Zhenpeng Liu, Shangqi Zhou, Sanyin Yang, Jun Bu, Jin Lin, Lixin Xia, Wenxiu Ma, Prof. Jian Zhang
Electrocatalytic reductive dehydroxylation is a promising strategy for sustainable synthesis of commodity and high-value-added chemicals but remains a formidable challenge due to the high dissociation energy of C─OH bond. Here, we report a selectively electrocatalytic reductive dehydroxylation of 1,4-butenediol (BED) to produce 3-buten-1-ol (BTO) over Cu nanowire arrays (Cu NWAs) under ambient conditions. A high BED conversion of ∼90.5% and a BTO selectivity of ∼80.2% are achieved at –0.9 V versus RHE. Even in a large-scale two-electrode H-type elecrolyser (1 L), the Cu NWAs stably exhibit a BED conversion of ≥ 92.3%, a BTO selectivity of ≥ 82.7%, and a BTO production rate of 190.8 mmol·gcat−1·h−1 at an industrial current density of 200 mA cm−2. Experimental and theoretical investigations reveal that the Cu surface facilitates the dissociation of C─OH bond in BED and the desorption of BTO, which thus promotes the selective dehydroxylation of BED to BTO. This work highlights a sustainable and efficient strategy for producing high-value-added chemicals.
电催化还原脱羟基是一种有前景的可持续合成商品和高附加值化学品的策略,但由于C─OH键的高解离能,仍然是一个艰巨的挑战。在这里,我们报道了在环境条件下,通过Cu纳米线阵列(Cu NWAs)选择性电催化1,4-丁烯二醇(BED)还原去羟基化生成3-丁烯-1-醇(BTO)。与RHE相比,在-0.9 V下实现了~ 90.5%的高BED转化率和~ 80.2%的BTO选择性。即使在大型双电极h型电解槽(1 L)中,在工业电流密度为200 mA cm−2时,Cu NWAs的BED转化率≥92.3%,BTO选择性≥82.7%,BTO产率为190.8 mmol·gcat−1·h−1。实验和理论研究表明,Cu表面有利于BED中C─OH键的解离和BTO的脱附,从而促进BED选择性脱羟基生成BTO。这项工作强调了生产高附加值化学品的可持续和有效战略。
{"title":"Selectively Electrocatalytic Reductive Dehydroxylation of 2-butene-1,4-diol to 3-buten-1-ol over Cu Nanowire Arrays at Industrial Current Densities","authors":"Zhenpeng Liu, Shangqi Zhou, Sanyin Yang, Jun Bu, Jin Lin, Lixin Xia, Wenxiu Ma, Prof. Jian Zhang","doi":"10.1002/ange.202525179","DOIUrl":"https://doi.org/10.1002/ange.202525179","url":null,"abstract":"<p>Electrocatalytic reductive dehydroxylation is a promising strategy for sustainable synthesis of commodity and high-value-added chemicals but remains a formidable challenge due to the high dissociation energy of C─OH bond. Here, we report a selectively electrocatalytic reductive dehydroxylation of 1,4-butenediol (BED) to produce 3-buten-1-ol (BTO) over Cu nanowire arrays (Cu NWAs) under ambient conditions. A high BED conversion of ∼90.5% and a BTO selectivity of ∼80.2% are achieved at –0.9 V versus RHE. Even in a large-scale two-electrode H-type elecrolyser (1 L), the Cu NWAs stably exhibit a BED conversion of ≥ 92.3%, a BTO selectivity of ≥ 82.7%, and a BTO production rate of 190.8 mmol<sub>·</sub>g<sub>cat</sub><sup>−1</sup><sub>·</sub>h<sup>−1</sup> at an industrial current density of 200 mA cm<sup>−2</sup>. Experimental and theoretical investigations reveal that the Cu surface facilitates the dissociation of C─OH bond in BED and the desorption of BTO, which thus promotes the selective dehydroxylation of BED to BTO. This work highlights a sustainable and efficient strategy for producing high-value-added chemicals.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Maxime Hourtoule, Piotr Skumial, Sven Trienes, Hasret Can Gülen, Dr. Jian Zhang, Prof. Dr. Lutz Ackermann
Das synergistische Zusammenspiel von Elektrizität, Licht und leicht erhältlichen, ungiftigen Eisenkatalysatoren ermöglichte das effiziente Recycling von Polymerabfällen zu wertschöpfenden Produkten. Diese robuste Depolymerisationsstrategie war im Multigramm-Maßstab realisierbar, wobei die kathodische Wasserstoffentwicklungsreaktion eine attraktive Möglichkeit für eine umweltfreundliche Wasserstoffproduktion darstellt.