out. In this paper, the load was applied according to the actual working condition of a type of test centrifuge. The vibration of the mounting seat of the test centrifuge was analyzed, and the structure of the mounting seat was improved. After improvement, the vibration of the mounting seat was 77.38% lower than that of the original mounting seat. Then, the aerodynamic analysis of the test centrifuge was carried out. The analysis results show that the test centrifuge moved more smoothly under the whole-package shell and the fairing, the resistance decreased, and the shaft load decreased. Finally, the fairing of the test centrifuge was optimized. The analysis shows that an increase in the width of the fairing can reduce the resistance coefficient, which is helpful to the stability of the test centrifuge during operation and reduces the unbalanced response of the system caused by air resistance.
{"title":"Vibration and Aerodynamic Analysis and Optimization Design of a Test Centrifuge","authors":"Chunyan Deng, Lidong He, Zhifu Tan, Xingyun Jia","doi":"10.3390/vibration6040054","DOIUrl":"https://doi.org/10.3390/vibration6040054","url":null,"abstract":"Taking a type of test centrifuge as the research object, the finite element model of the test centrifuge was established, the vibration characteristics and aerodynamic performance of the test centrifuge were analyzed, and a structural optimization design of the test centrifuge was carried out. In this paper, the load was applied according to the actual working condition of a type of test centrifuge. The vibration of the mounting seat of the test centrifuge was analyzed, and the structure of the mounting seat was improved. After improvement, the vibration of the mounting seat was 77.38% lower than that of the original mounting seat. Then, the aerodynamic analysis of the test centrifuge was carried out. The analysis results show that the test centrifuge moved more smoothly under the whole-package shell and the fairing, the resistance decreased, and the shaft load decreased. Finally, the fairing of the test centrifuge was optimized. The analysis shows that an increase in the width of the fairing can reduce the resistance coefficient, which is helpful to the stability of the test centrifuge during operation and reduces the unbalanced response of the system caused by air resistance.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135759070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.3390/vibration6040052
Koray Kondakcı, Safa Bozkurt Coşkun
In this study, an analytical-based numerical approach was proposed for the analysis of the free axial vibration of homogeneous and functionally graded rods with varying cross-sectional areas. The proposed approach is based on analytical approximation techniques, such as the Adomian decomposition method, variational iteration method, and homotopy perturbation method. However, the governing equations of the problems solved in this study were variable coefficient differential equations. These equations provide analytical solutions for strictly limited cases. Analytical approximation methods easily handle problems with uniform material properties and constant cross-sections, whereas with varying cross-sectional areas, the analytical integration process becomes a difficult task for the software. If the rod’s material is functionally graded with varying cross-sectional areas, the analytical integration process becomes a cumbersome task. The proposed approach eliminates all difficulties and requires computation within several seconds. The application of this method is straightforward, and the results obtained in this study are in excellent agreement with the solutions provided in the literature.
{"title":"Analysis of the Axial Vibration of Non-Uniform and Functionally Graded Rods via an Analytical-Based Numerical Approach","authors":"Koray Kondakcı, Safa Bozkurt Coşkun","doi":"10.3390/vibration6040052","DOIUrl":"https://doi.org/10.3390/vibration6040052","url":null,"abstract":"In this study, an analytical-based numerical approach was proposed for the analysis of the free axial vibration of homogeneous and functionally graded rods with varying cross-sectional areas. The proposed approach is based on analytical approximation techniques, such as the Adomian decomposition method, variational iteration method, and homotopy perturbation method. However, the governing equations of the problems solved in this study were variable coefficient differential equations. These equations provide analytical solutions for strictly limited cases. Analytical approximation methods easily handle problems with uniform material properties and constant cross-sections, whereas with varying cross-sectional areas, the analytical integration process becomes a difficult task for the software. If the rod’s material is functionally graded with varying cross-sectional areas, the analytical integration process becomes a cumbersome task. The proposed approach eliminates all difficulties and requires computation within several seconds. The application of this method is straightforward, and the results obtained in this study are in excellent agreement with the solutions provided in the literature.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136014223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-12DOI: 10.3390/vibration6040053
Ana Ramos, Alexandre Castanheira-Pinto, Aires Colaço, Jesús Fernández-Ruiz, Pedro Alves Costa
Motivated by concerns regarding safety and maintenance, the operational speed of a railway line must remain significantly below the critical speed associated with the track–ground system. Given the large number of track sections within a railway corridor that potentially need to be analyzed, the development of efficient predictive tools is of the utmost importance. Based on that, the problem can be analyzed in a few seconds instead of taking several hours of computational effort, as required by a numerical analysis. In this context, and for the first time, machine learning algorithms, namely artificial neural networks and support vector machine techniques, are applied to this particular issue. For its derivation, a reliable and robust dataset was developed by means of advanced numerical methodologies that were previously experimentally validated. The database is available as supplemental data and may be used by other researchers. Regarding the prediction process, the performance of both models was very satisfactory. From the results achieved, it is possible to conclude that the prediction tool is a novel and reliable approach for an almost instantaneous prediction of critical speed in a high number of track sections.
