首页 > 最新文献

Angewandte Chemie最新文献

英文 中文
All-in-One Molecule Regulated Buried Interface and Crystallization of Tin–Lead Perovskite for Efficient All-Perovskite Tandem Solar Cells 高效全钙钛矿串联太阳能电池中全分子调控的锡铅钙钛矿埋藏界面和结晶
Pub Date : 2025-11-28 DOI: 10.1002/ange.202518800
Xiaonan Jin, Jiupeng Cao, Shunan Sui, Jiankai Xie, Wenjian Yan, Lingui Han, Jibiao Duan, Meizhu Hu, Huihui Zhang, Fangfang Wang, Jingjin Dong, Aifei Wang, Weihao Yuan, Wei Huang, Tianshi Qin

Mixed tin–lead (Sn–Pb) perovskite solar cells (PSCs) are critical for advancing all–perovskite tandem solar technologies, as they resolve the efficiency limitations of single-junction devices. However, the widely used hole transport layer (HTL) poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) restricts performance and durability due to its acidic nature and moisture absorption. Additionally, the rapid crystallization of Sn-containing perovskites hinders the fabrication of uniform, high-quality mixed SnPb perovskite films. To address these challenges, this study incorporates 4-sulfophthalic acid triammonium salt (SATS) as a multifunctional additive into both the PEDOT:PSS layer and perovskite precursor solution. SATS modifies the physicochemical properties of PEDOT:PSS and slows perovskite crystallization, promoting films with enhanced crystallinity. Through these synergistic effects, the optimized single-junction SnPb PSCs achieve a power conversion efficiency (PCE) of 23.85%. Integrating these devices into two-terminal all-perovskite tandem architectures further delivers a remarkable efficiency of 28.74%.

混合锡铅(Sn-Pb)钙钛矿太阳能电池(PSCs)对于推进全钙钛矿串联太阳能技术至关重要,因为它们解决了单结设备的效率限制。然而,广泛使用的空穴传输层(HTL)聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)由于其酸性和吸湿性,限制了性能和耐用性。此外,含锡钙钛矿的快速结晶阻碍了均匀、高质量的混合SnPb钙钛矿薄膜的制备。为了解决这些问题,本研究将4-磺化邻苯二甲酸三铵盐(SATS)作为多功能添加剂加入到PEDOT:PSS层和钙钛矿前驱体溶液中。SATS改变PEDOT:PSS的物理化学性质,减缓钙钛矿结晶,促进薄膜结晶度增强。通过这些协同效应,优化后的单结SnPb PSCs的功率转换效率(PCE)达到23.85%。将这些器件集成到双端全钙钛矿串联架构中,进一步提供了28.74%的显着效率。
{"title":"All-in-One Molecule Regulated Buried Interface and Crystallization of Tin–Lead Perovskite for Efficient All-Perovskite Tandem Solar Cells","authors":"Xiaonan Jin,&nbsp;Jiupeng Cao,&nbsp;Shunan Sui,&nbsp;Jiankai Xie,&nbsp;Wenjian Yan,&nbsp;Lingui Han,&nbsp;Jibiao Duan,&nbsp;Meizhu Hu,&nbsp;Huihui Zhang,&nbsp;Fangfang Wang,&nbsp;Jingjin Dong,&nbsp;Aifei Wang,&nbsp;Weihao Yuan,&nbsp;Wei Huang,&nbsp;Tianshi Qin","doi":"10.1002/ange.202518800","DOIUrl":"https://doi.org/10.1002/ange.202518800","url":null,"abstract":"<p>Mixed tin–lead (Sn–Pb) perovskite solar cells (PSCs) are critical for advancing all–perovskite tandem solar technologies, as they resolve the efficiency limitations of single-junction devices. However, the widely used hole transport layer (HTL) poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) restricts performance and durability due to its acidic nature and moisture absorption. Additionally, the rapid crystallization of Sn-containing perovskites hinders the fabrication of uniform, high-quality mixed SnPb perovskite films. To address these challenges, this study incorporates 4-sulfophthalic acid triammonium salt (SATS) as a multifunctional additive into both the PEDOT:PSS layer and perovskite precursor solution. SATS modifies the physicochemical properties of PEDOT:PSS and slows perovskite crystallization, promoting films with enhanced crystallinity. Through these synergistic effects, the optimized single-junction SnPb PSCs achieve a power conversion efficiency (PCE) of 23.85%. Integrating these devices into two-terminal all-perovskite tandem architectures further delivers a remarkable efficiency of 28.74%.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145964400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Etter Revised: Graph-Set Analysis for Supramolecular Patterns in Molecular Crystals* 改稿:分子晶体中超分子模式的图集分析*
Pub Date : 2025-11-28 DOI: 10.1002/ange.202516614
Dr. Dejan-Krešimir Bučar

