M. Sc. Hanife Sahin, M. Sc. Raheleh Salehi, M. Sc. Shariful Islam, Dr. Markus Müller, Dr. Pascal Giehr, Prof. Thomas Carell
<p>Das Vorhandensein des fünften Nukleosids 5-Methyldesoxycytidin (mdC), entweder in Promotorregionen oder im Genkörper beeinflusst den Transkriptionsstatus des entsprechenden Gens.<span><sup>1</sup></span> In der Regel führt das Vorkommen von mdC in Promotorregionen zur Inaktivierung des betreffenden Gens, während unmethylierte Promotoren eine aktivere Transkription anzeigen. Die Identifizierung von mdC in Genen ermöglicht die Charakterisierung des Transkriptionszustands des betreffenden Gens, was für die Identifizierung und Charakterisierung von Tumorzellen von entscheidender Bedeutung ist.<span><sup>2, 3</sup></span> In Tumorzellen werden Onkogene oft fälschlicherweise aktiviert, während Tumorsuppressorgene irrtümlich ausgeschaltet werden. Daher ist die Sequenzierung von mdC mit minimalem Ausgangsmaterial von großem Interesse, um einen neuen Bereich der Tumordiagnostik, die sogenannte Flüssigbiopsie, zu etablieren.<span><sup>4</sup></span></p><p>Bislang wird die mdC-Sequenzierung überwiegend mit einer Bisulfit-Behandlung durchgeführt (Abbildung 1a). Genomische DNA, die bei >60 °C mit Bisulfit behandelt wird, wandelt alle unmethylierten Cytidine in Uracil um, während mdC intakt bleibt. Die Bestimmung der mdC-Positionen im Genom erfolgt nach PCR und Sequenzierung durch einen Vergleich der erhaltenen Sequenzen mit einem Referenzgenom. Ein wesentliches Problem dieser Methode besteht jedoch darin, dass ein großer Teil der genomischen Ausgangs-DNA die harten Bedingungen der Bisulfit-Behandlung aufgrund starker Fragmentierung nicht übersteht. Diese Einschränkung wird durch eine umfangreiche PCR-basierte Amplifikation der nicht abgebauten DNA gemildert. Ein weiterer Nachteil ist, dass das Bisulfit-Sequenzierungsprotokoll umständlich und fehleranfällig ist. Mildere Methoden wie EM-seq, die derzeit entwickelt werden, verwenden das desaminierende Enzym APOBEC3 A (A3 A), das ebenfalls dC zu dU desaminiert.<span><sup>5</sup></span> Durch die Desaminierung aller dC-Basen zu dU wird die Komplexität des Genoms jedoch von einem vierstelligen Code auf einen Code aus drei Nukleobasen (dA, dG und dU sowie das verbleibende mdC) reduziert, was die Sequenzzuordnung insbesondere bei repetitiven Elementen erschwert. </p><p>Ein alternativer Ansatz zur Sequenzierung von mdC ist die Sequenzierung der dritten Generation, bei der die Sequenzen direkt ausgelesen werden, ohne dass ein PCR-Schritt erforderlich ist. Derzeit ermöglichen alle Einzelmolekül-Sequenzierungswerkzeuge der dritten Generation, wie Nanopore oder SMRT-Sequenzierung, das direkte Auslesen von mdC.<span><sup>6</sup></span></p><p>Diese Methoden befinden sich jedoch noch im Anfangsstadium, und die Unterschiede zwischen den für dC und mdC erhaltenen Sequenziersignalen sind oft minimal. Dies erfordert eine umständliche Dekonvolution der Daten, für die ein erheblicher Bedarf an Bioinformatik besteht.<span><sup>7, 8</sup></span> Daher ist die Entwicklung von milden mdC-Sequenzierungsmethoden, welche die Cytidi
{"title":"Robuste Bisulfit-freie Einzelmolekül-Echtzeitsequenzierung von Methyldesoxycytidin auf der Grundlage eines neuartigen hpTet3-Enzyms","authors":"M. Sc. Hanife Sahin, M. Sc. Raheleh Salehi, M. Sc. Shariful Islam, Dr. Markus Müller, Dr. Pascal Giehr, Prof. Thomas Carell","doi":"10.1002/ange.202418500","DOIUrl":"https://doi.org/10.1002/ange.202418500","url":null,"abstract":"<p>Das Vorhandensein des fünften Nukleosids 5-Methyldesoxycytidin (mdC), entweder in Promotorregionen oder im Genkörper beeinflusst den Transkriptionsstatus des entsprechenden Gens.