首页 > 最新文献

Angewandte Chemie最新文献

英文 中文
Water-Processable Covalent-and-Supramolecular Polymeric Binders for Silicon/Carbon Anodes with High Interfacial Stability in Lithium-Ion Batteries 锂离子电池中高界面稳定性硅/碳阳极的可水处理共价和超分子聚合物粘合剂
Pub Date : 2026-01-08 DOI: 10.1002/ange.202525354
Tinghao Yun, Kexing Cai, Zhijie Jiang, Dr. Jun Zhao, Prof. Dr. Lei Li, Sihong Du, Prof. Dr. Xuzhou Yan

Silicon/carbon (Si/C) composite anodes are among the most promising candidates for high-energy-density lithium-ion batteries but suffer from severe volume fluctuation and interfacial degradation during cycling. Herein, we report a water-processable covalent-and-supramolecular polymeric binders (CSPBs) that synergistically dissipate mechanical stress and promote Li+ transport to stabilize the Si/C anode interface. The CSPBs integrate poly(acrylic acid) (PAA), amine-terminated eight-arm poly(ethylene glycol) (8arm-PEG-NH2), and benzo-21-crown-7/secondary ammonium host–guest complexes through amidation during electrode fabrication. The covalent linkages impart strong structural integrity, while the reversible supramolecular interactions act as sacrificial bonds to dissipate stress arising from Si volume expansion. Additionally, oxygen-rich PEG chains form continuous Li+ conduction pathways, enabling efficient ion transport. As a result, the CSPB-2-based Si/C anode delivers a high specific capacity of 582.0 mAh g−1 after 265 cycles at 1C, with superior rate capability than the electrodes based on PAA or solely covalently cross-linked binders (CCBs). Kinetic analysis reveals an enhanced Li+ diffusion coefficient, confirming the improved ionic conductivity of the binder system. This work demonstrates a new strategy for integrating covalent anchoring and dynamic supramolecular adaptability within a sustainable, water-processable polymeric binder system, paving the way for the design of durable and high-performance silicon-based anodes.

硅/碳(Si/C)复合阳极是高能量密度锂离子电池最有前途的候选材料之一,但在循环过程中存在严重的体积波动和界面退化问题。在此,我们报告了一种可水处理的共价和超分子聚合物粘合剂(CSPBs),它可以协同消散机械应力并促进Li+传输以稳定Si/C阳极界面。CSPBs在电极制备过程中通过酰胺化集成了聚丙烯酸(PAA)、胺端八臂聚乙二醇(8臂- peg - nh2)和苯并-21-冠-7/仲铵主客体配合物。共价键具有很强的结构完整性,而可逆的超分子相互作用作为牺牲键来消散硅体积膨胀引起的应力。此外,富氧PEG链形成连续的Li+传导途径,实现高效的离子传输。因此,基于cspb -2的Si/C阳极在1C下循环265次后提供了582.0 mAh g - 1的高比容量,比基于PAA或单独共价交联粘合剂(CCBs)的电极具有更高的倍率能力。动力学分析表明Li+扩散系数增强,证实了粘结剂体系离子电导率的提高。这项工作展示了一种将共价锚定和动态超分子适应性整合到可持续的、可水处理的聚合物粘合剂体系中的新策略,为设计耐用和高性能的硅基阳极铺平了道路。
{"title":"Water-Processable Covalent-and-Supramolecular Polymeric Binders for Silicon/Carbon Anodes with High Interfacial Stability in Lithium-Ion Batteries","authors":"Tinghao Yun,&nbsp;Kexing Cai,&nbsp;Zhijie Jiang,&nbsp;Dr. Jun Zhao,&nbsp;Prof. Dr. Lei Li,&nbsp;Sihong Du,&nbsp;Prof. Dr. Xuzhou Yan","doi":"10.1002/ange.202525354","DOIUrl":"10.1002/ange.202525354","url":null,"abstract":"<p>Silicon/carbon (Si/C) composite anodes are among the most promising candidates for high-energy-density lithium-ion batteries but suffer from severe volume fluctuation and interfacial degradation during cycling. Herein, we report a water-processable covalent-and-supramolecular polymeric binders (CSPBs) that synergistically dissipate mechanical stress and promote Li<sup>+</sup> transport to stabilize the Si/C anode interface. The CSPBs integrate poly(acrylic acid) (PAA), amine-terminated eight-arm poly(ethylene glycol) (8arm-PEG-NH<sub>2</sub>), and benzo-21-crown-7/secondary ammonium host–guest complexes through amidation during electrode fabrication. The covalent linkages impart strong structural integrity, while the reversible supramolecular interactions act as sacrificial bonds to dissipate stress arising from Si volume expansion. Additionally, oxygen-rich PEG chains form continuous Li<sup>+</sup> conduction pathways, enabling efficient ion transport. As a result, the CSPB-<b>2</b>-based Si/C anode delivers a high specific capacity of 582.0 mAh g<sup>−1</sup> after 265 cycles at 1C, with superior rate capability than the electrodes based on PAA or solely covalently cross-linked binders (CCBs). Kinetic analysis reveals an enhanced Li<sup>+</sup> diffusion coefficient, confirming the improved ionic conductivity of the binder system. This work demonstrates a new strategy for integrating covalent anchoring and dynamic supramolecular adaptability within a sustainable, water-processable polymeric binder system, paving the way for the design of durable and high-performance silicon-based anodes.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146154838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selectively Electrocatalytic Reductive Dehydroxylation of 2-butene-1,4-diol to 3-buten-1-ol over Cu Nanowire Arrays at Industrial Current Densities 工业电流密度下铜纳米线阵列上2-丁烯-1,4-二醇选择性电催化还原去羟基化为3-丁烯-1-醇
Pub Date : 2026-01-07 DOI: 10.1002/ange.202525179
Zhenpeng Liu, Shangqi Zhou, Sanyin Yang, Jun Bu, Jin Lin, Lixin Xia, Wenxiu Ma, Prof. Jian Zhang