A modification to Etter's graph-set notation for hydrogen-bond patterns in molecular crystals is proposed to enable the classification of supramolecular patterns based on any type of non-covalent interaction (such as hydrogen, halogen, chalcogen, pnictogen, and tetrel bonding). It is recommended that the modified notation be applied to supramolecular patterns based on interactions other than hydrogen bonds, while retaining the original notation for patterns based solely on hydrogen bonds.

提出了对分子晶体中氢键模式的Etter图集符号的修改,以便基于任何类型的非共价相互作用(如氢、卤素、硫、烟原和四键)对超分子模式进行分类。建议将修改后的符号应用于基于氢键以外的相互作用的超分子模式,同时保留仅基于氢键的原始符号。
{"title":"Etter Revised: Graph-Set Analysis for Supramolecular Patterns in Molecular Crystals*","authors":"Dr. Dejan-Krešimir Bučar","doi":"10.1002/ange.202516614","DOIUrl":"https://doi.org/10.1002/ange.202516614","url":null,"abstract":"<p>A modification to Etter's graph-set notation for hydrogen-bond patterns in molecular crystals is proposed to enable the classification of supramolecular patterns based on any type of non-covalent interaction (such as hydrogen, halogen, chalcogen, pnictogen, and tetrel bonding). It is recommended that the modified notation be applied to supramolecular patterns based on interactions other than hydrogen bonds, while retaining the original notation for patterns based solely on hydrogen bonds.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 52","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145843003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transferring Porosity Across Physical States Using Metal–Organic Cages: Porous Liquids, Glasses, Rubbers, and More 使用金属有机笼在物理状态上转移孔隙度:多孔液体,玻璃,橡胶等
Pub Date : 2025-11-28 DOI: 10.1002/ange.202521455
Francisco Sánchez-Férez, Arnau Carné-Sánchez, Daniel Maspoch

The development of porous materials that retain tailored porosity across different physical states beyond crystalline solids (e.g., liquid or glassy) could yield new functional materials for diverse applications, yet it remains challenging. To address this, researchers have turned to discrete porous cages such as metal–organic cages (MOCs) and metal–organic polyhedra (MOPs). The organization and physical state of these materials are governed by inter-cage interactions that can be modulated without altering the intrinsic porosity of the individual cages. In this minireview, we highlight how the peripheral functionality of such cages governs their interactions and physical state and explain how it can be harnessed to preserve and transfer porosity across distinct physical states, including liquids, glasses, and rubbers. We conclude by outlining emerging properties and potential applications for the resultant unique porous states.