<span><sup>1</sup></span> In der Regel führt das Vorkommen von mdC in Promotorregionen zur Inaktivierung des betreffenden Gens, während unmethylierte Promotoren eine aktivere Transkription anzeigen. Die Identifizierung von mdC in Genen ermöglicht die Charakterisierung des Transkriptionszustands des betreffenden Gens, was für die Identifizierung und Charakterisierung von Tumorzellen von entscheidender Bedeutung ist.<span><sup>2, 3</sup></span> In Tumorzellen werden Onkogene oft fälschlicherweise aktiviert, während Tumorsuppressorgene irrtümlich ausgeschaltet werden. Daher ist die Sequenzierung von mdC mit minimalem Ausgangsmaterial von großem Interesse, um einen neuen Bereich der Tumordiagnostik, die sogenannte Flüssigbiopsie, zu etablieren.<span><sup>4</sup></span></p><p>Bislang wird die mdC-Sequenzierung überwiegend mit einer Bisulfit-Behandlung durchgeführt (Abbildung 1a). Genomische DNA, die bei >60 °C mit Bisulfit behandelt wird, wandelt alle unmethylierten Cytidine in Uracil um, während mdC intakt bleibt. Die Bestimmung der mdC-Positionen im Genom erfolgt nach PCR und Sequenzierung durch einen Vergleich der erhaltenen Sequenzen mit einem Referenzgenom. Ein wesentliches Problem dieser Methode besteht jedoch darin, dass ein großer Teil der genomischen Ausgangs-DNA die harten Bedingungen der Bisulfit-Behandlung aufgrund starker Fragmentierung nicht übersteht. Diese Einschränkung wird durch eine umfangreiche PCR-basierte Amplifikation der nicht abgebauten DNA gemildert. Ein weiterer Nachteil ist, dass das Bisulfit-Sequenzierungsprotokoll umständlich und fehleranfällig ist. Mildere Methoden wie EM-seq, die derzeit entwickelt werden, verwenden das desaminierende Enzym APOBEC3 A (A3 A), das ebenfalls dC zu dU desaminiert.<span><sup>5</sup></span> Durch die Desaminierung aller dC-Basen zu dU wird die Komplexität des Genoms jedoch von einem vierstelligen Code auf einen Code aus drei Nukleobasen (dA, dG und dU sowie das verbleibende mdC) reduziert, was die Sequenzzuordnung insbesondere bei repetitiven Elementen erschwert.\u0000</p><p>Ein alternativer Ansatz zur Sequenzierung von mdC ist die Sequenzierung der dritten Generation, bei der die Sequenzen direkt ausgelesen werden, ohne dass ein PCR-Schritt erforderlich ist. Derzeit ermöglichen alle Einzelmolekül-Sequenzierungswerkzeuge der dritten Generation, wie Nanopore oder SMRT-Sequenzierung, das direkte Auslesen von mdC.<span><sup>6</sup></span></p><p>Diese Methoden befinden sich jedoch noch im Anfangsstadium, und die Unterschiede zwischen den für dC und mdC erhaltenen Sequenziersignalen sind oft minimal. Dies erfordert eine umständliche Dekonvolution der Daten, für die ein erheblicher Bedarf an Bioinformatik besteht.<span><sup>7, 8</sup></span> Daher ist die Entwicklung von milden mdC-Sequenzierungsmethoden, welche die Cytidi","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"136 52","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202418500","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Zhiyun Xu, Dr. Abhinav Chandresh, Anna Mauri, Dr. Meysam Esmaeilpour, Dr. Vincent Monnier, Prof. Fabrice Odobel, Prof. Lars Heinke, Prof. Dr. Wolfgang Wenzel, Dr. Mariana Kozlowska, Dr. Stéphane Diring, Dr. Ritesh Haldar, Prof. Christof Wöll
<p>In Mischungen aus elektronenreichen (Donor) und elektronenarmen (Akzeptor) Chromophoren kann bei Photoanregung eine Ladungstrennung (CS) auftreten,<span><sup>1</sup></span> ein Prozess, der für die künstliche Photosynthese,<span><sup>2</sup></span> Phtotodioden,<span><sup>3</sup></span> sowie für Photodetektoren von entscheidender Bedeutung ist.