Electrocatalytic reductive dehydroxylation is a promising strategy for sustainable synthesis of commodity and high-value-added chemicals but remains a formidable challenge due to the high dissociation energy of C─OH bond. Here, we report a selectively electrocatalytic reductive dehydroxylation of 1,4-butenediol (BED) to produce 3-buten-1-ol (BTO) over Cu nanowire arrays (Cu NWAs) under ambient conditions. A high BED conversion of ∼90.5% and a BTO selectivity of ∼80.2% are achieved at –0.9 V versus RHE. Even in a large-scale two-electrode H-type elecrolyser (1 L), the Cu NWAs stably exhibit a BED conversion of ≥ 92.3%, a BTO selectivity of ≥ 82.7%, and a BTO production rate of 190.8 mmol·gcat−1·h−1 at an industrial current density of 200 mA cm−2. Experimental and theoretical investigations reveal that the Cu surface facilitates the dissociation of C─OH bond in BED and the desorption of BTO, which thus promotes the selective dehydroxylation of BED to BTO. This work highlights a sustainable and efficient strategy for producing high-value-added chemicals.

电催化还原脱羟基是一种有前景的可持续合成商品和高附加值化学品的策略,但由于C─OH键的高解离能,仍然是一个艰巨的挑战。在这里,我们报道了在环境条件下,通过Cu纳米线阵列(Cu NWAs)选择性电催化1,4-丁烯二醇(BED)还原去羟基化生成3-丁烯-1-醇(BTO)。与RHE相比,在-0.9 V下实现了~ 90.5%的高BED转化率和~ 80.2%的BTO选择性。即使在大型双电极h型电解槽(1 L)中,在工业电流密度为200 mA cm−2时,Cu NWAs的BED转化率≥92.3%,BTO选择性≥82.7%,BTO产率为190.8 mmol·gcat−1·h−1。实验和理论研究表明,Cu表面有利于BED中C─OH键的解离和BTO的脱附,从而促进BED选择性脱羟基生成BTO。这项工作强调了生产高附加值化学品的可持续和有效战略。
{"title":"Selectively Electrocatalytic Reductive Dehydroxylation of 2-butene-1,4-diol to 3-buten-1-ol over Cu Nanowire Arrays at Industrial Current Densities","authors":"Zhenpeng Liu,&nbsp;Shangqi Zhou,&nbsp;Sanyin Yang,&nbsp;Jun Bu,&nbsp;Jin Lin,&nbsp;Lixin Xia,&nbsp;Wenxiu Ma,&nbsp;Prof. Jian Zhang","doi":"10.1002/ange.202525179","DOIUrl":"https://doi.org/10.1002/ange.202525179","url":null,"abstract":"<p>Electrocatalytic reductive dehydroxylation is a promising strategy for sustainable synthesis of commodity and high-value-added chemicals but remains a formidable challenge due to the high dissociation energy of C─OH bond. Here, we report a selectively electrocatalytic reductive dehydroxylation of 1,4-butenediol (BED) to produce 3-buten-1-ol (BTO) over Cu nanowire arrays (Cu NWAs) under ambient conditions. A high BED conversion of ∼90.5% and a BTO selectivity of ∼80.2% are achieved at –0.9 V versus RHE. Even in a large-scale two-electrode H-type elecrolyser (1 L), the Cu NWAs stably exhibit a BED conversion of ≥ 92.3%, a BTO selectivity of ≥ 82.7%, and a BTO production rate of 190.8 mmol<sub>·</sub>g<sub>cat</sub><sup>−1</sup><sub>·</sub>h<sup>−1</sup> at an industrial current density of 200 mA cm<sup>−2</sup>. Experimental and theoretical investigations reveal that the Cu surface facilitates the dissociation of C─OH bond in BED and the desorption of BTO, which thus promotes the selective dehydroxylation of BED to BTO. This work highlights a sustainable and efficient strategy for producing high-value-added chemicals.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-Wavelength Light-Induced Group 13–15 Elementalization Reactions of Alkenes/Alkynes 长波长光诱导烯烃/炔的13-15基团元素化反应
Pub Date : 2026-01-07 DOI: 10.1002/ange.202521882
Haruka Iimuro, Antônio Junio Araujo Dias, Prof. Dr. Ken Tanaka, Prof. Dr. Masanobu Uchiyama, Dr. Yuki Nagashima

We present di-tert-butyl peroxide (DTBP)-catalyzed long-wavelength light-induced Group 13, 14, and 15 elementalizations of alkenes and alkynes, through in situ production of tert-butyl radicals, followed by a hydrogen-atom-transfer process generating silyl, germyl, stannyl, alkyl, boryl, and phosphoryl radicals. This mild and photosensitizer-free methodology employing blue (450 nm)/green (530 nm)/orange (600 nm) LEDs affords high chemoselectivity and broad functional group tolerance compared to conventional use of shorter-wavelength light. Synthetic, spectroscopic, and computational data are consistent with a vibration-mediated photolysis mechanism of DTBP involving electronic excitation from vibrationally excited ground states (S0μn) to the excited state (S0μn→Sn transitions), driven by ultraweak absorption of long-wavelength visible light.