除了晶体固体(如液体或玻璃状)之外,多孔材料在不同物理状态下保持定制孔隙度的开发可以为各种应用产生新的功能材料,但它仍然具有挑战性。为了解决这个问题,研究人员转向离散多孔笼,如金属有机笼(moc)和金属有机多面体(MOPs)。这些材料的组织和物理状态由笼间相互作用控制,这种相互作用可以在不改变单个笼的固有孔隙度的情况下进行调节。在这篇小型综述中,我们强调了这些笼的外围功能如何控制它们的相互作用和物理状态,并解释了如何利用它来保存和转移不同物理状态(包括液体、玻璃和橡胶)的孔隙度。最后,我们概述了所产生的独特多孔态的新特性和潜在应用。
{"title":"Transferring Porosity Across Physical States Using Metal–Organic Cages: Porous Liquids, Glasses, Rubbers, and More","authors":"Francisco Sánchez-Férez,&nbsp;Arnau Carné-Sánchez,&nbsp;Daniel Maspoch","doi":"10.1002/ange.202521455","DOIUrl":"https://doi.org/10.1002/ange.202521455","url":null,"abstract":"<p>The development of porous materials that retain tailored porosity across different physical states beyond crystalline solids (<i>e.g</i>., liquid or glassy) could yield new functional materials for diverse applications, yet it remains challenging. To address this, researchers have turned to discrete porous cages such as metal–organic cages (MOCs) and metal–organic polyhedra (MOPs). The organization and physical state of these materials are governed by inter-cage interactions that can be modulated without altering the intrinsic porosity of the individual cages. In this minireview, we highlight how the peripheral functionality of such cages governs their interactions and physical state and explain how it can be harnessed to preserve and transfer porosity across distinct physical states, including liquids, glasses, and rubbers. We conclude by outlining emerging properties and potential applications for the resultant unique porous states.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202521455","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145905203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Back Cover: Optical Switching of Catalytic Pathways for Hydrogen Generation via Light-Handedness Control on Chiral Nanostructures (Angew. Chem. 52/2025) 外后盖:通过手性纳米结构的光手性控制催化制氢途径的光开关(新)。化学52/2025)
Pub Date : 2025-11-27 DOI: 10.1002/ange.2025-m2111092000
Qingli Wang, Jiahong Liu, Shouyuan Li, Shuaikun Ji, Caiwei Zhang, Junting Wang, Jiatao Zhang, Yiou Wang

Circularly polarized light orchestrates a chiral symphony on Au@CdS nanocatalysts, guiding electrons by the rhythm of handedness. When light and the catalyst share the same chirality, spin-aligned carriers flow to produce hydrogen photocatalytically. When this harmony is disrupted, recombination converts energy into heat, revealing a photothermal pathway for hydrogen evolution. More in the Research Article (e202517047) by Jiatao Zhang, Yiou Wang, and co-workers.

圆偏振光在Au@CdS纳米催化剂上编排出手性交响乐,通过手性的节奏引导电子。当光和催化剂具有相同的手性时,自旋排列的载流子流动,光催化产生氢。当这种和谐被破坏时,重组将能量转化为热量,揭示了氢演化的光热途径。更多内容见张家涛、王瑶及其同事的研究文章(e202517047)。
{"title":"Outside Back Cover: Optical Switching of Catalytic Pathways for Hydrogen Generation via Light-Handedness Control on Chiral Nanostructures (Angew. Chem. 52/2025)","authors":"Qingli Wang,&nbsp;Jiahong Liu,&nbsp;Shouyuan Li,&nbsp;Shuaikun Ji,&nbsp;Caiwei Zhang,&nbsp;Junting Wang,&nbsp;Jiatao Zhang,&nbsp;Yiou Wang","doi":"10.1002/ange.2025-m2111092000","DOIUrl":"https://doi.org/10.1002/ange.2025-m2111092000","url":null,"abstract":"<p>Circularly polarized light orchestrates a chiral symphony on Au@CdS nanocatalysts, guiding electrons by the rhythm of handedness. When light and the catalyst share the same chirality, spin-aligned carriers flow to produce hydrogen photocatalytically. When this harmony is disrupted, recombination converts energy into heat, revealing a photothermal pathway for hydrogen evolution. More in the Research Article (e202517047) by Jiatao Zhang, Yiou Wang, and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 52","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.2025-m2111092000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145848383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA-Lebendzellmikroskopie via click-funktionalisierter TriPPPro Nucleotid-Reporter RNA活细胞显微镜通过点击功能TriPPPro核苷酸报告器
Pub Date : 2025-11-27 DOI: 10.1002/ange.202516613
J. Iven H. Knaack, Eileen List, Dörte Stalling, Dr. Vincente T. Sterrenberg, Prof. Dr. Chris Meier, Prof. Dr. Hans-Achim Wagenknecht, Prof. Dr. Jens B. Bosse

