首页 > 最新文献

Angewandte Chemie最新文献

英文 中文
Selectively Electrocatalytic Reductive Dehydroxylation of 2-butene-1,4-diol to 3-buten-1-ol over Cu Nanowire Arrays at Industrial Current Densities 工业电流密度下铜纳米线阵列上2-丁烯-1,4-二醇选择性电催化还原去羟基化为3-丁烯-1-醇
Pub Date : 2026-01-07 DOI: 10.1002/ange.202525179
Zhenpeng Liu, Shangqi Zhou, Sanyin Yang, Jun Bu, Jin Lin, Lixin Xia, Wenxiu Ma, Prof. Jian Zhang

Electrocatalytic reductive dehydroxylation is a promising strategy for sustainable synthesis of commodity and high-value-added chemicals but remains a formidable challenge due to the high dissociation energy of C─OH bond. Here, we report a selectively electrocatalytic reductive dehydroxylation of 1,4-butenediol (BED) to produce 3-buten-1-ol (BTO) over Cu nanowire arrays (Cu NWAs) under ambient conditions. A high BED conversion of ∼90.5% and a BTO selectivity of ∼80.2% are achieved at –0.9 V versus RHE. Even in a large-scale two-electrode H-type elecrolyser (1 L), the Cu NWAs stably exhibit a BED conversion of ≥ 92.3%, a BTO selectivity of ≥ 82.7%, and a BTO production rate of 190.8 mmol·gcat−1·h−1 at an industrial current density of 200 mA cm−2. Experimental and theoretical investigations reveal that the Cu surface facilitates the dissociation of C─OH bond in BED and the desorption of BTO, which thus promotes the selective dehydroxylation of BED to BTO. This work highlights a sustainable and efficient strategy for producing high-value-added chemicals.

电催化还原脱羟基是一种有前景的可持续合成商品和高附加值化学品的策略,但由于C─OH键的高解离能,仍然是一个艰巨的挑战。在这里,我们报道了在环境条件下,通过Cu纳米线阵列(Cu NWAs)选择性电催化1,4-丁烯二醇(BED)还原去羟基化生成3-丁烯-1-醇(BTO)。与RHE相比,在-0.9 V下实现了~ 90.5%的高BED转化率和~ 80.2%的BTO选择性。即使在大型双电极h型电解槽(1 L)中,在工业电流密度为200 mA cm−2时,Cu NWAs的BED转化率≥92.3%,BTO选择性≥82.7%,BTO产率为190.8 mmol·gcat−1·h−1。实验和理论研究表明,Cu表面有利于BED中C─OH键的解离和BTO的脱附,从而促进BED选择性脱羟基生成BTO。这项工作强调了生产高附加值化学品的可持续和有效战略。
{"title":"Selectively Electrocatalytic Reductive Dehydroxylation of 2-butene-1,4-diol to 3-buten-1-ol over Cu Nanowire Arrays at Industrial Current Densities","authors":"Zhenpeng Liu,&nbsp;Shangqi Zhou,&nbsp;Sanyin Yang,&nbsp;Jun Bu,&nbsp;Jin Lin,&nbsp;Lixin Xia,&nbsp;Wenxiu Ma,&nbsp;Prof. Jian Zhang","doi":"10.1002/ange.202525179","DOIUrl":"https://doi.org/10.1002/ange.202525179","url":null,"abstract":"<p>Electrocatalytic reductive dehydroxylation is a promising strategy for sustainable synthesis of commodity and high-value-added chemicals but remains a formidable challenge due to the high dissociation energy of C─OH bond. Here, we report a selectively electrocatalytic reductive dehydroxylation of 1,4-butenediol (BED) to produce 3-buten-1-ol (BTO) over Cu nanowire arrays (Cu NWAs) under ambient conditions. A high BED conversion of ∼90.5% and a BTO selectivity of ∼80.2% are achieved at –0.9 V versus RHE. Even in a large-scale two-electrode H-type elecrolyser (1 L), the Cu NWAs stably exhibit a BED conversion of ≥ 92.3%, a BTO selectivity of ≥ 82.7%, and a BTO production rate of 190.8 mmol<sub>·</sub>g<sub>cat</sub><sup>−1</sup><sub>·</sub>h<sup>−1</sup> at an industrial current density of 200 mA cm<sup>−2</sup>. Experimental and theoretical investigations reveal that the Cu surface facilitates the dissociation of C─OH bond in BED and the desorption of BTO, which thus promotes the selective dehydroxylation of BED to BTO. This work highlights a sustainable and efficient strategy for producing high-value-added chemicals.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistische Effekte von Elektrizität und Licht für ein effizientes eisenkatalysiertes Recycling von Polystyrolabfällen 电和光对铁催化聚苯乙烯废物有效回收的协同作用
Pub Date : 2026-01-07 DOI: 10.1002/ange.202519237
Dr. Maxime Hourtoule, Piotr Skumial, Sven Trienes, Hasret Can Gülen, Dr. Jian Zhang, Prof. Dr. Lutz Ackermann

Das synergistische Zusammenspiel von Elektrizität, Licht und leicht erhältlichen, ungiftigen Eisenkatalysatoren ermöglichte das effiziente Recycling von Polymerabfällen zu wertschöpfenden Produkten. Diese robuste Depolymerisationsstrategie war im Multigramm-Maßstab realisierbar, wobei die kathodische Wasserstoffentwicklungsreaktion eine attraktive Möglichkeit für eine umweltfreundliche Wasserstoffproduktion darstellt.