<span><sup>4</sup></span> Zu den Schlüsselfaktoren, die die CS-Effizienz beeinflussen, gehören die Exzitonen-Bindungsenergie des lichtabsorbierenden Chromophors (in der Regel der Donor),<span><sup>5</sup></span> die HOMO–LUMO-Lücke von Donor und Akzeptor,<span><sup>5a, 6</sup></span> die relative Positionierung des Donor-Akzeptor-Paares,<span><sup>7</sup></span> und die daraus resultierende Elektronen- und Lochbeweglichkeiten. Während die ersten beiden Faktoren durch das molekulare Design der Chromophore gesteuert werden können,<span><sup>8</sup></span> bleiben die Vorhersage und Regulierung der molekularen Packung – die für die Optimierung der relativen Positionierung von Donor-Akzeptor-Paaren und der Elektronen-/Lochmobilität entscheidend sind, eine Herausforderung. Dies erfordert häufig Trial-and-Error-Ansätze.<span><sup>9</sup></span> Darüber hinaus hängt die Herstellung organischer Dünnschichten durch Drop-Casting oder Spin-Coating Verfahren in kritischer, schwer vorherzusagender Weise von dem Lösungsmittelmedium und anderen physikalischen Parametern ab.<span><sup>10</sup></span></p><p>Ein oft verfolgter Ansatz, um eine genau definierte relative Positionierung von Donor-Akzeptor-Paaren zu gewährleisten, ist die Verwendung von kovalent gebundenen Donor-Akzeptor-Chromophor-Konstrukten. Derartige Dyaden verfügen über eine effiziente Ladungstrennung und vielversprechende optoelektronische Eigenschaften,<span><sup>11</sup></span> aber das Erreichen einer langreichweitigen Ordnung und die Beschichtung größerer Oberflächen mit diesen Verbindungen stellt eine große Herausforderung dar.<span><sup>12</sup></span></p><p>Darüber hinaus wird die Optimierung des Verhältnisses von Donor zu Akzeptor durch die Schwierigkeit erschwert, die Struktur binärer Zusammensetzungen zu variieren, wie in früheren Studien festgestellt wurde.<span><sup>13</sup></span></p><p>Kristalline metallorganische Gerüstverbindungen (MOFs) bieten einen alternativen und sehr vielversprechenden Zugang, um die Struktur organischer Donor-Akzeptor-Chromophor-Anordnungen zu steuern und eine kohärente kristalline Ordnung zu erreichen.<span><sup>14</sup></span> MOFs werden durch die Koordinierung von Metallclustern mit organischen Linkern,<span><sup>15</sup></span> d. h., organischen Donor- und Akzeptor-Chromophoren, mit metallischen Ankergruppen gebildet.<span><sup>16</sup></span> Diese Materialien bieten gegenüber molekularen Festkörpern, die durch Selbstassemblierung gebildet werden, mehrere Vorteile: reduzierte Freiheitsgrade der Chromophore, die eine Verringerung der nichtradiativen Zerfallsprozesse ermöglichen;<span><sup>17</sup></span> peri
{"title":"Geregelter Ladungstransfer in metallorganischen Donor-Akzeptor-Gerüstverbindungen für hochempfindliche Photodetektoren","authors":"Dr. Zhiyun Xu, Dr. Abhinav Chandresh, Anna Mauri, Dr. Meysam Esmaeilpour, Dr. Vincent Monnier, Prof. Fabrice Odobel, Prof. Lars Heinke, Prof. Dr. Wolfgang Wenzel, Dr. Mariana Kozlowska, Dr. Stéphane Diring, Dr. Ritesh Haldar, Prof. Christof Wöll","doi":"10.1002/ange.202414526","DOIUrl":"https://doi.org/10.1002/ange.202414526","url":null,"abstract":"<p>In Mischungen aus elektronenreichen (Donor) und elektronenarmen (Akzeptor) Chromophoren kann bei Photoanregung eine Ladungstrennung (CS) auftreten,<span><sup>1</sup></span> ein Prozess, der für die künstliche Photosynthese,<span><sup>2</sup></span> Phtotodioden,<span><sup>3</sup></span> sowie für Photodetektoren von entscheidender Bedeutung ist.<span><sup>4</sup></span> Zu den Schlüsselfaktoren, die die CS-Effizienz beeinflussen, gehören die Exzitonen-Bindungsenergie des lichtabsorbierenden Chromophors (in der Regel der Donor),<span><sup>5</sup></span> die HOMO–LUMO-Lücke von Donor und Akzeptor,<span><sup>5a, 6</sup></span> die relative Positionierung des Donor-Akzeptor-Paares,<span><sup>7</sup></span> und die daraus resultierende Elektronen- und Lochbeweglichkeiten. Während die ersten beiden Faktoren durch das molekulare Design der Chromophore gesteuert werden können,<span><sup>8</sup></span> bleiben die Vorhersage und Regulierung der molekularen Packung – die für die Optimierung der relativen Positionierung von Donor-Akzeptor-Paaren und der Elektronen-/Lochmobilität entscheidend sind, eine Herausforderung. Dies erfordert häufig Trial-and-Error-Ansätze.