{"title":"Predicting Critical Speed of Railway Tracks Using Artificial Intelligence Algorithms","authors":"Ana Ramos, Alexandre Castanheira-Pinto, Aires Colaço, Jesús Fernández-Ruiz, Pedro Alves Costa","doi":"10.3390/vibration6040053","DOIUrl":"https://doi.org/10.3390/vibration6040053","url":null,"abstract":"Motivated by concerns regarding safety and maintenance, the operational speed of a railway line must remain significantly below the critical speed associated with the track–ground system. Given the large number of track sections within a railway corridor that potentially need to be analyzed, the development of efficient predictive tools is of the utmost importance. Based on that, the problem can be analyzed in a few seconds instead of taking several hours of computational effort, as required by a numerical analysis. In this context, and for the first time, machine learning algorithms, namely artificial neural networks and support vector machine techniques, are applied to this particular issue. For its derivation, a reliable and robust dataset was developed by means of advanced numerical methodologies that were previously experimentally validated. The database is available as supplemental data and may be used by other researchers. Regarding the prediction process, the performance of both models was very satisfactory. From the results achieved, it is possible to conclude that the prediction tool is a novel and reliable approach for an almost instantaneous prediction of critical speed in a high number of track sections.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135968216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-11DOI: 10.3390/vibration6040051
Xutao Sun, Sinniah Ilanko, Yusuke Mochida, Rachael C. Tighe
Vibration-based damage detection is a range of methods that utilizes the dynamic response of a structure to evaluate its condition and detect damage. It is an important approach for structural health monitoring and has drawn much attention from researchers. While multiple reviews have been published focusing on different aspects of this field, there has not been a study specifically examining the recent development across the range of methods, including natural frequency, mode shape, modal curvature, modal strain energy, and modal flexibility-based damage detection methods. This paper aims to fill this gap by reviewing the recent application of these methods in civil structures, including beams, plates, trusses, frames, and composite structural members. The merits and limitations of each method are discussed, and research opportunities are presented. This broader review also provides an opportunity for critical comparison across this range of methods. While predominantly reviewing experiment-based studies, this review also considers some numerical studies that may motivate further research.