Die intrazelluläre Zufuhr von trans-Cycloocten und Bicyclo[6.1.0]nonin als sterisch anspruchsvolle Gruppen für die Diels–Alder-Reaktion mit inversem Elektronenbedarf wurde durch die Triphosphat-Prodrug-Strategie (TriPPPro) erreicht. Nach der Hydrolyse innerhalb der Zelle werden die modifizierten Uridine und Cytidine metabolisch in die neu entstehende RNA eingebaut und mit einem doppelt-fluorogenen Tetrazin-Farbstoff markiert, um eine waschfreie, kontrastreiche Bildgebung der RNA Synthese in Zellen zu ermöglichen.

使用三磷酸前体药物策略(TriPPPro)实现了反式环辛烷和双环[6.1.0]壬烯作为空间要求高的Diels - Alder反应基团,具有反向电子需求。在细胞内水解后,修饰过的尿嘧啶和胞嘧啶被代谢地整合到新生的RNA中,并被双氟四嗪染料标记,使细胞内RNA合成的免洗、高对比度成像成为可能。
{"title":"RNA-Lebendzellmikroskopie via click-funktionalisierter TriPPPro Nucleotid-Reporter","authors":"J. Iven H. Knaack,&nbsp;Eileen List,&nbsp;Dörte Stalling,&nbsp;Dr. Vincente T. Sterrenberg,&nbsp;Prof. Dr. Chris Meier,&nbsp;Prof. Dr. Hans-Achim Wagenknecht,&nbsp;Prof. Dr. Jens B. Bosse","doi":"10.1002/ange.202516613","DOIUrl":"https://doi.org/10.1002/ange.202516613","url":null,"abstract":"<p>Die intrazelluläre Zufuhr von <i>trans</i>-Cycloocten und Bicyclo[6.1.0]nonin als sterisch anspruchsvolle Gruppen für die Diels–Alder-Reaktion mit inversem Elektronenbedarf wurde durch die Triphosphat-Prodrug-Strategie (Tri<i>PPP</i>ro) erreicht. Nach der Hydrolyse innerhalb der Zelle werden die modifizierten Uridine und Cytidine metabolisch in die neu entstehende RNA eingebaut und mit einem doppelt-fluorogenen Tetrazin-Farbstoff markiert, um eine waschfreie, kontrastreiche Bildgebung der RNA Synthese in Zellen zu ermöglichen. \u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202516613","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145964438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inside Front Cover: Topological Duality: Constructing High-Nuclearity Metal Clusters with Unleashed Active Sites for Efficient and Durable CO2 Electroreduction (Angew. Chem. 52/2025) 内封面:拓扑二元性:构建高核金属簇与释放的活性位点有效和持久的二氧化碳电还原。化学52/2025)
Pub Date : 2025-11-27 DOI: 10.1002/ange.2025-m2111091400
Dr. Wei Li, Dr. Dongxu Cui, Ao Yang, Dr. Changyan Zhu, Yuxiao Zhang, Dr. Fanfei Meng, Prof. Dr. Xinlong Wang, Prof.Dr. Zhongmin Su, Prof. Chi-Ming Che, Prof.Dr. Chunyi Sun

Topological duality offers a novel paradigm for designing catalysts with both high activity and stability. In their Research Article (e202516704), Zhongmin Su, Chunyi Sun, and co-workers report a Cu24Ag54 nanocluster, featuring a double-truncated cubic {Ag54} core with exposed {Ag3} units encapsulated within an octahedral {Cu24} shell, achieving high Faradaic efficiency at high current density along with excellent durability towards electrochemical CO2 reduction coupled with Cl oxidation.