<span><sup>9</sup></span> Darüber hinaus hängt die Herstellung organischer Dünnschichten durch Drop-Casting oder Spin-Coating Verfahren in kritischer, schwer vorherzusagender Weise von dem Lösungsmittelmedium und anderen physikalischen Parametern ab.<span><sup>10</sup></span></p><p>Ein oft verfolgter Ansatz, um eine genau definierte relative Positionierung von Donor-Akzeptor-Paaren zu gewährleisten, ist die Verwendung von kovalent gebundenen Donor-Akzeptor-Chromophor-Konstrukten. Derartige Dyaden verfügen über eine effiziente Ladungstrennung und vielversprechende optoelektronische Eigenschaften,<span><sup>11</sup></span> aber das Erreichen einer langreichweitigen Ordnung und die Beschichtung größerer Oberflächen mit diesen Verbindungen stellt eine große Herausforderung dar.<span><sup>12</sup></span></p><p>Darüber hinaus wird die Optimierung des Verhältnisses von Donor zu Akzeptor durch die Schwierigkeit erschwert, die Struktur binärer Zusammensetzungen zu variieren, wie in früheren Studien festgestellt wurde.<span><sup>13</sup></span></p><p>Kristalline metallorganische Gerüstverbindungen (MOFs) bieten einen alternativen und sehr vielversprechenden Zugang, um die Struktur organischer Donor-Akzeptor-Chromophor-Anordnungen zu steuern und eine kohärente kristalline Ordnung zu erreichen.<span><sup>14</sup></span> MOFs werden durch die Koordinierung von Metallclustern mit organischen Linkern,<span><sup>15</sup></span> d. h., organischen Donor- und Akzeptor-Chromophoren, mit metallischen Ankergruppen gebildet.<span><sup>16</sup></span> Diese Materialien bieten gegenüber molekularen Festkörpern, die durch Selbstassemblierung gebildet werden, mehrere Vorteile: reduzierte Freiheitsgrade der Chromophore, die eine Verringerung der nichtradiativen Zerfallsprozesse ermöglichen;<span><sup>17</sup></span> peri","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"136 52","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202414526","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Anna-Lena J. Halbritter, Yasmin V. Gärtner, Jahongir Nabiev, Fabian Hernichel, Dr. Giacomo Ganazzoli, Dr. Dilara Özdemir, Dr. Aikaterini Pappa, Dr. Simon Veth, Dr. Samuele Stazzoni, Dr. Markus Müller, Prof. Dr. Veit Hornung, Prof. Dr. Thomas Carell
<p>Zyklische Dinukleotide, die ursprünglich in Bakterien entdeckt wurden, sind potente sekundäre Botenstoffe, die inzwischen sowohl in prokaryotischen als auch in eukaryotischen Zellen nachgewiesen wurden.<span><sup>1, 2</sup></span> Kürzlich wurde beobachtet, dass die Präsenz von pathogener DNA im Zytosol, entweder als Reaktion auf eine Virusinfektion oder aufgrund der Freisetzung von Kern- oder Mitochondrien-DNA, zur Bildung des zyklischen Dinukleotids 2′3′-zyklisches Guanosinmonophosphat-Adenosinmonophosphat (cGAMP) führt (<b>1</b>, Abbildung 1A).<span><sup>3</sup></span> Das Molekül wird durch das Enzym Guanosinmonophosphat-Adenosinmonophosphat-Synthase (cGAS) nach dessen Bindung an DNA gebildet. cGAS zyklisiert ein Adenosintriphosphat und ein Guanosintriphosphat zu einem zyklischen Dinukleotid mit einer 2′-5′- und einer 3′-5′-Phosphodiesterbindung. Diese im Zytosol gebildete Struktur enthält zwei negative Ladungen. Es bindet eng an ein Transmembranprotein des endoplasmatischen Retikulums, den <i>Stimulator der Interferon-Gene</i> (STING), um eine angeborene Immunantwort auszulösen, die auf den angegriffenen Zustand der Zelle reagiert.<span><sup>4-6</sup></span>