电、光和容易获得的无毒铁催化剂的协同作用使聚合物废物能够有效地回收成增值产品。这种稳健的解聚策略在多克尺度上是可行的,而阴极氢发展反应是一种有吸引力的环保氢生产方法。
{"title":"Synergistische Effekte von Elektrizität und Licht für ein effizientes eisenkatalysiertes Recycling von Polystyrolabfällen","authors":"Dr. Maxime Hourtoule,&nbsp;Piotr Skumial,&nbsp;Sven Trienes,&nbsp;Hasret Can Gülen,&nbsp;Dr. Jian Zhang,&nbsp;Prof. Dr. Lutz Ackermann","doi":"10.1002/ange.202519237","DOIUrl":"https://doi.org/10.1002/ange.202519237","url":null,"abstract":"<p>Das synergistische Zusammenspiel von Elektrizität, Licht und leicht erhältlichen, ungiftigen Eisenkatalysatoren ermöglichte das effiziente Recycling von Polymerabfällen zu wertschöpfenden Produkten. Diese robuste Depolymerisationsstrategie war im Multigramm-Maßstab realisierbar, wobei die kathodische Wasserstoffentwicklungsreaktion eine attraktive Möglichkeit für eine umweltfreundliche Wasserstoffproduktion darstellt.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202519237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistische Effekte von Elektrizität und Licht für ein effizientes eisenkatalysiertes Recycling von Polystyrolabfällen 电和光对铁催化聚苯乙烯废物有效回收的协同作用
Pub Date : 2026-01-07 DOI: 10.1002/ange.202519237
Dr. Maxime Hourtoule, Piotr Skumial, Sven Trienes, Hasret Can Gülen, Dr. Jian Zhang, Prof. Dr. Lutz Ackermann

Das synergistische Zusammenspiel von Elektrizität, Licht und leicht erhältlichen, ungiftigen Eisenkatalysatoren ermöglichte das effiziente Recycling von Polymerabfällen zu wertschöpfenden Produkten. Diese robuste Depolymerisationsstrategie war im Multigramm-Maßstab realisierbar, wobei die kathodische Wasserstoffentwicklungsreaktion eine attraktive Möglichkeit für eine umweltfreundliche Wasserstoffproduktion darstellt.

电、光和容易获得的无毒铁催化剂的协同作用使聚合物废物能够有效地回收成增值产品。这种稳健的解聚策略在多克尺度上是可行的,而阴极氢发展反应是一种有吸引力的环保氢生产方法。
{"title":"Synergistische Effekte von Elektrizität und Licht für ein effizientes eisenkatalysiertes Recycling von Polystyrolabfällen","authors":"Dr. Maxime Hourtoule,&nbsp;Piotr Skumial,&nbsp;Sven Trienes,&nbsp;Hasret Can Gülen,&nbsp;Dr. Jian Zhang,&nbsp;Prof. Dr. Lutz Ackermann","doi":"10.1002/ange.202519237","DOIUrl":"https://doi.org/10.1002/ange.202519237","url":null,"abstract":"<p>Das synergistische Zusammenspiel von Elektrizität, Licht und leicht erhältlichen, ungiftigen Eisenkatalysatoren ermöglichte das effiziente Recycling von Polymerabfällen zu wertschöpfenden Produkten. Diese robuste Depolymerisationsstrategie war im Multigramm-Maßstab realisierbar, wobei die kathodische Wasserstoffentwicklungsreaktion eine attraktive Möglichkeit für eine umweltfreundliche Wasserstoffproduktion darstellt.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202519237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Engineering of the Prototypical n-Type Polymer P(NDI2OD-T2) Enables Capacity Enhancement and High-Temperature Stability in Lithium-Ion Battery Cathodes 原型n型聚合物P(NDI2OD-T2)的分子工程实现了锂离子电池阴极的容量增强和高温稳定性
Pub Date : 2026-01-07 DOI: 10.1002/ange.202521805
Chanho Yuk, Soyoung Kim, Hyeonsu Son, Minhee Lee, Iseul Song, Minsoo P. Kim, Hyungju Ahn, Jeong Ha Hwang, Donggu Lee, Tae Kyung Lee, Wonho Lee

Conjugated n-type polymers have long been explored as organic cathodes for lithium-ion batteries (LIBs), yet the widely studied P(NDI2OD-T2) has received limited attention as a practical cathode because of its modest capacity (∼55 mAh g−1). Here, we report the first systematic effort to re-engineer this prototypical polymer through side-chain shortening and donor simplification. Replacing bulky 2-octyldodecyl (2OD) chains with 2-butyloctyl (2BO) and simplifying the bithiophene (T2) donor to a vinylene (V) produced P(NDI2BO-V), which delivers a 1.51-fold higher capacity (56.9→86.0 mAh g−1) while retaining excellent cycling stability. Crucially, we show that n-type polymers can achieve remarkable cycling stability at elevated temperatures: both polymers remained stable at 60 °C, where small molecules fail, with P(NDI2OD-T2) keeping 97% after 1000 cycles and P(NDI2BO-V) 80% after 600 cycles. Mechanistic studies combining electrochemical analysis with density functional theory and molecular dynamics simulations reveal how donor linker units dictate structure and transport. Crystalline P(NDI2OD-T2) exhibits higher electronic conductivity and undergoes a one-step two-electron redox process, whereas amorphous P(NDI2BO-V) offers enhanced Li+ diffusivity but follows a stepwise pathway. This work establishes a molecular design framework for conjugated polymer cathodes that combine high capacity, efficient charge transport, and long-term thermal stability, advancing their potential for practical LIB applications.