拓扑对偶性为设计具有高活性和稳定性的催化剂提供了一种新的范例。在他们的研究论文(e202516704)中,苏仲民、孙春义和同事报告了一种Cu24Ag54纳米团簇,其特点是双截短的立方{Ag54}核,暴露的{Ag3}单元封装在八面体{Cu24}壳中,在高电流密度下具有很高的法拉第效率,并且具有优异的电化学CO2还原和Cl -氧化的耐用性。
{"title":"Inside Front Cover: Topological Duality: Constructing High-Nuclearity Metal Clusters with Unleashed Active Sites for Efficient and Durable CO2 Electroreduction (Angew. Chem. 52/2025)","authors":"Dr. Wei Li,&nbsp;Dr. Dongxu Cui,&nbsp;Ao Yang,&nbsp;Dr. Changyan Zhu,&nbsp;Yuxiao Zhang,&nbsp;Dr. Fanfei Meng,&nbsp;Prof. Dr. Xinlong Wang,&nbsp;Prof.Dr. Zhongmin Su,&nbsp;Prof. Chi-Ming Che,&nbsp;Prof.Dr. Chunyi Sun","doi":"10.1002/ange.2025-m2111091400","DOIUrl":"https://doi.org/10.1002/ange.2025-m2111091400","url":null,"abstract":"<p>Topological duality offers a novel paradigm for designing catalysts with both high activity and stability. In their Research Article (e202516704), Zhongmin Su, Chunyi Sun, and co-workers report a Cu<sub>24</sub>Ag<sub>54</sub> nanocluster, featuring a double-truncated cubic {Ag<sub>54</sub>} core with exposed {Ag<sub>3</sub>} units encapsulated within an octahedral {Cu<sub>24</sub>} shell, achieving high Faradaic efficiency at high current density along with excellent durability towards electrochemical CO<sub>2</sub> reduction coupled with Cl<sup>–</sup> oxidation.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"137 52","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.2025-m2111091400","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145825168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Fortification of FeS Clusters Reshapes Anaerobic CO Dehydrogenase into an Air-Viable Enzyme Through Multilayered Sealing of O2 Tunnels” 更正“强化FeS簇通过多层密封O2隧道将厌氧CO脱氢酶重塑为空气活酶”
Pub Date : 2025-11-26 DOI: 10.1002/ange.202525453

Angew. Chem. Int. Ed. 2025, 64, e202508565, https://doi.org/10.1002/ange.202508565

In Table 1 of the main text and Table S5 of the Supporting Information, several kinetic parameters (kcat, Km, and kcat/Km) contained numerical inconsistencies caused by rounding and formatting during data tabulation. All values have been recalculated using the original raw data, and the corrected tables are provided at the end of this document as corrected Table 1 and corrected Table S5.

These updated values are also reflected in the following revised sentences on page 3 of the main text.

The original text,

“The normalized catalytic efficiency (kcatn/Km) for CO was 100 000 s−1·mM−1 in A559W/V610H, comparable to 126 000 s−1·mM−1 in A559W. Similarly, A559H/V610H showed a catalytic efficiency of 55 000 s−1·mM−1 for CO”

Was updated as:

“…comparable to 128 000 s−1·mM−1 in A559W…”

“…showed a catalytic efficiency of 54 000 s−1·mM−1…”

These corrections do not affect the results or conclusions of the article.

The authors apologize for these errors.