{"title":"A Review on Vibration-Based Damage Detection Methods for Civil Structures","authors":"Xutao Sun, Sinniah Ilanko, Yusuke Mochida, Rachael C. Tighe","doi":"10.3390/vibration6040051","DOIUrl":"https://doi.org/10.3390/vibration6040051","url":null,"abstract":"Vibration-based damage detection is a range of methods that utilizes the dynamic response of a structure to evaluate its condition and detect damage. It is an important approach for structural health monitoring and has drawn much attention from researchers. While multiple reviews have been published focusing on different aspects of this field, there has not been a study specifically examining the recent development across the range of methods, including natural frequency, mode shape, modal curvature, modal strain energy, and modal flexibility-based damage detection methods. This paper aims to fill this gap by reviewing the recent application of these methods in civil structures, including beams, plates, trusses, frames, and composite structural members. The merits and limitations of each method are discussed, and research opportunities are presented. This broader review also provides an opportunity for critical comparison across this range of methods. While predominantly reviewing experiment-based studies, this review also considers some numerical studies that may motivate further research.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136098828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-06DOI: 10.3390/vibration6040050
Weizhuo Wang
Full-field non-contact vibration measurements provide a rich dataset for analysing structural dynamics. However, implementing the identification algorithm directly using high-spatial resolution data can be computationally expensive in modal identification. To address this challenge, performing identification in a shape-preserving but lower-dimensional feature space is more feasible. The full-field mode shapes can then be reconstructed from the identified feature mode shapes. This paper discusses two approaches, namely data-dependent and data-independent, for constructing the feature spaces. The applications of these approaches to modal identification on a curved plate are studied, and their performance is compared. In a case study involving a curved plate, it was found that a spatial data compression ratio as low as 1% could be achieved without compromising the integrity of the shape features essential for a full-field modal. Furthermore, the paper explores the optimal point-wise sensor placement using the feature space. It presents an alternative, data-driven method for optimal sensor placement that eliminates the need for a normal model, which is typically required in conventional approaches. Combining a small number of point-wise sensors with the constructed feature space can accurately reconstruct the full-field response. This approach demonstrates a two-step structural health monitoring (SHM) preparation process: offline full-field identification of the structure and the recommended point-wise sensor placement for online long-term monitoring.
{"title":"Efficient Modal Identification and Optimal Sensor Placement via Dynamic DIC Measurement and Feature-Based Data Compression","authors":"Weizhuo Wang","doi":"10.3390/vibration6040050","DOIUrl":"https://doi.org/10.3390/vibration6040050","url":null,"abstract":"Full-field non-contact vibration measurements provide a rich dataset for analysing structural dynamics. However, implementing the identification algorithm directly using high-spatial resolution data can be computationally expensive in modal identification. To address this challenge, performing identification in a shape-preserving but lower-dimensional feature space is more feasible. The full-field mode shapes can then be reconstructed from the identified feature mode shapes. This paper discusses two approaches, namely data-dependent and data-independent, for constructing the feature spaces. The applications of these approaches to modal identification on a curved plate are studied, and their performance is compared. In a case study involving a curved plate, it was found that a spatial data compression ratio as low as 1% could be achieved without compromising the integrity of the shape features essential for a full-field modal. Furthermore, the paper explores the optimal point-wise sensor placement using the feature space. It presents an alternative, data-driven method for optimal sensor placement that eliminates the need for a normal model, which is typically required in conventional approaches. Combining a small number of point-wise sensors with the constructed feature space can accurately reconstruct the full-field response. This approach demonstrates a two-step structural health monitoring (SHM) preparation process: offline full-field identification of the structure and the recommended point-wise sensor placement for online long-term monitoring.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134944407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laser Doppler scanning vibrometry is used for imaging spectral vibration components in a carbon fiber-reinforced composite plate that contains a sub-surface delamination defect caused by hammer impact. The images reveal sideband generation at the location of the defect, reflecting mechanical nonlinearity-induced mixing between a high amplitude, low-frequency vibration that modulates the stress–strain behavior near the defect and a low amplitude, high-frequency probe vibration. In this work, a multifrequency probe is used to tackle the problem that the mixing coefficients are, in practice, frequency dependent. Based on the measured sideband amplitudes, a study is presented on the expected feasibility of detecting defects by a full field imaging scheme based on a photorefractive interferometer that is configured as a vibrometer acting as a bandpass filter around a sideband frequency of interest.