共轭n型聚合物长期以来一直被探索作为锂离子电池(LIBs)的有机阴极,但广泛研究的P(NDI2OD-T2)由于其适度的容量(~ 55 mAh g - 1)而受到有限的关注。在这里,我们报告了通过侧链缩短和供体简化来重新设计这种原型聚合物的第一次系统努力。用2-丁基基(2BO)取代笨重的2-辛基十二烷基(2OD)链,并将二噻吩(T2)供体简化为乙烯烯(V),生成P(NDI2BO-V),其容量提高了1.51倍(56.9→86.0 mAh g - 1),同时保持了良好的循环稳定性。至关重要的是,我们表明n型聚合物可以在高温下实现显着的循环稳定性:两种聚合物在60°C时保持稳定,小分子失效,P(NDI2OD-T2)在1000次循环后保持97%,P(ndi2po - v)在600次循环后保持80%。结合电化学分析、密度泛函理论和分子动力学模拟的机理研究揭示了给体连接单元如何决定结构和传输。晶体P(NDI2OD-T2)表现出更高的电子导电性,并经历一步双电子氧化还原过程,而非晶P(NDI2BO-V)具有增强的Li+扩散率,但遵循逐步途径。这项工作建立了共轭聚合物阴极的分子设计框架,结合了高容量、高效电荷传输和长期热稳定性,提高了它们在LIB实际应用中的潜力。
{"title":"Molecular Engineering of the Prototypical n-Type Polymer P(NDI2OD-T2) Enables Capacity Enhancement and High-Temperature Stability in Lithium-Ion Battery Cathodes","authors":"Chanho Yuk,&nbsp;Soyoung Kim,&nbsp;Hyeonsu Son,&nbsp;Minhee Lee,&nbsp;Iseul Song,&nbsp;Minsoo P. Kim,&nbsp;Hyungju Ahn,&nbsp;Jeong Ha Hwang,&nbsp;Donggu Lee,&nbsp;Tae Kyung Lee,&nbsp;Wonho Lee","doi":"10.1002/ange.202521805","DOIUrl":"https://doi.org/10.1002/ange.202521805","url":null,"abstract":"<p>Conjugated n-type polymers have long been explored as organic cathodes for lithium-ion batteries (LIBs), yet the widely studied P(NDI2OD-T2) has received limited attention as a practical cathode because of its modest capacity (∼55 mAh g<sup>−1</sup>). Here, we report the first systematic effort to re-engineer this prototypical polymer through side-chain shortening and donor simplification. Replacing bulky 2-octyldodecyl (2OD) chains with 2-butyloctyl (2BO) and simplifying the bithiophene (T2) donor to a vinylene (V) produced P(NDI2BO-V), which delivers a 1.51-fold higher capacity (56.9→86.0 mAh g<sup>−1</sup>) while retaining excellent cycling stability. Crucially, we show that n-type polymers can achieve remarkable cycling stability at elevated temperatures: both polymers remained stable at 60 °C, where small molecules fail, with P(NDI2OD-T2) keeping 97% after 1000 cycles and P(NDI2BO-V) 80% after 600 cycles. Mechanistic studies combining electrochemical analysis with density functional theory and molecular dynamics simulations reveal how donor linker units dictate structure and transport. Crystalline P(NDI2OD-T2) exhibits higher electronic conductivity and undergoes a one-step two-electron redox process, whereas amorphous P(NDI2BO-V) offers enhanced Li<sup>+</sup> diffusivity but follows a stepwise pathway. This work establishes a molecular design framework for conjugated polymer cathodes that combine high capacity, efficient charge transport, and long-term thermal stability, advancing their potential for practical LIB applications.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual Modification Strategy of Ionic Liquid for Durable Perovskite Photovoltaics 持久钙钛矿光伏电池中离子液体的双重改性策略
Pub Date : 2026-01-07 DOI: 10.1002/ange.202520252
Shengchao Hao, Xinyu Tong, Yu Zhang, Gaorong Han, Peng Mao, Weihui Bi, Yufei Zhong, Lisha Xie, Ziyi Ge

The inverted perovskite solar cell (PSC), featuring self-assembled monolayers (SAMs) as the hole transport layer, has achieved a power conversion efficiency (PCE) exceeding 27%. However, the non-uniformity of SAMs and intrinsic defects within the perovskite film continue to constrain further enhancements in device performance. Herein, we developed a strategy for the synchronous modification of SAMs and perovskite by incorporating an ionic liquid of 1-butyl-3-methylimidazole-hexafluorophosphate (BM) to enhance the uniformity of SAMs and passivate defects in perovskite. Specifically, BM was incorporated into the perovskite precursor solution to effectively occupy halide vacancies and passivate the uncoordinated Pb2+. Meanwhile, owing to its ionic properties and the interaction between its functional groups and SAM, BM can effectively regulate the colloidal properties and reduce surface roughness, achieving a more uniform SAM layer. By employing this dual modification strategy, BM significantly modulates the crystallization kinetics, thereby facilitating the formation of highly crystalline perovskite films characterized by substantially enlarged grain sizes and a markedly reduced defect density. Consequently, the device incorporating dual modification of BM achieved a champion PCE of 26.59%, demonstrating exceptional operational stability with no observable PCE degradation after continuous power output at maximum power point (MPP) for 1000 h.