我们提出了过氧化二叔丁基(DTBP)催化的长波长光诱导的烯烃和炔的13、14和15基团元素化,通过原位生产叔丁基自由基,然后通过氢原子转移过程产生硅基、芽基、锡基、烷基、硼基和磷基自由基。这种温和且无光敏剂的方法采用蓝色(450 nm)/绿色(530 nm)/橙色(600 nm) led,与传统使用短波长的光相比,具有高化学选择性和广泛的官能团耐受性。合成、光谱和计算数据证实了DTBP的振动介导的光解机制,该机制涉及在长波长可见光的超弱吸收驱动下,从振动激发基态(50 μn)到激发态(50 μn→Sn跃迁)的电子激发。
{"title":"Long-Wavelength Light-Induced Group 13–15 Elementalization Reactions of Alkenes/Alkynes","authors":"Haruka Iimuro,&nbsp;Antônio Junio Araujo Dias,&nbsp;Prof. Dr. Ken Tanaka,&nbsp;Prof. Dr. Masanobu Uchiyama,&nbsp;Dr. Yuki Nagashima","doi":"10.1002/ange.202521882","DOIUrl":"https://doi.org/10.1002/ange.202521882","url":null,"abstract":"<p>We present di-<i>tert</i>-butyl peroxide (DTBP)-catalyzed long-wavelength light-induced Group 13, 14, and 15 elementalizations of alkenes and alkynes, through in situ production of <i>tert</i>-butyl radicals, followed by a hydrogen-atom-transfer process generating silyl, germyl, stannyl, alkyl, boryl, and phosphoryl radicals. This mild and photosensitizer-free methodology employing blue (450 nm)/green (530 nm)/orange (600 nm) LEDs affords high chemoselectivity and broad functional group tolerance compared to conventional use of shorter-wavelength light. Synthetic, spectroscopic, and computational data are consistent with a vibration-mediated photolysis mechanism of DTBP involving electronic excitation from vibrationally excited ground states (S<sub>0</sub>μ<i><sub>n</sub></i>) to the excited state (S<sub>0</sub>μ<i><sub>n</sub></i>→S<i><sub>n</sub></i> transitions), driven by ultraweak absorption of long-wavelength visible light.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146154754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SSZ-13-Zeolith mit Isolierten Co2+-Zentren als ein Effizientes und Beständiges Katalysatorsystem für die Nichtoxidative Ethandehydrierung SSZ-13沸石具有隔离的二氧化碳+中心,作为一种高效和稳定的非氧化乙烷脱氢催化剂系统。
Pub Date : 2026-01-07 DOI: 10.1002/ange.202519600
Dr. Qiyang Zhang, Prof. Dr. Tao Zhang, Prof. Dr. Bing Liu, Dr. Elizaveta Fedorova, Dr. Dmitry E. Doronkin, Prof. Dr. Evgenii V. Kondratenko

Für die nichtoxidative Ethandehydrierung zu Ethen wurden Katalysatoren mit isolierten Co2+-Spezies in den 6MR- (Co2+-Z2) und 8MR-Fenstern ([Co(OH)]+-Z) eines SSZ-13-Zeolithen hergestellt. Die Co2+-Z2-Spezies zeigten im Vergleich zu den [Co(OH)]+-Spezies eine unerwartet hohe Ethenbildungsgeschwindikeit. Der aktivste der entwickelten Katalysatoren, der Co2+-Z2 enthält, übertrifft Analoga der kommerziellen K-CrOx/Al2O3- und PtSn/Al2O3-Katalysatoren in Bezug auf die Ethenbildung.

在SSZ-13沸石的6MR- (Co2+-Z2)和8MR- ([Co(OH)]+-Z)窗口中制备了具有分离Co2+物种的催化剂,用于非氧化乙烷脱氢生成乙烯。与[Co(OH)]+物种相比,Co2+-Z2物种显示出出乎意料的高乙烯形成速度。在已开发的催化剂中,最活跃的是Co2+-Z2,在乙烯形成方面优于商业上可用的K-CrOx/Al2O3和PtSn/Al2O3催化剂。
{"title":"SSZ-13-Zeolith mit Isolierten Co2+-Zentren als ein Effizientes und Beständiges Katalysatorsystem für die Nichtoxidative Ethandehydrierung","authors":"Dr. Qiyang Zhang,&nbsp;Prof. Dr. Tao Zhang,&nbsp;Prof. Dr. Bing Liu,&nbsp;Dr. Elizaveta Fedorova,&nbsp;Dr. Dmitry E. Doronkin,&nbsp;Prof. Dr. Evgenii V. Kondratenko","doi":"10.1002/ange.202519600","DOIUrl":"https://doi.org/10.1002/ange.202519600","url":null,"abstract":"<p>Für die nichtoxidative Ethandehydrierung zu Ethen wurden Katalysatoren mit isolierten Co<sup>2+</sup>-Spezies in den 6MR- (Co<sup>2+</sup>-Z<sub>2</sub>) und 8MR-Fenstern ([Co(OH)]<sup>+</sup>-Z) eines SSZ-13-Zeolithen hergestellt. Die Co<sup>2+</sup>-Z<sub>2</sub>-Spezies zeigten im Vergleich zu den [Co(OH)]<sup>+</sup>-Spezies eine unerwartet hohe Ethenbildungsgeschwindikeit. Der aktivste der entwickelten Katalysatoren, der Co<sup>2+</sup>-Z<sub>2</sub> enthält, übertrifft Analoga der kommerziellen K-CrO<sub>x</sub>/Al<sub>2</sub>O<sub>3</sub>- und PtSn/Al<sub>2</sub>O<sub>3</sub>-Katalysatoren in Bezug auf die Ethenbildung.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ange.202519600","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facet-Dependent Solid Frustrated Lewis Pairs on Co3O4 Catalysts Towards Semi-Hydrogenation Reaction of Alkynols 烷基醇半加氢反应中Co3O4催化剂的面依赖固体挫折路易斯对
Pub Date : 2026-01-07 DOI: 10.1002/ange.202523116
Guanyi Zhang, Lei Wang, Shilong Zhang, Dawei Wang, Zhaowei Tian, Haisong Feng, Xin Zhang, Yusen Yang, Min Wei