Corrected Table 1 (main text)

Corrected Table S5 (Supporting Information)

Angew。化学。Int。编辑:2025,64,e202508565, https://doi.org/10.1002/ange.202508565In正文表1和支持信息表S5中,几个动力学参数(kcat, Km, kcat/Km)在数据制表过程中由于舍入和格式化导致数值不一致。所有数值均使用原始数据重新计算,并在本文末尾提供了更正表1和更正表S5。这些更新的数值也反映在正文第3页的下列订正句子中。原文:“在A559W/V610H中,CO的归一化催化效率(kcatn/Km)为100,000 s−1·mM−1,而在A559W中为126 000 s−1·mM−1。类似地,A559H/V610H对CO的催化效率为55000 s−1·mM−1”被更新为:“…与A559W中的128000 s−1·mM−1相当…”“…的催化效率为54000 s−1·mM−1…”这些更正不影响文章的结果或结论。作者为这些错误道歉。更正表1(正文)更正表S5(支持信息)
{"title":"Correction to “Fortification of FeS Clusters Reshapes Anaerobic CO Dehydrogenase into an Air-Viable Enzyme Through Multilayered Sealing of O2 Tunnels”","authors":"","doi":"10.1002/ange.202525453","DOIUrl":"https://doi.org/10.1002/ange.202525453","url":null,"abstract":"<p><i>Angew. Chem. Int. Ed</i>. <b>2025</b>, <i>64</i>, e202508565, https://doi.org/10.1002/ange.202508565</p><p>In Table 1 of the main text and Table S5 of the Supporting Information, several kinetic parameters (<i>k</i><sub>cat</sub>, <i>K</i><sub><span>m</span></sub>, and <i>k</i><sub>cat</sub>/<i>K</i><sub><span>m</span></sub>) contained numerical inconsistencies caused by rounding and formatting during data tabulation. All values have been recalculated using the original raw data, and the corrected tables are provided at the end of this document as corrected Table 1 and corrected Table S5.</p><p>These updated values are also reflected in the following revised sentences on page 3 of the main text.</p><p>The original text,</p><p>“The normalized catalytic efficiency (<i>k</i><sub>cat</sub><sup>n</sup>/<i>K</i><sub><span>m</span></sub>) for CO was 100 000 s<sup>−1</sup>·mM<sup>−1</sup> in A559W/V610H, comparable to 126 000 s<sup>−1</sup>·mM<sup>−1</sup> in A559W. Similarly, A559H/V610H showed a catalytic efficiency of 55 000 s<sup>−1</sup>·mM<sup>−1</sup> for CO”</p><p>Was updated as:</p><p>“…comparable to 128 000 s<sup>−1</sup>·mM<sup>−1</sup> in A559W…”</p><p>“…showed a catalytic efficiency of 54 000 s<sup>−1</sup>·mM<sup>−1</sup>…”</p><p>These corrections do not affect the results or conclusions of the article.</p><p>The authors apologize for these errors.</p><p>Corrected Table 1 (main text)</p><p>Corrected Table S5 (Supporting Information)</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202525453","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145993912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing Structure Elucidation with a Flexible Multi-Spectral AI Model 基于柔性多光谱AI模型的结构解析
Pub Date : 2025-11-26 DOI: 10.1002/ange.202517611
Dr. Martin Priessner, Dr. Richard J. Lewis, Isak Lemurell, Prof. Magnus J. Johansson, Prof. JonathanM. Goodman, Dr. Jon Paul Janet, Dr. Anna Tomberg

Validating chemical synthesis success requires confirming the desired product using various analytical techniques. While spectroscopic data collection is increasingly automated, interpreting results remains a major bottleneck, often requiring expert input. With advances in laboratory automation and high-throughput synthesis, this challenge is expected to intensify. We introduce the MultiModalSpectralTransformer (MMST), a machine learning method that predicts chemical structures directly from diverse spectral data (NMR, IR, and MS). Trained on 4 million simulated compounds, MMST achieves 72% and 80% as top-1 and top-3 accuracy, respectively. To address out-of-distribution challenges, we implemented an active learning improvement cycle that generates molecules in similar chemical spaces, enabling the model to adapt to chemical structures beyond its original training data. We demonstrate MMST's capabilities through comprehensive benchmarking across diverse molecular weight ranges and chemical spaces. Notably, despite training solely on simulated data, MMST demonstrates good performance with experimental spectra. This research represents a significant advancement in automated structure elucidation, offering a powerful and adaptable tool that bridges the gap between simulated and real-world data.