以自组装单层(SAMs)为空穴传输层的倒置钙钛矿太阳能电池(PSC)的功率转换效率(PCE)超过27%。然而,SAMs的不均匀性和钙钛矿薄膜内的固有缺陷继续限制器件性能的进一步提高。本文采用离子液体- 1-丁基-3-甲基咪唑-六氟磷酸盐(BM)对SAMs和钙钛矿进行同步改性,提高了SAMs的均匀性,钝化了钙钛矿中的缺陷。具体来说,将BM加入到钙钛矿前驱体溶液中,可以有效地占据卤化物空位并钝化未配位的Pb2+。同时,BM由于其离子性质及其官能团与SAM之间的相互作用,可以有效地调节胶体性质,降低表面粗糙度,使SAM层更加均匀。通过采用这种双重改性策略,BM显著调节了结晶动力学,从而促进了高结晶钙钛矿薄膜的形成,其特点是晶粒尺寸大幅扩大,缺陷密度显著降低。因此,结合双改性BM的器件实现了26.59%的冠军PCE,在最大功率点(MPP)连续输出1000小时后,显示出卓越的运行稳定性,没有可观察到的PCE下降。
{"title":"Dual Modification Strategy of Ionic Liquid for Durable Perovskite Photovoltaics","authors":"Shengchao Hao,&nbsp;Xinyu Tong,&nbsp;Yu Zhang,&nbsp;Gaorong Han,&nbsp;Peng Mao,&nbsp;Weihui Bi,&nbsp;Yufei Zhong,&nbsp;Lisha Xie,&nbsp;Ziyi Ge","doi":"10.1002/ange.202520252","DOIUrl":"10.1002/ange.202520252","url":null,"abstract":"<p>The inverted perovskite solar cell (PSC), featuring self-assembled monolayers (SAMs) as the hole transport layer, has achieved a power conversion efficiency (PCE) exceeding 27%. However, the non-uniformity of SAMs and intrinsic defects within the perovskite film continue to constrain further enhancements in device performance. Herein, we developed a strategy for the synchronous modification of SAMs and perovskite by incorporating an ionic liquid of 1-butyl-3-methylimidazole-hexafluorophosphate (BM) to enhance the uniformity of SAMs and passivate defects in perovskite. Specifically, BM was incorporated into the perovskite precursor solution to effectively occupy halide vacancies and passivate the uncoordinated Pb<sup>2+</sup>. Meanwhile, owing to its ionic properties and the interaction between its functional groups and SAM, BM can effectively regulate the colloidal properties and reduce surface roughness, achieving a more uniform SAM layer. By employing this dual modification strategy, BM significantly modulates the crystallization kinetics, thereby facilitating the formation of highly crystalline perovskite films characterized by substantially enlarged grain sizes and a markedly reduced defect density. Consequently, the device incorporating dual modification of BM achieved a champion PCE of 26.59%, demonstrating exceptional operational stability with no observable PCE degradation after continuous power output at maximum power point (MPP) for 1000 h.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146154755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salzcluster mit Oberflächen-Defekt zeigt ungewöhnliche Säure-Base-Chemie 表面缺陷的盐团簇表现出不寻常的酸碱化学。
Pub Date : 2026-01-07 DOI: 10.1002/ange.202520403
Jessica C. Hartmann, Jia Yang Lim, Yiqi Sheng, Dr. Marc Reimann, Sarah J. Madlener, Priv.-Doz. Dr. Christian van der Linde, Prof. Dr. Chi-Kit Siu, Prof. Dr. Martin K. Beyer

Die Austauschreaktion von Ameisensäure an Meersalz-Aerosolen, bei der HCl freigesetzt wird, fordert die herkömmliche Säure-Base-Chemie heraus. Unsere Gasphasenversuche zeigen, dass diese Reaktion an reinen NaCl-Clusterionen in Abwesenheit von Wasser stattfindet. Oberflächendefekte der NaCl-Clusterionen ermöglichen diese Reaktion durch verstärkte elektrostatische Wechselwirkungen der Salzionen mit dem Formiat, die den Unterschied in der Gasphasen-Acidität zwischen HCl und Ameisensäure mehr als ausgleichen.