The semi-hydrogenation of alkynols to enols represents a vital industrial reaction for fine chemical synthesis, yet developing highly selective non-noble metal catalysts remains an urgent challenge. Herein, we report a Co3O4 nanorod (Co3O4-NR) catalyst with abundant solid-frustrated Lewis pairs (SFLPs) on specifically exposed {110} facets, where coordinatively unsaturated Co2+ acts as Lewis acid site whilst the surface hydroxyl group serves as Lewis base site. The Co3O4-NR catalyst exhibits exceptional performance toward semi-hydrogenation from 3-butyn-1-ol to 3-buten-1-ol with a product yield of 88.2%, which is preponderate to other non-noble metal catalysts. Poisoning experiments, in situ DRIFTS and theoretical calculations verify that the SFLPs sites serve as intrinsic active centers for H2 activation/dissociation and substrate adsorption. The hydrogenation of key intermediate (C4H7O*) is identified as the rate-determining step, where Hδ+ species strongly tethered to surface −OH group suppresses over-hydrogenation and thereby enhances the semi-hydrogenation selectivity. Projected density of states (PDOS) analysis reveals an accelerated hydrogenation kinetics via dp orbital hybridization between Co 3d orbitals and C 2p orbitals in C4H7O*. This work advances the design of efficient and cost-effective SFLPs-based heterogeneous catalysts, which shows potential application in the synthesis of fine chemicals.

烷基醇半加氢制烯醇是精细化学合成的重要工业反应,但开发高选择性非贵金属催化剂仍然是一个紧迫的挑战。在此,我们报道了一种Co3O4纳米棒(Co3O4- nr)催化剂,在特定暴露的{110}面上具有丰富的固体抑制刘易斯对(SFLPs),其中协同不饱和Co2+作为刘易斯酸位点,而表面羟基作为刘易斯碱位点。Co3O4-NR催化剂对3-丁烯-1-醇半加氢反应表现优异,产物收率为88.2%,高于其他非贵金属催化剂。中毒实验、原位漂移和理论计算验证了SFLPs位点作为H2活化/解离和底物吸附的内在活性中心。关键中间体(C4H7O*)的氢化反应是反应速率的决定步骤,其中Hδ+与表面- OH基团紧密结合抑制了过氢化反应,从而提高了半氢化反应的选择性。投影态密度(PDOS)分析揭示了C4H7O*中Co 3d轨道和c2p轨道之间的d-p轨道杂化加速了氢化动力学。本工作为高效、低成本的sflps基非均相催化剂的设计提供了新的思路,在精细化学品的合成中具有潜在的应用前景。
{"title":"Facet-Dependent Solid Frustrated Lewis Pairs on Co3O4 Catalysts Towards Semi-Hydrogenation Reaction of Alkynols","authors":"Guanyi Zhang,&nbsp;Lei Wang,&nbsp;Shilong Zhang,&nbsp;Dawei Wang,&nbsp;Zhaowei Tian,&nbsp;Haisong Feng,&nbsp;Xin Zhang,&nbsp;Yusen Yang,&nbsp;Min Wei","doi":"10.1002/ange.202523116","DOIUrl":"https://doi.org/10.1002/ange.202523116","url":null,"abstract":"<p>The semi-hydrogenation of alkynols to enols represents a vital industrial reaction for fine chemical synthesis, yet developing highly selective non-noble metal catalysts remains an urgent challenge. Herein, we report a Co<sub>3</sub>O<sub>4</sub> nanorod (Co<sub>3</sub>O<sub>4</sub>-NR) catalyst with abundant solid-frustrated Lewis pairs (SFLPs) on specifically exposed {110} facets, where coordinatively unsaturated Co<sup>2+</sup> acts as Lewis acid site whilst the surface hydroxyl group serves as Lewis base site. The Co<sub>3</sub>O<sub>4</sub>-NR catalyst exhibits exceptional performance toward semi-hydrogenation from 3-butyn-1-ol to 3-buten-1-ol with a product yield of 88.2%, which is preponderate to other non-noble metal catalysts. Poisoning experiments, in situ DRIFTS and theoretical calculations verify that the SFLPs sites serve as intrinsic active centers for H<sub>2</sub> activation/dissociation and substrate adsorption. The hydrogenation of key intermediate (C<sub>4</sub>H<sub>7</sub>O*) is identified as the rate-determining step, where H<sup>δ+</sup> species strongly tethered to surface −OH group suppresses over-hydrogenation and thereby enhances the semi-hydrogenation selectivity. Projected density of states (PDOS) analysis reveals an accelerated hydrogenation kinetics via <i>d</i>–<i>p</i> orbital hybridization between Co 3<i>d</i> orbitals and C 2<i>p</i> orbitals in C<sub>4</sub>H<sub>7</sub>O*. This work advances the design of efficient and cost-effective SFLPs-based heterogeneous catalysts, which shows potential application in the synthesis of fine chemicals.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ga-Induced Reversal of Pd Electronic States in ZrO2-Supported Pd2Ga1 Nanoparticles for Enhanced Ethanol Electrooxidation via the C1 Pathway 在zro2负载的Pd2Ga1纳米颗粒中,ga诱导Pd电子态逆转,通过C1途径增强乙醇电氧化
Pub Date : 2026-01-07 DOI: 10.1002/ange.202523391
Chengming Huang, Xia Chen, Lu Liu, Jinyin Yu, Runfan Zheng, Jing Li, Zidong Wei