{"title":"Defect Detection in Carbon Fiber-Reinforced Plate by Imaging of Mechanical Nonlinearity-Induced Sideband Vibrations","authors":"Tommaso Seresini, Sevilia Sunetchiieva, Helge Pfeiffer, Martine Wevers, Christ Glorieux","doi":"10.3390/vibration6040049","DOIUrl":"https://doi.org/10.3390/vibration6040049","url":null,"abstract":"Laser Doppler scanning vibrometry is used for imaging spectral vibration components in a carbon fiber-reinforced composite plate that contains a sub-surface delamination defect caused by hammer impact. The images reveal sideband generation at the location of the defect, reflecting mechanical nonlinearity-induced mixing between a high amplitude, low-frequency vibration that modulates the stress–strain behavior near the defect and a low amplitude, high-frequency probe vibration. In this work, a multifrequency probe is used to tackle the problem that the mixing coefficients are, in practice, frequency dependent. Based on the measured sideband amplitudes, a study is presented on the expected feasibility of detecting defects by a full field imaging scheme based on a photorefractive interferometer that is configured as a vibrometer acting as a bandpass filter around a sideband frequency of interest.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135457028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manual wheelchair (MWC) users are daily exposed to vibration during propulsion. The impact of such exposure on the MWC user’s health has yet to be proven. To date, no agreement has been reached, presumably on the account of the wide variety of experimental parameters that need to be controlled. A possible solution relies on the implementation of a User/MWC model to point out the effect of propelling conditions (MWC loads, propulsion methods, speeds, and ground floor types) on the vibration exposure and eventually on the MWC user’s health. To feed such a model, the evaluation of the MWC vibration response during propulsion is required. Following a necessary MWC experimental modal analysis under laboratory conditions, this study presents the vibration response of an MWC under various propelling conditions. For each investigated condition, the identified set of modal parameters was provided and the effect on the MWC response to vibration at the User/MWC interfaces was highlighted. Results mostly underline that the response to vibration is highly dependent on the propelling conditions. The speed and the ground floor type greatly affect the vibration response: doubling speed and increasing ground surface roughness imply threefold and eightfold vibration levels, respectively. Finally, the main outcome is that an empty MWC or an MWC loaded with a dummy generates vibration outside the range measured for an MWC loaded with a human body, resulting in a lower frequency content and an almost two-fold vibration level increase. The findings of this study will help enhance the understanding of the health risks that wheelchair users encounter as a result of vibrations.
{"title":"Vibration Response of Manual Wheelchairs According to Loads, Propulsion Methods, Speeds, and Ground Floor Types","authors":"Ophélie Larivière, Delphine Chadefaux, Christophe Sauret, Patricia Thoreux","doi":"10.3390/vibration6040047","DOIUrl":"https://doi.org/10.3390/vibration6040047","url":null,"abstract":"Manual wheelchair (MWC) users are daily exposed to vibration during propulsion. The impact of such exposure on the MWC user’s health has yet to be proven. To date, no agreement has been reached, presumably on the account of the wide variety of experimental parameters that need to be controlled. A possible solution relies on the implementation of a User/MWC model to point out the effect of propelling conditions (MWC loads, propulsion methods, speeds, and ground floor types) on the vibration exposure and eventually on the MWC user’s health. To feed such a model, the evaluation of the MWC vibration response during propulsion is required. Following a necessary MWC experimental modal analysis under laboratory conditions, this study presents the vibration response of an MWC under various propelling conditions. For each investigated condition, the identified set of modal parameters was provided and the effect on the MWC response to vibration at the User/MWC interfaces was highlighted. Results mostly underline that the response to vibration is highly dependent on the propelling conditions. The speed and the ground floor type greatly affect the vibration response: doubling speed and increasing ground surface roughness imply threefold and eightfold vibration levels, respectively. Finally, the main outcome is that an empty MWC or an MWC loaded with a dummy generates vibration outside the range measured for an MWC loaded with a human body, resulting in a lower frequency content and an almost two-fold vibration level increase. The findings of this study will help enhance the understanding of the health risks that wheelchair users encounter as a result of vibrations.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135246867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-29DOI: 10.3390/vibration6040048
Yimei Wang, Hossein Vatandoost, Ramin Sedaghati
Human operators in the transportation sector are exposed to whole-body vibration (WBV) while driving. Occupational exposure to WBV, predominant at low frequencies (<20 Hz), has been linked to spinal injuries and reduced functioning. This study aims at the design development of a novel semi-active seat suspension system featuring magneto-rheological elastomers (MREs) to mitigate the WBV. The proposed suspension system allows a greater range of strokes, while ensuring the MRE remains within an acceptable level of deformation. Several MRE samples were fabricated and characterized under shear mode. Afterward, a field- and frequency-dependent phenomenological model was developed to predict the viscoelastic properties of MREs as functions of both the excitation frequency and applied magnetic field. The MRE material model was subsequently used to design and optimize an adaptive seat suspension system incorporating a C-shaped MRE-based isolator in parallel and series with passive springs. The proposed adaptive seat suspension system demonstrated a frequency shift of 29% by increasing the applied current from 0 to 2 A. Finally, a 6-DOF lumped parameter model of a seated human subject combined with the proposed semi-active suspension system featuring the MRE isolator has been formulated to investigate the vibration transmissibility from the floor to the subject’s head.