甲酸与海盐气溶胶的交换反应,释放HCl,挑战了传统的酸碱化学。我们的气相实验表明,在没有水的情况下,这种反应发生在纯NaCl簇上。NaCl簇的表面缺陷使这种反应成为可能,因为盐离子与甲酸盐之间的静电相互作用增加,抵消了HCl和甲酸之间气相酸度的差异。
{"title":"Salzcluster mit Oberflächen-Defekt zeigt ungewöhnliche Säure-Base-Chemie","authors":"Jessica C. Hartmann,&nbsp;Jia Yang Lim,&nbsp;Yiqi Sheng,&nbsp;Dr. Marc Reimann,&nbsp;Sarah J. Madlener,&nbsp;Priv.-Doz. Dr. Christian van der Linde,&nbsp;Prof. Dr. Chi-Kit Siu,&nbsp;Prof. Dr. Martin K. Beyer","doi":"10.1002/ange.202520403","DOIUrl":"10.1002/ange.202520403","url":null,"abstract":"<p>Die Austauschreaktion von Ameisensäure an Meersalz-Aerosolen, bei der HCl freigesetzt wird, fordert die herkömmliche Säure-Base-Chemie heraus. Unsere Gasphasenversuche zeigen, dass diese Reaktion an reinen NaCl-Clusterionen in Abwesenheit von Wasser stattfindet. Oberflächendefekte der NaCl-Clusterionen ermöglichen diese Reaktion durch verstärkte elektrostatische Wechselwirkungen der Salzionen mit dem Formiat, die den Unterschied in der Gasphasen-Acidität zwischen HCl und Ameisensäure mehr als ausgleichen.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202520403","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146154776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Assembled Metal-Polyphenol Colchicine Nanoparticles Targeting Oxidative Stress and Inflammation for Treatment of Atherosclerosis 自组装金属-多酚秋水仙碱纳米颗粒靶向氧化应激和炎症治疗动脉粥样硬化
Pub Date : 2026-01-07 DOI: 10.1002/ange.202514547
Dr. Franco Centurion, Xiuwen Zhang, Dr. Chen Dai, Dr. Varun Kundi, Dr. Priyank Kumar, Assoc. Professor Dr. Meihua Yu, Dr. Dominique Appadoo, Dr. Aditya Rawal, Dr. Ashish Misra, Prof. Dr. Sanjay Patel, Prof. Dr. Yu Chen, Prof. Dr. Zi Gu

Anti-inflammatory colchicine therapy has emerged as a new era for atherosclerotic cardiovascular diseases. However, the therapeutic benefit of colchicine has not been clearly defined. Herein, we present a double coordination-driven approach to fabricate a stable metal-organic nano-assembly of colchicine (COL-TA-Zn) by uniting the tropolone ring of colchicine (COL), phenolic groups of tannic acid (TA), and Zn2+ ions. This design leverages the antioxidant and anti-inflammatory properties of COL and TA to create a nanoscale platform capable of scavenging radicals and modulating inflammatory pathways. Through robust Zn2+ coordination, the resulting COL-TA-Zn nanocomplexes exhibit enhanced stability under physiological conditions, ensuring efficient delivery and sustained bioactivity. In vitro assays confirm suppression of foam cell formation and multiple inflammatory mediators, suggesting significant potential for managing atherosclerosis by targeting both oxidative stress and inflammation. Intravenous administration of COL-TA-Zn in Apoe/ mice significantly reduces atherosclerotic plaque area, MMP-9, TNF-α, and reactive oxygen species (ROS) levels, thereby illustrating its superior anti-atherosclerotic efficacy compared to COL alone. These findings highlight the promise of the dual coordination-driven nanoplatform in cardiovascular disease treatment.

抗炎秋水仙碱治疗已成为动脉粥样硬化性心血管疾病的新时代。然而,秋水仙碱的治疗效果还没有明确的定义。本文提出了一种双配位驱动的方法,通过结合秋水仙碱的tropolone环(COL)、单宁酸的酚基(TA)和Zn2+离子,制备了一种稳定的秋水仙碱金属有机纳米组装体(COL-TA- zn)。该设计利用COL和TA的抗氧化和抗炎特性来创建一个能够清除自由基和调节炎症途径的纳米级平台。通过强大的Zn2+配位,得到的COL-TA-Zn纳米配合物在生理条件下表现出更高的稳定性,确保了高效的递送和持续的生物活性。体外实验证实了泡沫细胞的形成和多种炎症介质的抑制,表明通过靶向氧化应激和炎症来控制动脉粥样硬化的巨大潜力。Apoe−/−小鼠静脉注射COL- ta - zn可显著减少动脉粥样硬化斑块面积、MMP-9、TNF-α和活性氧(ROS)水平,从而表明与单独使用COL相比,其具有更强的抗动脉粥样硬化功效。这些发现突出了双协调驱动的纳米平台在心血管疾病治疗中的前景。
{"title":"Self-Assembled Metal-Polyphenol Colchicine Nanoparticles Targeting Oxidative Stress and Inflammation for Treatment of Atherosclerosis","authors":"Dr. Franco Centurion,&nbsp;Xiuwen Zhang,&nbsp;Dr. Chen Dai,&nbsp;Dr. Varun Kundi,&nbsp;Dr. Priyank Kumar,&nbsp;Assoc. Professor Dr. Meihua Yu,&nbsp;Dr. Dominique Appadoo,&nbsp;Dr. Aditya Rawal,&nbsp;Dr. Ashish Misra,&nbsp;Prof. Dr. Sanjay Patel,&nbsp;Prof. Dr. Yu Chen,&nbsp;Prof. Dr. Zi Gu","doi":"10.1002/ange.202514547","DOIUrl":"https://doi.org/10.1002/ange.202514547","url":null,"abstract":"<p>Anti-inflammatory colchicine therapy has emerged as a new era for atherosclerotic cardiovascular diseases. However, the therapeutic benefit of colchicine has not been clearly defined. Herein, we present a double coordination-driven approach to fabricate a stable metal-organic nano-assembly of colchicine (COL-TA-Zn) by uniting the tropolone ring of colchicine (COL), phenolic groups of tannic acid (TA), and Zn<sup>2+</sup> ions. This design leverages the antioxidant and anti-inflammatory properties of COL and TA to create a nanoscale platform capable of scavenging radicals and modulating inflammatory pathways. Through robust Zn<sup>2+</sup> coordination, the resulting COL-TA-Zn nanocomplexes exhibit enhanced stability under physiological conditions, ensuring efficient delivery and sustained bioactivity. In vitro assays confirm suppression of foam cell formation and multiple inflammatory mediators, suggesting significant potential for managing atherosclerosis by targeting both oxidative stress and inflammation. Intravenous administration of COL-TA-Zn in <i>Apoe</i><sup>−</sup><sup>/</sup><sup>−</sup> mice significantly reduces atherosclerotic plaque area, MMP-9, TNF-α, and reactive oxygen species (ROS) levels, thereby illustrating its superior anti-atherosclerotic efficacy compared to COL alone. These findings highlight the promise of the dual coordination-driven nanoplatform in cardiovascular disease treatment.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solar-Biohybrid Upcycling of Polylactic Acid Plastics to Alanine 聚乳酸塑料的太阳能-生物混合升级循环制备丙氨酸
Pub Date : 2026-01-07 DOI: 10.1002/ange.202523771
Dr. Mengmeng Du, Dr. Haolan Tao, Dr. Xuyun Guo, Bin Xie, Mingzhu Han, Yingxin Ma, Prof. Valeria Nicolosi, Prof. Weiliang Dong, Prof. Min Jiang, Prof. Cheng Lian, Prof. Jie Zhou, Prof. Bocheng Qiu