Direct ethanol fuel cells (DEFCs) are recognized as a promising energy conversion technology due to their high energy density and the renewable, eco-friendly nature of ethanol. However, their commercialization is hindered by the lack of anode catalysts that simultaneously offer high activity, stability, and selectivity toward the C1 pathway in the ethanol oxidation reaction (EOR). Herein, we report a rationally designed Pd2Ga1-ZrO2@NC electrocatalyst, in which Pd2Ga1 alloy nanoparticles are anchored on a nitrogen-doped carbon-encapsulated ZrO2 nanoframework. In alkaline media, this catalyst exhibits exceptional EOR performance, achieving a remarkable mass activity of 27.3 A mgPd−1, 3.6 and 21.8 times higher than those of Pd-ZrO2@NC and commercial Pd/C, respectively. Furthermore, it demonstrates a high C1 pathway selectivity of 58.7% at 0.8 VRHE and retains 48.9% of its initial activity after 2000 accelerated durability test cycles, significantly outperforming state-of-the-art benchmarks. Combined experimental and DFT studies reveal the crucial function of Ga as an electron donor, which reverses the electron transfer around Pd from outward (in Pd-ZrO2@NC) to inward (in Pd2Ga1-ZrO2@NC), creating an electron-rich Pd state. This electronic restructuring thereby lowers the *CO oxidation barrier, strengthens *OH adsorption, and enhances metal-support interaction, collectively boosting both the C1 pathway selectivity and the overall EOR performance. This work provides valuable insights for the design of high-performance alloy-oxide composite electrocatalysts.

直接乙醇燃料电池(defc)由于其高能量密度和乙醇的可再生、环保特性而被认为是一种有前途的能量转换技术。然而,由于缺乏同时在乙醇氧化反应(EOR)中对C1途径提供高活性、稳定性和选择性的阳极催化剂,它们的商业化受到阻碍。在此,我们报告了一种合理设计的Pd2Ga1-ZrO2@NC电催化剂,其中Pd2Ga1合金纳米颗粒被锚定在氮掺杂碳包封的ZrO2纳米框架上。在碱性介质中,该催化剂表现出优异的EOR性能,其质量活性分别是Pd-ZrO2@NC和商用Pd/C的27.3 a mgPd−1、3.6和21.8倍。此外,该材料在0.8 VRHE条件下的C1通路选择性高达58.7%,在2000次加速耐久性测试循环后仍能保持48.9%的初始活性,显著优于最新的基准测试。结合实验和DFT研究揭示了Ga作为电子供体的关键功能,它将Pd周围的电子从向外(Pd-ZrO2@NC)转移到向内(Pd2Ga1-ZrO2@NC),从而产生富电子的Pd态。因此,这种电子重组降低了*CO氧化屏障,增强了*OH吸附,增强了金属-载体相互作用,共同提高了C1途径的选择性和整体的提高采收率性能。这项工作为高性能合金-氧化物复合电催化剂的设计提供了有价值的见解。
{"title":"Ga-Induced Reversal of Pd Electronic States in ZrO2-Supported Pd2Ga1 Nanoparticles for Enhanced Ethanol Electrooxidation via the C1 Pathway","authors":"Chengming Huang,&nbsp;Xia Chen,&nbsp;Lu Liu,&nbsp;Jinyin Yu,&nbsp;Runfan Zheng,&nbsp;Jing Li,&nbsp;Zidong Wei","doi":"10.1002/ange.202523391","DOIUrl":"10.1002/ange.202523391","url":null,"abstract":"<p>Direct ethanol fuel cells (DEFCs) are recognized as a promising energy conversion technology due to their high energy density and the renewable, eco-friendly nature of ethanol. However, their commercialization is hindered by the lack of anode catalysts that simultaneously offer high activity, stability, and selectivity toward the C1 pathway in the ethanol oxidation reaction (EOR). Herein, we report a rationally designed Pd<sub>2</sub>Ga<sub>1</sub>-ZrO<sub>2</sub>@NC electrocatalyst, in which Pd<sub>2</sub>Ga<sub>1</sub> alloy nanoparticles are anchored on a nitrogen-doped carbon-encapsulated ZrO<sub>2</sub> nanoframework. In alkaline media, this catalyst exhibits exceptional EOR performance, achieving a remarkable mass activity of 27.3 A mg<sub>Pd</sub><sup>−1</sup>, 3.6 and 21.8 times higher than those of Pd-ZrO<sub>2</sub>@NC and commercial Pd/C, respectively. Furthermore, it demonstrates a high C1 pathway selectivity of 58.7% at 0.8 <i>V</i><sub>RHE</sub> and retains 48.9% of its initial activity after 2000 accelerated durability test cycles, significantly outperforming state-of-the-art benchmarks. Combined experimental and DFT studies reveal the crucial function of Ga as an electron donor, which reverses the electron transfer around Pd from outward (in Pd-ZrO<sub>2</sub>@NC) to inward (in Pd<sub>2</sub>Ga<sub>1</sub>-ZrO<sub>2</sub>@NC), creating an electron-rich Pd state. This electronic restructuring thereby lowers the *CO oxidation barrier, strengthens *OH adsorption, and enhances metal-support interaction, collectively boosting both the C1 pathway selectivity and the overall EOR performance. This work provides valuable insights for the design of high-performance alloy-oxide composite electrocatalysts.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146154753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy Level Engineering of Dihydrophenazine-Based Covalent Organic Frameworks Through π-Expansion of Cores Toward Tandem Photocatalytic Polymerization 双氢非那嗪基共价有机骨架在串联光催化聚合中π-膨胀的能级工程研究
Pub Date : 2026-01-07 DOI: 10.1002/ange.202523520
Sheng Niu, Zhenyang Hu, Xiaoyi Xu, Prof. Hongzheng Chen, Prof. Alex K.-Y. Jen, Ning Huang