{"title":"Development of a Novel Magneto-Rheological Elastomer-Based Semi-Active Seat Suspension System","authors":"Yimei Wang, Hossein Vatandoost, Ramin Sedaghati","doi":"10.3390/vibration6040048","DOIUrl":"https://doi.org/10.3390/vibration6040048","url":null,"abstract":"Human operators in the transportation sector are exposed to whole-body vibration (WBV) while driving. Occupational exposure to WBV, predominant at low frequencies (<20 Hz), has been linked to spinal injuries and reduced functioning. This study aims at the design development of a novel semi-active seat suspension system featuring magneto-rheological elastomers (MREs) to mitigate the WBV. The proposed suspension system allows a greater range of strokes, while ensuring the MRE remains within an acceptable level of deformation. Several MRE samples were fabricated and characterized under shear mode. Afterward, a field- and frequency-dependent phenomenological model was developed to predict the viscoelastic properties of MREs as functions of both the excitation frequency and applied magnetic field. The MRE material model was subsequently used to design and optimize an adaptive seat suspension system incorporating a C-shaped MRE-based isolator in parallel and series with passive springs. The proposed adaptive seat suspension system demonstrated a frequency shift of 29% by increasing the applied current from 0 to 2 A. Finally, a 6-DOF lumped parameter model of a seated human subject combined with the proposed semi-active suspension system featuring the MRE isolator has been formulated to investigate the vibration transmissibility from the floor to the subject’s head.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135293581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-27DOI: 10.3390/vibration6040046
Marco Riboli, Elisabetta Manconi, Dario Fusai, Marco Silvestri, Alessandra Aimi
Vibration mitigation of moving flexible structures is a key issue in many applications. Examples include antennas, solar arrays, radar reflectors, and manipulator arms, especially in the aerospace sector. These structures typically consist of inter-connected slender and flexible elements moved by external actuators to reach specific configurations and positions. The movements excite vibrations, which lead to the risk of structural and fatigue failures; once in position, residual vibrations can be further amplified by structure lightness, causing bad performance and malfunctioning of onboard sensors. This paper proposes an effective technique to minimise the vibration of moving flexible structures by calculating the control points of a time-parametrised B-spline representing the shape of the motion law. A testing case of a rotating cantilever beam is considered. Validation using multi-flexible-body simulation software has shown the method’s effectiveness in minimising residual vibrations.