Upcycling of waste plastics into commodity chemicals such as amino acids represents a promising route toward achieving negative carbon emissions and enabling a circular carbon economy. However, existing thermocatalytic methods typically require harsh conditions. While photocatalytic upcycling operates under mild conditions, its dependence on a high-temperature hydrolysis step for plastic pretreatment undermines its overall practicality. Here we report a bio-photocatalytic hybrid system that converts polylactic acid (PLA) plastics into alanine under ambient conditions. The integrated system begins with enzymatic depolymerization of PLA to lactic acid (LA) with 92% conversion at 55°C and pH 10, catalyzed by an engineered peptidase derived from the Micromonospora sp. strain. Without any purification, the resulting hydrolysate is fed directly to the photosynthesis system, where the LA monomers are converted to alanine over a Ni/ZnIn2S4 catalyst using ammonia as a nitrogen source. This photocatalytic process, which proceeds via an oxygen-centered radical intermediate pathway, achieves an alanine production rate of 61.91 mmol g−1 h−1 and an overall yield of 60%. Life cycle assessment demonstrates that our tandem bio-photoconversion system substantially reduces the carbon footprint compared to single-step thermocatalytic and photocatalytic systems. This work thus establishes a sustainable route for valued chemicals production from low-cost feedstocks.

将废塑料升级为氨基酸等商品化学品是实现负碳排放和实现循环碳经济的一条有希望的途径。然而,现有的热催化方法通常需要苛刻的条件。虽然光催化升级回收在温和的条件下进行,但它对塑料预处理的高温水解步骤的依赖削弱了其整体实用性。在这里,我们报告了一个生物光催化混合系统,将聚乳酸(PLA)塑料在环境条件下转化为丙氨酸。该集成系统首先在55°C和pH 10条件下将PLA解聚为乳酸(LA),转化率为92%,由源自Micromonospora sp.菌株的工程肽酶催化。无需任何纯化,得到的水解产物直接进入光合作用系统,其中LA单体在Ni/ZnIn2S4催化剂上转化为丙氨酸,使用氨作为氮源。该光催化过程通过氧中心自由基中间途径进行,丙氨酸的产率为61.91 mmol g−1 h−1,总产率为60%。生命周期评估表明,与单步热催化和光催化系统相比,我们的串联生物光转化系统大大减少了碳足迹。因此,这项工作为从低成本原料生产有价值的化学品建立了一条可持续的途径。
{"title":"Solar-Biohybrid Upcycling of Polylactic Acid Plastics to Alanine","authors":"Dr. Mengmeng Du,&nbsp;Dr. Haolan Tao,&nbsp;Dr. Xuyun Guo,&nbsp;Bin Xie,&nbsp;Mingzhu Han,&nbsp;Yingxin Ma,&nbsp;Prof. Valeria Nicolosi,&nbsp;Prof. Weiliang Dong,&nbsp;Prof. Min Jiang,&nbsp;Prof. Cheng Lian,&nbsp;Prof. Jie Zhou,&nbsp;Prof. Bocheng Qiu","doi":"10.1002/ange.202523771","DOIUrl":"https://doi.org/10.1002/ange.202523771","url":null,"abstract":"<p>Upcycling of waste plastics into commodity chemicals such as amino acids represents a promising route toward achieving negative carbon emissions and enabling a circular carbon economy. However, existing thermocatalytic methods typically require harsh conditions. While photocatalytic upcycling operates under mild conditions, its dependence on a high-temperature hydrolysis step for plastic pretreatment undermines its overall practicality. Here we report a bio-photocatalytic hybrid system that converts polylactic acid (PLA) plastics into alanine under ambient conditions. The integrated system begins with enzymatic depolymerization of PLA to lactic acid (LA) with 92% conversion at 55°C and pH 10, catalyzed by an engineered peptidase derived from the <i>Micromonospora</i> sp. strain. Without any purification, the resulting hydrolysate is fed directly to the photosynthesis system, where the LA monomers are converted to alanine over a Ni/ZnIn<sub>2</sub>S<sub>4</sub> catalyst using ammonia as a nitrogen source. This photocatalytic process, which proceeds via an oxygen-centered radical intermediate pathway, achieves an alanine production rate of 61.91 mmol g<sup>−1</sup> h<sup>−1</sup> and an overall yield of 60%. Life cycle assessment demonstrates that our tandem bio-photoconversion system substantially reduces the carbon footprint compared to single-step thermocatalytic and photocatalytic systems. This work thus establishes a sustainable route for valued chemicals production from low-cost feedstocks.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radical Electroprecipitation from a Water|Oil|Electrode Interface Prolongs “Electro”Chemiluminescence of the Tris(2,2′-bipyridyl)Ruthenium(II) and Benzoyl Peroxide System by 103 水|油|电极界面的自由基电沉淀使Tris(2,2′-联吡啶)钌(II)和过氧化苯甲酰体系的“电”化学发光延长了103倍
Pub Date : 2026-01-07 DOI: 10.1002/ange.202521454
Daniel M. Carrel, Brady R. Layman, Megan L. Hill, Jeffrey E. Dick