Covalent organic frameworks (COFs) incorporating photoredox-active motifs show great promise as heterogeneous catalysts, yet their applications have been largely confined to one-step transformations. In this work, we design and synthesize a series of three-dimensional (3D) COFs with different π-extended dihydrophenazine cores to achieve superior photocatalytic performance. These 3D COFs exhibit excellent crystallinity, high surface areas, and remarkable chemical stability. More importantly, they can work as highly efficient and recyclable catalysts for photocatalytic tandem polymerization reactions using styrene and fluoroalkyl anhydrides as substrates, yielding fluoroalkylated polystyrene polymers with narrow dispersity. These COFs constitute the first examples as tandem photocatalysts toward polymerization reactions. Moreover, optimal energy level alignment and enhanced photophysical properties are identified as key factors contributing to their high efficacy. This work not only provides a viable design strategy for multifunctional COF catalysts, but also expands their utility in complex synthetic sequences involving tandem catalytic processes.

含有光氧化活性基序的共价有机框架(COFs)作为多相催化剂具有很大的前景,但它们的应用主要局限于一步转化。在这项工作中,我们设计并合成了一系列具有不同π扩展双氢非那嗪核的三维(3D) COFs,以获得优异的光催化性能。这些3D COFs具有优异的结晶度,高表面积和显著的化学稳定性。更重要的是,它们可以作为高效和可回收的催化剂,用于以苯乙烯和氟烷基酸酐为底物的光催化串联聚合反应,生成具有窄分散性的氟烷基化聚苯乙烯聚合物。这些COFs构成了聚合反应的串联光催化剂的第一个例子。此外,最佳能级排列和光物理性质的增强是其高效的关键因素。这项工作不仅为多功能COF催化剂的设计提供了可行的策略,而且扩展了其在涉及串联催化过程的复杂合成序列中的应用。
{"title":"Energy Level Engineering of Dihydrophenazine-Based Covalent Organic Frameworks Through π-Expansion of Cores Toward Tandem Photocatalytic Polymerization","authors":"Sheng Niu,&nbsp;Zhenyang Hu,&nbsp;Xiaoyi Xu,&nbsp;Prof. Hongzheng Chen,&nbsp;Prof. Alex K.-Y. Jen,&nbsp;Ning Huang","doi":"10.1002/ange.202523520","DOIUrl":"https://doi.org/10.1002/ange.202523520","url":null,"abstract":"<p>Covalent organic frameworks (COFs) incorporating photoredox-active motifs show great promise as heterogeneous catalysts, yet their applications have been largely confined to one-step transformations. In this work, we design and synthesize a series of three-dimensional (3D) COFs with different π-extended dihydrophenazine cores to achieve superior photocatalytic performance. These 3D COFs exhibit excellent crystallinity, high surface areas, and remarkable chemical stability. More importantly, they can work as highly efficient and recyclable catalysts for photocatalytic tandem polymerization reactions using styrene and fluoroalkyl anhydrides as substrates, yielding fluoroalkylated polystyrene polymers with narrow dispersity. These COFs constitute the first examples as tandem photocatalysts toward polymerization reactions. Moreover, optimal energy level alignment and enhanced photophysical properties are identified as key factors contributing to their high efficacy. This work not only provides a viable design strategy for multifunctional COF catalysts, but also expands their utility in complex synthetic sequences involving tandem catalytic processes.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Assembled Metal-Polyphenol Colchicine Nanoparticles Targeting Oxidative Stress and Inflammation for Treatment of Atherosclerosis 自组装金属-多酚秋水仙碱纳米颗粒靶向氧化应激和炎症治疗动脉粥样硬化
Pub Date : 2026-01-07 DOI: 10.1002/ange.202514547
Dr. Franco Centurion, Xiuwen Zhang, Dr. Chen Dai, Dr. Varun Kundi, Dr. Priyank Kumar, Assoc. Professor Dr. Meihua Yu, Dr. Dominique Appadoo, Dr. Aditya Rawal, Dr. Ashish Misra, Prof. Dr. Sanjay Patel, Prof. Dr. Yu Chen, Prof. Dr. Zi Gu

Anti-inflammatory colchicine therapy has emerged as a new era for atherosclerotic cardiovascular diseases. However, the therapeutic benefit of colchicine has not been clearly defined. Herein, we present a double coordination-driven approach to fabricate a stable metal-organic nano-assembly of colchicine (COL-TA-Zn) by uniting the tropolone ring of colchicine (COL), phenolic groups of tannic acid (TA), and Zn2+ ions. This design leverages the antioxidant and anti-inflammatory properties of COL and TA to create a nanoscale platform capable of scavenging radicals and modulating inflammatory pathways. Through robust Zn2+ coordination, the resulting COL-TA-Zn nanocomplexes exhibit enhanced stability under physiological conditions, ensuring efficient delivery and sustained bioactivity. In vitro assays confirm suppression of foam cell formation and multiple inflammatory mediators, suggesting significant potential for managing atherosclerosis by targeting both oxidative stress and inflammation. Intravenous administration of COL-TA-Zn in Apoe/ mice significantly reduces atherosclerotic plaque area, MMP-9, TNF-α, and reactive oxygen species (ROS) levels, thereby illustrating its superior anti-atherosclerotic efficacy compared to COL alone. These findings highlight the promise of the dual coordination-driven nanoplatform in cardiovascular disease treatment.