验证化学合成的成功需要使用各种分析技术确认所需的产物。虽然光谱数据收集越来越自动化,但解释结果仍然是一个主要瓶颈,通常需要专家的输入。随着实验室自动化和高通量合成技术的进步,这一挑战预计会加剧。我们介绍了MultiModalSpectralTransformer (MMST),这是一种机器学习方法,可以直接从不同的光谱数据(NMR, IR和MS)中预测化学结构。在400万个模拟化合物的训练下,MMST的准确率分别达到72%和80%,排名前1和前3。为了解决分布外的挑战,我们实施了一个主动学习改进周期,在相似的化学空间中生成分子,使模型能够适应原始训练数据之外的化学结构。我们通过在不同分子量范围和化学空间进行全面的基准测试来展示MMST的能力。值得注意的是,尽管仅在模拟数据上进行训练,MMST在实验光谱上表现出良好的性能。这项研究代表了自动化结构解析的重大进步,提供了一个强大而适应性强的工具,弥合了模拟和现实世界数据之间的差距。
{"title":"Advancing Structure Elucidation with a Flexible Multi-Spectral AI Model","authors":"Dr. Martin Priessner,&nbsp;Dr. Richard J. Lewis,&nbsp;Isak Lemurell,&nbsp;Prof. Magnus J. Johansson,&nbsp;Prof. JonathanM. Goodman,&nbsp;Dr. Jon Paul Janet,&nbsp;Dr. Anna Tomberg","doi":"10.1002/ange.202517611","DOIUrl":"https://doi.org/10.1002/ange.202517611","url":null,"abstract":"<p>Validating chemical synthesis success requires confirming the desired product using various analytical techniques. While spectroscopic data collection is increasingly automated, interpreting results remains a major bottleneck, often requiring expert input. With advances in laboratory automation and high-throughput synthesis, this challenge is expected to intensify. We introduce the MultiModalSpectralTransformer (MMST), a machine learning method that predicts chemical structures directly from diverse spectral data (NMR, IR, and MS). Trained on 4 million simulated compounds, MMST achieves 72% and 80% as top-1 and top-3 accuracy, respectively. To address out-of-distribution challenges, we implemented an active learning improvement cycle that generates molecules in similar chemical spaces, enabling the model to adapt to chemical structures beyond its original training data. We demonstrate MMST's capabilities through comprehensive benchmarking across diverse molecular weight ranges and chemical spaces. Notably, despite training solely on simulated data, MMST demonstrates good performance with experimental spectra. This research represents a significant advancement in automated structure elucidation, offering a powerful and adaptable tool that bridges the gap between simulated and real-world data.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202517611","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145964301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mirco Dindo 商是
Pub Date : 2025-11-24 DOI: 10.1002/ange.202525219
Mirco Dindo

I would have liked to have discovered ribozymes, the realization that RNA can be both information and catalyst is fascinating… If I could be any age, I would like to be exactly where I am now because despite the challenges, I'm finally building something that's truly mine…”

Find out more about Mirco Dindo in his Introducing… Profile.