Reactive intermediates, including radicals and other short-lived molecules, are ubiquitous in pure chemical processes and often highly difficult to isolate. Recently, we found that energetic, reactive radical species can be trapped through electroprecipitation, where the precipitate contains a reactive intermediate. The principle is straight-forward: If a solubility equilibrium can be exceeded before the reactive intermediate lifetime, the intermediate can be precipitated. Classically, electrochemiluminescence (ECL) is a process where electrical energy is transferred to chemical energy, and then the chemical energy is released in the form of light emission (often in the presence of an electroactive luminophore). The apparent luminescence lifetime, limited by radical lifetimes, of ECL reactions in solution is short (sub-microsecond), and thus can hinder the performance of the technique as light emission is confined to the electrode surface and occurs only when the electrical potential to the system is applied. Here, we show that with a high concentration (10–250 mM) of benzoyl peroxide (BPO) being co-reduced with a tris(2,2′-bipyridyl)ruthenium(II) complex, we can achieve an ECL emission that lasts for hundreds of seconds after potential arrest, corresponding to a thousand-fold (103) increase in apparent afterglow chemiluminescence lifetimes. This electroprecipitation process occurs at an aqueous|organic multiphase boundary, which are present all through nature and are arguably more representative of natural chemical processes. Furthermore, experimental parameters, including BPO concentration, applied potential, and electrode material, were investigated. Competitive and parasitic processes, such as the hydrogen evolution reaction and decarboxylation, diminish the electroprecipitation of reactive intermediates, and we detail mitigation and optimization efforts. Overall, this work reveals that multiphase interfaces can be used to electroprecipitate reactive radicals, separating their use in space and time.