抗炎秋水仙碱治疗已成为动脉粥样硬化性心血管疾病的新时代。然而,秋水仙碱的治疗效果还没有明确的定义。本文提出了一种双配位驱动的方法,通过结合秋水仙碱的tropolone环(COL)、单宁酸的酚基(TA)和Zn2+离子,制备了一种稳定的秋水仙碱金属有机纳米组装体(COL-TA- zn)。该设计利用COL和TA的抗氧化和抗炎特性来创建一个能够清除自由基和调节炎症途径的纳米级平台。通过强大的Zn2+配位,得到的COL-TA-Zn纳米配合物在生理条件下表现出更高的稳定性,确保了高效的递送和持续的生物活性。体外实验证实了泡沫细胞的形成和多种炎症介质的抑制,表明通过靶向氧化应激和炎症来控制动脉粥样硬化的巨大潜力。Apoe−/−小鼠静脉注射COL- ta - zn可显著减少动脉粥样硬化斑块面积、MMP-9、TNF-α和活性氧(ROS)水平,从而表明与单独使用COL相比,其具有更强的抗动脉粥样硬化功效。这些发现突出了双协调驱动的纳米平台在心血管疾病治疗中的前景。
{"title":"Self-Assembled Metal-Polyphenol Colchicine Nanoparticles Targeting Oxidative Stress and Inflammation for Treatment of Atherosclerosis","authors":"Dr. Franco Centurion,&nbsp;Xiuwen Zhang,&nbsp;Dr. Chen Dai,&nbsp;Dr. Varun Kundi,&nbsp;Dr. Priyank Kumar,&nbsp;Assoc. Professor Dr. Meihua Yu,&nbsp;Dr. Dominique Appadoo,&nbsp;Dr. Aditya Rawal,&nbsp;Dr. Ashish Misra,&nbsp;Prof. Dr. Sanjay Patel,&nbsp;Prof. Dr. Yu Chen,&nbsp;Prof. Dr. Zi Gu","doi":"10.1002/ange.202514547","DOIUrl":"https://doi.org/10.1002/ange.202514547","url":null,"abstract":"<p>Anti-inflammatory colchicine therapy has emerged as a new era for atherosclerotic cardiovascular diseases. However, the therapeutic benefit of colchicine has not been clearly defined. Herein, we present a double coordination-driven approach to fabricate a stable metal-organic nano-assembly of colchicine (COL-TA-Zn) by uniting the tropolone ring of colchicine (COL), phenolic groups of tannic acid (TA), and Zn<sup>2+</sup> ions. This design leverages the antioxidant and anti-inflammatory properties of COL and TA to create a nanoscale platform capable of scavenging radicals and modulating inflammatory pathways. Through robust Zn<sup>2+</sup> coordination, the resulting COL-TA-Zn nanocomplexes exhibit enhanced stability under physiological conditions, ensuring efficient delivery and sustained bioactivity. In vitro assays confirm suppression of foam cell formation and multiple inflammatory mediators, suggesting significant potential for managing atherosclerosis by targeting both oxidative stress and inflammation. Intravenous administration of COL-TA-Zn in <i>Apoe</i><sup>−</sup><sup>/</sup><sup>−</sup> mice significantly reduces atherosclerotic plaque area, MMP-9, TNF-α, and reactive oxygen species (ROS) levels, thereby illustrating its superior anti-atherosclerotic efficacy compared to COL alone. These findings highlight the promise of the dual coordination-driven nanoplatform in cardiovascular disease treatment.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy Level Engineering of Dihydrophenazine-Based Covalent Organic Frameworks Through π-Expansion of Cores Toward Tandem Photocatalytic Polymerization 双氢非那嗪基共价有机骨架在串联光催化聚合中π-膨胀的能级工程研究
Pub Date : 2026-01-07 DOI: 10.1002/ange.202523520
Sheng Niu, Zhenyang Hu, Xiaoyi Xu, Prof. Hongzheng Chen, Prof. Alex K.-Y. Jen, Ning Huang

Covalent organic frameworks (COFs) incorporating photoredox-active motifs show great promise as heterogeneous catalysts, yet their applications have been largely confined to one-step transformations. In this work, we design and synthesize a series of three-dimensional (3D) COFs with different π-extended dihydrophenazine cores to achieve superior photocatalytic performance. These 3D COFs exhibit excellent crystallinity, high surface areas, and remarkable chemical stability. More importantly, they can work as highly efficient and recyclable catalysts for photocatalytic tandem polymerization reactions using styrene and fluoroalkyl anhydrides as substrates, yielding fluoroalkylated polystyrene polymers with narrow dispersity. These COFs constitute the first examples as tandem photocatalysts toward polymerization reactions. Moreover, optimal energy level alignment and enhanced photophysical properties are identified as key factors contributing to their high efficacy. This work not only provides a viable design strategy for multifunctional COF catalysts, but also expands their utility in complex synthetic sequences involving tandem catalytic processes.

