Ba1.98Dy0.02SiO4 nanoceramic samples were synthesized using the most versatile sol–gel and citrate sol–gel techniques. The properties of Ba1.98Dy0.02SiO4 nanoceramics were perceived by XRD pattern, IR spectra, UV–Vis-DR Spectra, FESEM, etc. XRD confirmed the phase purity and homogeneity of the samples. Rietveld refinement methodology was employed to authenticate the prepared samples' structural parameters and crystal structure. FTIR analysis provides the IR vibrations consistent with bonding among the atoms and molecules. Compared to IR, high-frequency Raman modes attributed to SiO4 units are shifted. FESEM micrographs revealed the formation of spherical shape nanoparticles and nanorods. EDAX spectra governed the elemental composition of prepared samples, further confirmed via XPS scan. Diffuse reflectance examined optical modifications and band structure of the nanoceramics. The band gap of the proposed samples was intended to use the best relationship between the Kubelka Munk function and reflectance data. The comparative results showed that the citric acid-assisted Ba1.98Dy0.02SiO4 sample has better structural and optical characteristics with nanorod morphology functional in device fabrication. At the same time, the sample prepared by traditional sol–gel has spherical nanopowders suitable for display devices. The 0-dim and 1-dim morphology of the samples were ascribed to the significant differences in the synthesis conditions.