{"title":"Vibration Minimisation of Moving Flexible Slender Structures Based on Time-Parameterised B-Spline","authors":"Marco Riboli, Elisabetta Manconi, Dario Fusai, Marco Silvestri, Alessandra Aimi","doi":"10.3390/vibration6040046","DOIUrl":"https://doi.org/10.3390/vibration6040046","url":null,"abstract":"Vibration mitigation of moving flexible structures is a key issue in many applications. Examples include antennas, solar arrays, radar reflectors, and manipulator arms, especially in the aerospace sector. These structures typically consist of inter-connected slender and flexible elements moved by external actuators to reach specific configurations and positions. The movements excite vibrations, which lead to the risk of structural and fatigue failures; once in position, residual vibrations can be further amplified by structure lightness, causing bad performance and malfunctioning of onboard sensors. This paper proposes an effective technique to minimise the vibration of moving flexible structures by calculating the control points of a time-parametrised B-spline representing the shape of the motion law. A testing case of a rotating cantilever beam is considered. Validation using multi-flexible-body simulation software has shown the method’s effectiveness in minimising residual vibrations.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135584510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-22DOI: 10.3390/vibration6040045
Daniel Winarski, Kip P. Nygren, Tyson Winarski
Six mode shapes, including bending and torsion, were documented for five different basketball rims and backboards at the United States Military Academy, West Point, New York, NY, USA. The frequency and damping ratio of each mode shape were also determined. The empirical process began with the time-domain excitation and response of each rim-backboard system. The impulse of excitation came from an impact hammer separately applied sequentially to each node. The sinusoidal response was gathered from an accelerometer at a fixed location (node 1). Each time-domain excitation response was then converted to a frequency-domain Bode plot for each node by a Brüel & Kjær 2034 Signal Analyzer, giving transfer functions of output/input versus frequency. Structural Measurements System (SMS) StarStruc software was used to fit mode shapes to the Bode plots. Each of the six mode shapes was fitted to the Bode plots of each node at a specific modal frequency. Each of the six mode shapes was a function of the locations of the nodes, and the Bode plots gathered at each node. The first and second modes were critical for showing that the Energy Rebound Testing Device statistically correlated with the energy transferred to the rim and backboard. A known perturbation mass was selectively attached to the rim to help isolate the dynamic masses and spring rates for the rim and backboard and to ascertain that the kinetic energy transferred to the rim had a 95.67% inverse correlation with rim stiffness.
在美国纽约西点军校,记录了五种不同篮球圈和篮板的六种模态,包括弯曲和扭转。确定了各振型的频率和阻尼比。经验过程从每个轮辋-背板系统的时域激励和响应开始。激励脉冲来自于一个冲击锤分别依次作用于每个节点。从固定位置(节点1)的加速度计收集正弦响应。每个时域激励响应然后通过br el &kk ær 2034信号分析仪,给出输出/输入随频率的传递函数。使用结构测量系统(SMS) StarStruc软件对波德图进行模态振型拟合。六个模态振型中的每一个都在特定模态频率处拟合到每个节点的波德图上。六个模态振型中的每一个都是节点位置的函数,并且在每个节点处聚集了波德图。第一种和第二种模式对于显示能量反弹测试装置与传递到篮筐和篮板的能量的统计相关性至关重要。将已知的扰动质量选择性地附加在轮辋上,有助于分离轮辋和背板的动力质量和弹簧速率,并确定传递给轮辋的动能与轮辋刚度呈95.67%的负相关。
{"title":"Modes of Vibration in Basketball Rims and Backboards and the Energy Rebound Testing Device","authors":"Daniel Winarski, Kip P. Nygren, Tyson Winarski","doi":"10.3390/vibration6040045","DOIUrl":"https://doi.org/10.3390/vibration6040045","url":null,"abstract":"Six mode shapes, including bending and torsion, were documented for five different basketball rims and backboards at the United States Military Academy, West Point, New York, NY, USA. The frequency and damping ratio of each mode shape were also determined. The empirical process began with the time-domain excitation and response of each rim-backboard system. The impulse of excitation came from an impact hammer separately applied sequentially to each node. The sinusoidal response was gathered from an accelerometer at a fixed location (node 1). Each time-domain excitation response was then converted to a frequency-domain Bode plot for each node by a Brüel & Kjær 2034 Signal Analyzer, giving transfer functions of output/input versus frequency. Structural Measurements System (SMS) StarStruc software was used to fit mode shapes to the Bode plots. Each of the six mode shapes was fitted to the Bode plots of each node at a specific modal frequency. Each of the six mode shapes was a function of the locations of the nodes, and the Bode plots gathered at each node. The first and second modes were critical for showing that the Energy Rebound Testing Device statistically correlated with the energy transferred to the rim and backboard. A known perturbation mass was selectively attached to the rim to help isolate the dynamic masses and spring rates for the rim and backboard and to ascertain that the kinetic energy transferred to the rim had a 95.67% inverse correlation with rim stiffness.","PeriodicalId":75301,"journal":{"name":"Vibration","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136098861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}