含有光氧化活性基序的共价有机框架(COFs)作为多相催化剂具有很大的前景,但它们的应用主要局限于一步转化。在这项工作中,我们设计并合成了一系列具有不同π扩展双氢非那嗪核的三维(3D) COFs,以获得优异的光催化性能。这些3D COFs具有优异的结晶度,高表面积和显著的化学稳定性。更重要的是,它们可以作为高效和可回收的催化剂,用于以苯乙烯和氟烷基酸酐为底物的光催化串联聚合反应,生成具有窄分散性的氟烷基化聚苯乙烯聚合物。这些COFs构成了聚合反应的串联光催化剂的第一个例子。此外,最佳能级排列和光物理性质的增强是其高效的关键因素。这项工作不仅为多功能COF催化剂的设计提供了可行的策略,而且扩展了其在涉及串联催化过程的复杂合成序列中的应用。
{"title":"Energy Level Engineering of Dihydrophenazine-Based Covalent Organic Frameworks Through π-Expansion of Cores Toward Tandem Photocatalytic Polymerization","authors":"Sheng Niu,&nbsp;Zhenyang Hu,&nbsp;Xiaoyi Xu,&nbsp;Prof. Hongzheng Chen,&nbsp;Prof. Alex K.-Y. Jen,&nbsp;Ning Huang","doi":"10.1002/ange.202523520","DOIUrl":"https://doi.org/10.1002/ange.202523520","url":null,"abstract":"<p>Covalent organic frameworks (COFs) incorporating photoredox-active motifs show great promise as heterogeneous catalysts, yet their applications have been largely confined to one-step transformations. In this work, we design and synthesize a series of three-dimensional (3D) COFs with different π-extended dihydrophenazine cores to achieve superior photocatalytic performance. These 3D COFs exhibit excellent crystallinity, high surface areas, and remarkable chemical stability. More importantly, they can work as highly efficient and recyclable catalysts for photocatalytic tandem polymerization reactions using styrene and fluoroalkyl anhydrides as substrates, yielding fluoroalkylated polystyrene polymers with narrow dispersity. These COFs constitute the first examples as tandem photocatalysts toward polymerization reactions. Moreover, optimal energy level alignment and enhanced photophysical properties are identified as key factors contributing to their high efficacy. This work not only provides a viable design strategy for multifunctional COF catalysts, but also expands their utility in complex synthetic sequences involving tandem catalytic processes.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146162442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-Wavelength Light-Induced Group 13–15 Elementalization Reactions of Alkenes/Alkynes 长波长光诱导烯烃/炔的13-15基团元素化反应
Pub Date : 2026-01-07 DOI: 10.1002/ange.202521882
Haruka Iimuro, Antônio Junio Araujo Dias, Prof. Dr. Ken Tanaka, Prof. Dr. Masanobu Uchiyama, Dr. Yuki Nagashima

We present di-tert-butyl peroxide (DTBP)-catalyzed long-wavelength light-induced Group 13, 14, and 15 elementalizations of alkenes and alkynes, through in situ production of tert-butyl radicals, followed by a hydrogen-atom-transfer process generating silyl, germyl, stannyl, alkyl, boryl, and phosphoryl radicals. This mild and photosensitizer-free methodology employing blue (450 nm)/green (530 nm)/orange (600 nm) LEDs affords high chemoselectivity and broad functional group tolerance compared to conventional use of shorter-wavelength light. Synthetic, spectroscopic, and computational data are consistent with a vibration-mediated photolysis mechanism of DTBP involving electronic excitation from vibrationally excited ground states (S0μn) to the excited state (S0μn→Sn transitions), driven by ultraweak absorption of long-wavelength visible light.

我们提出了过氧化二叔丁基(DTBP)催化的长波长光诱导的烯烃和炔的13、14和15基团元素化,通过原位生产叔丁基自由基,然后通过氢原子转移过程产生硅基、芽基、锡基、烷基、硼基和磷基自由基。这种温和且无光敏剂的方法采用蓝色(450 nm)/绿色(530 nm)/橙色(600 nm) led,与传统使用短波长的光相比,具有高化学选择性和广泛的官能团耐受性。合成、光谱和计算数据证实了DTBP的振动介导的光解机制,该机制涉及在长波长可见光的超弱吸收驱动下,从振动激发基态(50 μn)到激发态(50 μn→Sn跃迁)的电子激发。
{"title":"Long-Wavelength Light-Induced Group 13–15 Elementalization Reactions of Alkenes/Alkynes","authors":"Haruka Iimuro,&nbsp;Antônio Junio Araujo Dias,&nbsp;Prof. Dr. Ken Tanaka,&nbsp;Prof. Dr. Masanobu Uchiyama,&nbsp;Dr. Yuki Nagashima","doi":"10.1002/ange.202521882","DOIUrl":"https://doi.org/10.1002/ange.202521882","url":null,"abstract":"<p>We present di-<i>tert</i>-butyl peroxide (DTBP)-catalyzed long-wavelength light-induced Group 13, 14, and 15 elementalizations of alkenes and alkynes, through in situ production of <i>tert</i>-butyl radicals, followed by a hydrogen-atom-transfer process generating silyl, germyl, stannyl, alkyl, boryl, and phosphoryl radicals. This mild and photosensitizer-free methodology employing blue (450 nm)/green (530 nm)/orange (600 nm) LEDs affords high chemoselectivity and broad functional group tolerance compared to conventional use of shorter-wavelength light. Synthetic, spectroscopic, and computational data are consistent with a vibration-mediated photolysis mechanism of DTBP involving electronic excitation from vibrationally excited ground states (S<sub>0</sub>μ<i><sub>n</sub></i>) to the excited state (S<sub>0</sub>μ<i><sub>n</sub></i>→S<i><sub>n</sub></i> transitions), driven by ultraweak absorption of long-wavelength visible light.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"138 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146154756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Angewandte Chemie
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1