活性中间体,包括自由基和其他短寿命分子,在纯化学过程中无处不在,通常很难分离出来。最近,我们发现高能活性自由基可以通过电沉淀法捕获,沉淀物中含有活性中间体。原理很简单:如果在中间体的活性寿命之前超过溶解度平衡,中间体就可以沉淀。经典地,电化学发光(ECL)是一个过程,其中电能转换为化学能,然后化学能以发光的形式释放(通常在电活性发光团的存在下)。溶液中ECL反应的表观发光寿命(受自由基寿命的限制)很短(亚微秒),因此会阻碍该技术的性能,因为光发射仅限于电极表面,并且只有在对系统施加电势时才会发生。在这里,我们展示了用高浓度(10-250 mM)的过氧化苯甲酰(BPO)与三(2,2 ' -联吡啶基)钌(II)配合物共还原,我们可以实现在电位停止后持续数百秒的ECL发射,相当于表观余辉化学发光寿命增加了1000倍(103)。这种电沉淀过程发生在水中|有机多相边界,这种多相边界存在于自然界中,可以说是自然化学过程的更有代表性的过程。实验参数包括BPO浓度、外加电位和电极材料。竞争和寄生过程,如析氢反应和脱羧,减少了活性中间体的电沉淀,我们详细介绍了缓解和优化的努力。总的来说,这项工作揭示了多相界面可以用于电沉淀活性自由基,在空间和时间上分离它们的使用。
{"title":"Radical Electroprecipitation from a Water|Oil|Electrode Interface Prolongs “Electro”Chemiluminescence of the Tris(2,2′-bipyridyl)Ruthenium(II) and Benzoyl Peroxide System by 103","authors":"Daniel M. Carrel,&nbsp;Brady R. Layman,&nbsp;Megan L. Hill,&nbsp;Jeffrey E. Dick","doi":"10.1002/ange.202521454","DOIUrl":"https://doi.org/10.1002/ange.202521454","url":null,"abstract":"<p>Reactive intermediates, including radicals and other short-lived molecules, are ubiquitous in pure chemical processes and often highly difficult to isolate. Recently, we found that energetic, reactive radical species can be trapped through electroprecipitation, where the precipitate contains a reactive intermediate. The principle is straight-forward: If a solubility equilibrium can be exceeded before the reactive intermediate lifetime, the intermediate can be precipitated. Classically, electrochemiluminescence (ECL) is a process where electrical energy is transferred to chemical energy, and then the chemical energy is released in the form of light emission (often in the presence of an electroactive luminophore). The apparent luminescence lifetime, limited by radical lifetimes, of ECL reactions in solution is short (sub-microsecond), and thus can hinder the performance of the technique as light emission is confined to the electrode surface and occurs only when the electrical potential to the system is applied. Here, we show that with a high concentration (10–250 mM) of benzoyl peroxide (BPO) being co-reduced with a tris(2,2′-bipyridyl)ruthenium(II) complex, we can achieve an ECL emission that lasts for hundreds of seconds after potential arrest, corresponding to a thousand-fold (10<sup>3</sup>) increase in apparent afterglow chemiluminescence lifetimes. This electroprecipitation process occurs at an aqueous|organic multiphase boundary, which are present all through nature and are arguably more representative of natural chemical processes. Furthermore, experimental parameters, including BPO concentration, applied potential, and electrode material, were investigated. Competitive and parasitic processes, such as the hydrogen evolution reaction and decarboxylation, diminish the electroprecipitation of reactive intermediates, and we detail mitigation and optimization efforts. Overall, this work reveals that multiphase interfaces can be used to electroprecipitate reactive radicals, separating their use in space and time.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202521454","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SSZ-13-Zeolith mit Isolierten Co2+-Zentren als ein Effizientes und Beständiges Katalysatorsystem für die Nichtoxidative Ethandehydrierung SSZ-13沸石具有隔离的二氧化碳+中心,作为一种高效和稳定的非氧化乙烷脱氢催化剂系统。
Pub Date : 2026-01-07 DOI: 10.1002/ange.202519600
Dr. Qiyang Zhang, Prof. Dr. Tao Zhang, Prof. Dr. Bing Liu, Dr. Elizaveta Fedorova, Dr. Dmitry E. Doronkin, Prof. Dr. Evgenii V. Kondratenko

Für die nichtoxidative Ethandehydrierung zu Ethen wurden Katalysatoren mit isolierten Co2+-Spezies in den 6MR- (Co2+-Z2) und 8MR-Fenstern ([Co(OH)]+-Z) eines SSZ-13-Zeolithen hergestellt. Die Co2+-Z2-Spezies zeigten im Vergleich zu den [Co(OH)]+-Spezies eine unerwartet hohe Ethenbildungsgeschwindikeit. Der aktivste der entwickelten Katalysatoren, der Co2+-Z2 enthält, übertrifft Analoga der kommerziellen K-CrOx/Al2O3- und PtSn/Al2O3-Katalysatoren in Bezug auf die Ethenbildung.

在SSZ-13沸石的6MR- (Co2+-Z2)和8MR- ([Co(OH)]+-Z)窗口中制备了具有分离Co2+物种的催化剂,用于非氧化乙烷脱氢生成乙烯。与[Co(OH)]+物种相比,Co2+-Z2物种显示出出乎意料的高乙烯形成速度。在已开发的催化剂中,最活跃的是Co2+-Z2,在乙烯形成方面优于商业上可用的K-CrOx/Al2O3和PtSn/Al2O3催化剂。
{"title":"SSZ-13-Zeolith mit Isolierten Co2+-Zentren als ein Effizientes und Beständiges Katalysatorsystem für die Nichtoxidative Ethandehydrierung","authors":"Dr. Qiyang Zhang,&nbsp;Prof. Dr. Tao Zhang,&nbsp;Prof. Dr. Bing Liu,&nbsp;Dr. Elizaveta Fedorova,&nbsp;Dr. Dmitry E. Doronkin,&nbsp;Prof. Dr. Evgenii V. Kondratenko","doi":"10.1002/ange.202519600","DOIUrl":"https://doi.org/10.1002/ange.202519600","url":null,"abstract":"<p>Für die nichtoxidative Ethandehydrierung zu Ethen wurden Katalysatoren mit isolierten Co<sup>2+</sup>-Spezies in den 6MR- (Co<sup>2+</sup>-Z<sub>2</sub>) und 8MR-Fenstern ([Co(OH)]<sup>+</sup>-Z) eines SSZ-13-Zeolithen hergestellt. Die Co<sup>2+</sup>-Z<sub>2</sub>-Spezies zeigten im Vergleich zu den [Co(OH)]<sup>+</sup>-Spezies eine unerwartet hohe Ethenbildungsgeschwindikeit. Der aktivste der entwickelten Katalysatoren, der Co<sup>2+</sup>-Z<sub>2</sub> enthält, übertrifft Analoga der kommerziellen K-CrO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>- und PtSn/Al<sub>2</sub>O<sub>3</sub>-Katalysatoren in Bezug auf die Ethenbildung.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202519600","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Angewandte Chemie
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1