“我本想发现核糖酶,意识到RNA可以既是信息又是催化剂是令人着迷的……如果我可以在任何年龄,我希望我现在所处的位置,因为尽管面临挑战,我终于建立了真正属于我的东西……”
{"title":"Mirco Dindo","authors":"Mirco Dindo","doi":"10.1002/ange.202525219","DOIUrl":"https://doi.org/10.1002/ange.202525219","url":null,"abstract":"<p>“<i>I would have liked to have discovered ribozymes, the realization that RNA can be both information and catalyst is fascinating… If I could be any age, I would like to be exactly where I am now because despite the challenges, I'm finally building something that's truly mine…”</i></p><p>Find out more about Mirco Dindo in his Introducing… Profile.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202525219","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145909355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Back Cover: Industrial-Grade H2O2 Electrosynthesis via N/O-Doped Hierarchically Porous Carbon Nanoreactors with Remarkable Yield and Stability (Angew. Chem. 2/2026) 外后盖:工业级H2O2电合成通过N/ o掺杂分层多孔碳纳米反应器具有显着的产量和稳定性。化学2/2026)
Pub Date : 2025-11-24 DOI: 10.1002/ange.2025-m1711063300
Hongnan Du, Dr. Haitao Li, Dr. Huijuan Jing, Dr. Tianyi Liu, Dr. Zichen Xu, Dr. Chenyang Li, Yunyun Xu, Zijian Tan, Xiaolu Tang, Dr. Cheng Tang, Prof. Jian Liu, Prof. Zhong-Shuai Wu

Integrating elemental doping and morphological engineering enhances the two-electron oxygen reduction reaction (2e ORR) performance of carbon electrocatalysts, as reported by Cheng Tang, Jian Liu, Zhong-Shuai Wu, and co-workers in the Research Article (e202519013). N/O dual-doping optimizes the adsorption strength of intermediates, while hierarchical pores improve mass transfer and suppress H2O2 decomposition. These effects inhibit the competitive 4e pathway, enabling sustainable H2O2 production with remarkable performance at industrial-grade current densities.

结合元素掺杂和形态工程提高碳电催化剂的双电子氧还原反应(2e - ORR)性能,研究报告:唐成,刘健,吴忠帅等,发表于论文e202519013。N/O双掺杂优化了中间体的吸附强度,分层孔隙改善了传质,抑制了H2O2的分解。这些效应抑制了竞争性的4e -通路,在工业级电流密度下实现可持续的H2O2生产,并具有显著的性能。
{"title":"Outside Back Cover: Industrial-Grade H2O2 Electrosynthesis via N/O-Doped Hierarchically Porous Carbon Nanoreactors with Remarkable Yield and Stability (Angew. Chem. 2/2026)","authors":"Hongnan Du,&nbsp;Dr. Haitao Li,&nbsp;Dr. Huijuan Jing,&nbsp;Dr. Tianyi Liu,&nbsp;Dr. Zichen Xu,&nbsp;Dr. Chenyang Li,&nbsp;Yunyun Xu,&nbsp;Zijian Tan,&nbsp;Xiaolu Tang,&nbsp;Dr. Cheng Tang,&nbsp;Prof. Jian Liu,&nbsp;Prof. Zhong-Shuai Wu","doi":"10.1002/ange.2025-m1711063300","DOIUrl":"https://doi.org/10.1002/ange.2025-m1711063300","url":null,"abstract":"<p>Integrating elemental doping and morphological engineering enhances the two-electron oxygen reduction reaction (2e<sup>–</sup> ORR) performance of carbon electrocatalysts, as reported by Cheng Tang, Jian Liu, Zhong-Shuai Wu, and co-workers in the Research Article (e202519013). N/O dual-doping optimizes the adsorption strength of intermediates, while hierarchical pores improve mass transfer and suppress H<sub>2</sub>O<sub>2</sub> decomposition. These effects inhibit the competitive 4e<sup>–</sup> pathway, enabling sustainable H<sub>2</sub>O<sub>2</sub> production with remarkable performance at industrial-grade current densities.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.2025-m1711063300","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145964298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Angewandte Chemie
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1